
Program Logics of Renominative Level with the 

Composition of Predicate Complement 

Mykola Nikitchenko
 [0000-0002-4078-1062]

, Oksana Shkilniak
 [0000-0003-4139-2525]

,               

Stepan Shkilniak
 [0000-0001-8624-5778] 

Taras Shevchenko National University of Kyiv,  

60 Volodymyrska Street, City of Kyiv, Ukraine, 01033  

mykola.nikitchenko@gmail.com, me.oksana@gmail.com, 

sssh@unicyb.kiev.ua 

Abstract. Program logics are wildly used for software verification. Such logics 

are based on formal program models and reflect main program properties.  

Among various program logics, Floyd-Hoare logic and its variants take a spe-

cial place because of its naturalness and simplicity. But such logics are oriented 

on total pre- and post-conditions, and in the case of partial conditions they be-

come unsound. Different methods to overcome this problem were proposed in 

our previous works. One of the methods involves extension of program algebras 

with the composition of predicate complement. This permits to modify rules of 

the logic making them sound. Such modification requires introduction of unde-

finedness conditions into logic rules. In this paper we continue our research of 

such logics. We investigate a special predicate logic called logic of renomina-

tive (quantifier-free) level with the composition of predicate complement. This 

logic is a constituent part of the program logic. We introduce a special conse-

quence relation for this logic, construct a sequent calculus, and prove its sound-

ness and completeness.  

Keywords: software verification, program logic, Floyd-Hoare logic, partial 

predicate, soundness, completeness.  

1 Introduction 

The formalism of program logics is the main instrument for software verification [1]. 

To be effective, such logics should reflect main program properties.  Therefore, ade-

quate formal program models should be constructed which will form a base for a 

program logic. Among such logics we should point to Floyd-Hoare logic and its vari-

ants as quite natural and simple [2, 3]. But such logics are oriented on total pre- and 

post-conditions, and in the case of partial conditions (predicates) they become un-

sound.  

In our previous works [4, 5] we considered several methods to extend Floyd-Hoare 

logic for partial predicates, in particular, we proposed two methods: 1) introduction of 

special rule constraints; and 2) restriction of the class of program assertions (of Hoare 

triples).  Both methods make a logic sound but they are difficult for practical usage or 
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are rather restrictive.  Here we study one more method which proposes to extend pro-

gram algebras with the composition of predicate complement [6, 7]. Introduction of 

this composition permits to modify rules in such a way that they become sound, but a 

negative side of this proposal is that logic becomes more complicated.  In this case, 

undefinedness conditions for predicates should be taken into account.  

In this paper we continue our research of logics with the composition of predicate 

complement. We concentrate on a base logic which is a constituent part of program 

logic. This logic is a special logic of partial quasiary predicates of renominative 

(quantifier-free) level. We introduce a consequence relation with undefinedness con-

ditions, study its properties, and define a sequent calculus. We prove the soundness 

and completeness theorems for this logic with the composition of predicate comple-

ment. 

2 Program Algebras with the Composition of Predicate 

Complement 

According to the principles of composition-nominative approach [8, 9] we con-

struct program logics based on program algebras. Such algebras are defined in the 

following way [9, 10]: 

1) a set D of data processed by programs is defined; 

2) the classes of partial predicates Pr =
pD Bool  and partial functions 

Fn =
pD D  are defined; 

3) operations (compositions) over Pr and Fn are specified. 

This scheme leads to two-sorted program algebras. In our previous works we con-

sidered program algebras with traditional compositions. But the problem of defining 

sound rules for program logics requires new compositions. Therefore, here we con-

sider a program algebra extended with the composition of predicate complement. This 

unary predicate composition is defined in the following way ( ,   p Pr d D ): 

 ,   if  ( ) is undefined,
( )( )

 undefined,  if  ( ) is defined.
T p d

p d
p d

  

Specifying D as the class ( , )CCD V A of hierarchical nominative data [7, 11] with 

complex names and values built over the set of basic names V and the set of basic 

values A, we can define a complemented program algebra as a two-sorted algebra [7] 

( , ) ( ( , ), ( , );

, , , , , , , , , , , )



    
CC CC CC

u u u
F P a

CPAND V A Pr V A Fn V A

AS id IF WH S S v v x
 

where ( , )CCPr V A and ( , )CCFn V A are classes of partial predicates and partial function 

over ( , )CCD V A respectively; , , , , ,u u u
P FAS id IF WH S S  are compositions of assign-

ment, identity, conditional, cycle, superposition into predicate, superposition into 

function respectively; v  and av  are naming and denaming functions; 

, , ,x    are composition of disjunction, negation, existential quantification, 

and predicate complement; , , v u x V   are complex names, u U  is a sequence of 



 

complex names. This algebra is quite expressive to present formal semantics of rather 

complex programs. 

A special program logic of Floyd-Hoare type based on such algebras is presented 

in [7]. Its distinctive feature is introduction of new rules which are sound for partial 

predicates and which use preconditions constructed with the help of the composition 

of predicate complement. 

For example, a classical rule of Floyd-Hoare logic for sequential execution of op-

erators f and g has the form 

{ } { },{ } { }
_   

{ } { }

p f q q g r
R SEQ

p f g r
 

where f g denotes sequential execution of f and g.  

This rule is not sound in the case of partial predicates [4]. Therefore, a new sound 

rule based on extended program algebra was introduced [7]: 

{ } { },{ } { },{ } { }
_   .

{ } { }

p f q q g r q g r
R SSEQ

p f g r
 

Obtained program logic can be an important instrument of program verification. 

So, its thorough investigation is required. This is a rather complicated challenge; 

therefore, we start with more simple logics. First, we identify a special predicate logic 

as a constituent part of the program logic. Such predicate logic can be considered as a 

logic defining constraints (program annotations). Second, we will consider here only 

logic L
QCR

 of renominative level which can be characterized as quantifier-free predi-

cate logic of partial quasiary predicates with the composition of predicate comple-

ment. The case of first-order logic with quantifiers and functions is planned to study 

in the forthcoming papers.  

3 Logic of Partial Quasiary Predicates of Renominative Level 

with the Composition of Predicate Complement  

To define a logic L
QCR

 we should define [9, 10] 

– its class of algebras;  

– its language (based on logic signature);  

– its class of interpretations;  

– its consequence relation;  

– its inference relation based on some calculus.  

Formal definitions will be given in the next section. We will use the following no-

tations: 

– 'pS S  ( 'tS S ) is the class of partial (total) mappings from S  to ';S  

– ( )p d   ( ( )p d  ) means that p is defined (undefined) on d; 

– ( )p d T  ( ( )p d F ) means that p is defined on d with value T (F). For this 

case we also use simpler notation ( )p d T  ( ( )p d F ). 

The terms and notations, not defined here, are treated in the sense of [12]. 



 

3.1 Complemented Algebras of Partial Quasiary Predicates of Renominative 

Level 

Let V be a set of names (variables) and A be a set of values. The class 
V A  of nomina-

tive sets (partial assignments, partial data) is defined as the class of all partial map-

pings from V to A, thus, 
pV A V A  .  

Nominative sets represent states of program variables.  

The main operation for nominative sets is a total unary parametric renomination  

1

1

,...,

 ,...,r : n

n

v v tV V
x x A A , where 1 1,..., , ,...,n nv v x x  are names, and 1,..., nv v  are distinct  

[12]. Intuitively, given nominative set d this operation yields a new nominative set 

changing the values of 1,..., nv v to the values of 1,..., nx x respectively. We also use 

simpler notation for this renomination:  r
v
x . We write x v  to denote that x is a vari-

able from v ; we write v x to denote the set of variables that occur in the sequences 

v  and x . 

The set of assigned variables (names) in d is denoted asn(d). 

Let 
pV V

APr A Bool  be the set of all partial predicates over 
V A . Such predi-

cates are called partial quasiary predicates. For a predicate 
V
Ap Pr  its truth, falsity, 

and undefinedness domains are denoted T(p), F(p), and ( )p  respectively. Please 

note that these domains do not intersect pairwise and their union is equal to 
V A ; thus, 

predicate p is defined by T(p) and F(p) only, because  ( ) \ ( ( ) ( ))  Vp A T p F p . 

Operations over 
V
APr  are called compositions. Basic compositions of renominative 

level over quasiary predicates are disjunction , negation , and renomination 
v
xR .  

We extend this set with the composition of predicate complement .  

These compositions are defined by the following formulas ( ,  V
Ap q Pr ): 

– T(pq) = T(p)T(q); F(pq) = F(p)F(q);  

– T(p) = F(p); F(p) = T(p);  

– T ( ( ))v
xR p = {d

V
A |  r ( ) ( )v

x d T p }; F ( ( ))v
xR p = {d

V
A |  r ( ) ( )v

x d F p }; 

– T( p) = ( ) p ;  F( p)=  . 

Please note that definitions of disjunction and negation are similar to strong 

Kleene’s connectives [13]. We consider  as a composition of propositional level.  

A tuple  


QCR

(V, A) = < V
APr ; , , v

xR , > 

is called a complemented algebra of partial quasiary predicates of renominative level. 

A class of such algebras (with different A) forms a semantic base for a logic L
QCR

. 

Now we describe the main properties of 
QCR

(V, A). We do not formulate tradi-

tional properties of propositional compositions of disjunction and negation [9, 14], but 

concentrate on properties of compositions of renomination and complement. 



 

Compositions of disjunction and negation have traditional properties; in contrast 

to these compositions, the composition of predicate complement is more complicated: 

it does not have the monotonicity property and it does not have distributivity proper-

ties with respect to disjunction. For this composition we identify the following proper-

ties. 

Lemma 1. For any  V
Ap Pr  we have 

 p p ;  p p ;  p p . 

Lemma 2. For any  V
Ap Pr  we have 

1) ( ) T p ; ( ) ( ) F p T p ; ( )p   ( )p ;   

2) ( ( ))v
xT R p = ( ( ( )))v

xT R p ; ( ( ))v
xF R p  ; ( ( ))v

xR p = ( ( ( )))v
xR p . 

 

The notion of unessential variable is important for the composition of renomina-

tion. A name (variable) z is unessential for predicate  V
Ap Pr , if for any d

V
A the 

value of p does not depends on the value of z [9, 12]. 

Lemma 3. The following properties of the compositions of renomination and predi-

cate complement hold for any  V
Ap Pr : 

R) ( ) ( ) ( )v v v
x x xR p q R p R q   ; 

R) ( ) ( )v v
x xR p R p  ; 

RR) ( ( )) ( )v w v w
x y x yR R p R p ; 

R ) ( )v
xR p  ( )v

xR p ; 

R) R(p) = p;  

RI) ,
, ( ) ( )z v v

z x xR p R p ; 

RU) ,
, ( ) ( )z v v

y x xR p R p  if  zV is unessential for p. 

3.2 Language (signature and formulas) of L
QCR

  

Let Ps be a set of predicate symbols, V be an infinite set of names (variables). Usual-

ly, within V a subset U of unessential variables is identified but here we will not go 

into detail [12]. A tuple  

( , ; , , , ; )QCR v
xV U R Ps     

is called the language signature.  

For simplicity, we use the same notation for symbols of compositions and compo-

sitions themselves. 

Given QCR
, we define inductively the language of 

QCRL  – the set of formulas de-

noted Fr(
QCRL ) or simply Fr: 

– if P Ps then PFr. Formulas of such forms are called atomic; 

– if , Fr then , , v
xR , Fr . 



3.3 L
QCR

 -interpretations 

Let  QCR (V, A) = < V
APr ; , , ,v

xR >  be a complemented algebra of a signature 

( , ; , ,R , ; )QCR v
xV U Ps    ,  tPs V

Q AI Ps Pr   be an interpretation mapping of 

predicate symbols. Then a tuple J(QCR ) = ( QCR (V, A), Ps
QI ) is called an QCRL -

interpretation.  

We simplify notation for QCRL -interpretation J(QCR ) omitting QCRL  and QCR .  

In interpretation J, an algebra  QCR (V, A) defines interpretations of composition 

symbols while Ps
QI  defines interpretations of predicate symbols.  

For given interpretation J and formula , we can define by induction on the struc-

ture of  its value in J. Obtained predicate is denoted  J.  

Lemma 4. Let J be an interpretation and , Fr. Then 

R) R()J = J ;  

RI) ,
, ( ) ( )  z v v

z x J x JR R ;  

RU) ,
, ( ) ( )  z v v

y x J x JR R  if  zV is unessential for ; 

R) ( ) ( )  v v
x J x JR R ; 

R) ( ) ( ) ( )    v v v
x J x J x JR R R ; 

RR) ( ( )) ( )  v w v w
x y J x y JR R R ;  

R ) ( )  ( )  v v
x J x JR R . 

3.4 Logical Consequence Relation under Conditions of Undefinedness 

Introduction of composition  requires more complicated consequence relation be-

cause undefinedness domains should be taken into consideration. Here we introduce 

new consequence relation between sets of formulas denoted |=IR

 which generalizes 

irrefutability relation |=IR [7]. 

Let   Fr and J be an interpretation.  

We denote:   

( )JT


  as T

( J), ( )JF



  as F

( J), ( )J



   as 

( J). 

Here J denotes set { |J  }. 

Set  can be empty. In this case  

T

() = T


() = F


() = F


() = 


() = 


() = 

V A . 

Let , U,   Fr. Informally, the statement “ is irrefutable consequence of   un-

der undefinedness conditions U in interpretation J ” means  

“for any d
V
A  if J (d)  for any U then it is not possible that ( J (d) = T  

for any  and J (d) = F for any  )”. 

This statement is equivalent to the following statement: 



 

“for any d
V
A if d


(UJ) then it is not possible that  dT


(J)F


( J) ”. 

The former statement can be reformulated as follows:  

“for any d
V
A it is not possible that (d


(UJ) and dT


(J)F


( J)) ”. 

Finally, we obtain the following statement: 

“

(UJ)  T


(J)  F


( J) =  ”. 

So, we come to the following formal definition:  is irrefutable consequence of   

under undefinedness conditions U in interpretation J  (denoted U /  J |=IR


  ) if   

T

(J)  


(UJ)  F


( J) = . 

In particular, for U =   we obtain irrefutability consequence relation  J |=IR .  

 is logical irrefutability consequence of  under undefinedness conditions U 

(denoted U /  |=IR


 ), if U /  J |=IR


  for any interpretation J.  

In particular, for U = , we get traditional logical irrefutability relation  |=IR .  

Let us now describe the main properties of the consequence relation |=IR

 for prop-

ositional level.  

By definition of |=IR

, we obtain monotonicity: 

M) Let   , U  W, and   ;  then U /  |=IR

   W /  |=IR


 . 

The following properties describe conditions under which |=IR

  holds.  

Theorem 1. For any U, ,   Fr, Fr: 

С) U / ,  |=IR


 , ;  

СUL) U, / ,  |=IR


 ;  

СUR) U, /  |=IR


 , ;  

C ) U /  |=IR


 ,  .   

Proof. Property С holds because T(J)  F(J) = .  

For property СUL we take into consideration that (J)  T(J) = .  

For property СUR we take into consideration that (J)  F(J) = .  

Property C  holds because F( J) = . 

For |=IR

 the following properties of formula decomposition hold. 

Theorem 2. For any U, ,   Fr, , , Fr: 

L) U /,  |=IR


     U /  |=IR


 , ;  

R) U /  |=IR


 ,     U / ,  |=IR


 ; 

L) U / ,  |=IR


     U / ,  |=IR


   and  U / ,  |=IR


 ;  

R) U /  |=IR


 ,     U /  |=IR


 , , ;  

U) U, /  |=IR


     U,  /  |=IR


 ;  

U) U, /  |=IR


     U,, /  |=IR


   and  U, /  |=IR


 ,   and   

U, /  |=IR


 , ; 

U) U,  /  |=IR


     U / ,  |=IR


   and U /  |=IR


 , ; 

L) U / ,  |=IR


     U,  /  |=IR


 . 

Proof. Property U holds because (J) = (J).  



Property U holds because  

( ) ( ( ) ( )) ( ( ) ( )) ( ( ) ( ))J J J J J J J JF F                 . 

Property U holds because  ( )J = T(J)  F(J). 

Properties L, R, L, R are similar to properties of |=IR [9, 12, 13]. Properties U, 

U, L, U  are special for L
QCR

. 

Let us consider properties of relation |=IR
U
 of a renominative level. Their proofs are 

based on Theorem 2. Each of properties R, RI, RU, RR, R, R, R   of  Lemma 4  

induces three corresponding properties for |=IR
U
, depending on the position of a formu-

la (in the left side of  |=IR
U
, in the right side of  |=IR

U
, in the undefinedness conditions 

of  |=IR
U
). Such properties are formulated in a similar way, for example, the following 

properties R L, R R, R U are induced by R :  

R L) U / ( ),v
xR  |=IR


     U / ( ),v

xR  |=IR


 ;  

R R) U /  |=IR


 , ( )v
xR     U /  |=IR


 , ( )v

xR ; 

R U) U, ( ) / v
xR |=IR


     U, ( )/ v

xR |=IR


 .  

4 Sequent Calculus for L
QCR

 

Usually, inference relations are defined by some axiomatic systems (calculi). We 

present here a system that formalizes logical consequence relation between two sets 

of formulas. Such systems are called sequent calculi.  

We construct a sequent calculus C
QCR

 for relation |=IR

. 

The main objects of this calculus are sequents. Here we consider only the case with 

finite sequents. We construct calculus in the style of semantic tableau, so, we will 

treat sequents as finite sets of formulas signed (marked, indexed) by symbols |– , –| , 

and  . 

Formulas from  (they are signed by |–) are called T-formulas, formulas from  

(they are signed by –|) are called F-formulas, and formulas from U (they are signed 

by ) are called  -formulas.  

Sequents are denoted |–U–|, in abbreviated form .  

The derivation in a sequent calculus has the form of a tree whose vertices are se-

quents. Such trees are called sequent trees. 

The rules of sequent calculus are called sequent forms. They are syntactical ana-

logs of the semantic properties of the corresponding relations of logical consequence. 

Details of the definition of sequent tree can be found in [12]. 

Closed sequents are axioms of the sequent calculus. 

A closed sequent is specified in such a way that the following condition should 

hold: 

if sequent |–U–|  is closed then U /  |=IR


 . 

Sequent calculus is defined by basic sequent forms and closure conditions of se-

quents.  

For C
QCR

 we take the following closure conditions: 



 

sequent |–U–|  is closed if condition C  CUL  CUR C  holds. 

Here C, CUL, CUR, C  are the following basic closure conditions: 

C) exists :   and ;   

CUL) exists :   and U;   

CUR) exists :   and U; 

C ) exists : .  

Theorem 3. If sequent |–U–| is closed then U /  |=IR


 .  

Proof. The theorem statement follows directly from Theorem 1. 

The sequent forms of decomposition of compositions , ,  are induced by the 

corresponding properties of formulas decomposition, in particular, basic sequent 

forms of C
QCR

 calculus are induced by the formula decomposition properties  L, R, 

L, R, U, U, U, L:  

| 
|

|

,  

,  





 

 
;    |  

|

|

,  

,  





 

 
;      

,  

,  




 

 
; 

| 
| |

|

,      ,  

,  

 



   

 
;    | 

| |

|

,  ,  

,  

 



  

 
;    

  |  |  , ,     , ,    , ,  

,  

     



        

 
;  

  
| |,      ,  

,  

 



   

 
;        |  

|

,  

,  




 

 
.  

For the composition of renomination we use the following forms of equivalent 

transformations: 

|–R 
|

|

( ),

( ),





  

 

v
x

v
x

R

R
;    –|R 

|

|

( ),

( ),





  

 

v
x

v
x

R

R
;    R 

( ),

( ),





  

 

v
x

v
x

R

R
; 

|–R 
|

|

( ) ( ),

( ),





   

 

v v
x x

v
x

R R

R
; –|R 

|

|

( ) ( ),

( ),





   

 

v v
x x

v
x

R R

R
; R 

( ) ( ),

( ),





   

 

v v
x x

v
x

R R

R
; 

|– R  
|

|

( ),

( ),





 

 

v
x

v
x

R

R
;   –| R   

|

|

( ),

( ),





 

 

v
x

v
x

R

R
;    R  

( ),

( ),





 

 

v
x

v
x

R

R
; 

|–RR 
|

|

( ),

( ( )),





 

 

v w
x y

v w
x y

R

R R
;   –|RR 

|

|

( ),

( ( )),





 

 

v w
x y

v w
x y

R

R R
;   RR 

( ),

( ( )),





 

 

v w
x y

v w
x y

R

R R
.  

Here ( )v w
x yR  represents application of two successive renominations 

( ( ))v w
x yR R  [12]. 

Forms of simplification: 

|–R 
|

|

,

( ),





 

 R
;      –|R 

|

|

,

( ),





 

 R
;     R 

,

( ),




 

 R
; 



|–RI 
|

,
| ,

( ),

( ),





 

 

v
x

z v
z x

R

R
;    –|RI 

|

,
| ,

( ),

( ),





 

 

v
x

z v
z x

R

R
;    RI 

,
,

( ),

( ),





 

 

v
x

z v
z x

R

R
; 

|–RU 
|

,
| ,

( ),

( ),





 

 

v
u

y v
z u

R

R
;    –|RU 

|

,
| ,

( ),

( ),





 

 

v
u

y v
z u

R

R
;    RU 

,
,

( ),

( ),





 

 

v
x

z v
y x

R

R
. 

The names of the sequent forms are consistent with the names of the properties of 

the decomposition of the formulas. Introduction of undefinedness formulas addition-

ally leads to new sequent forms with three premises (rule ).  

For basic rules of C
QCR

 we have the following main properties. 

Theorem 4.  

1. Let 
| |

| |

W

U

  

  

 

 
 be basic sequent form. Then 

a) U /  |=IR


     W /  |=IR


 ;   

b) U /  |IR


     W /  |IR


 .   

2. Let 
| | | |

| |

W     V  

U

     

  

   

 
 be basic sequent form. Then 

a) U /  |=IR


     W /  |=IR


   and  V /  |=IR


 ;   

b) U /  |IR


     W /  |IR


   or  V /  |IR


 .  

3. Let 
| | | | | |

| |

W    V    Y  

U

        

  

     

 
 be basic sequent form. Then 

a) U /  |=IR


     W /  |=IR


   and  V /  |=IR


   and  Y /  |=IR


 ; 

b) U /  |IR


     W /  |IR


   or  V /  |IR


   or  Y /  |IR


 . 

Proof. The proof of the theorem is obtained by set-theoretic methods using a for-

mula specifying relation |=IR

. 

5 Soundness and Completeness of C
QCR

 

Now we prove soundness and completeness theorems for C
QCR

. 

Theorem 5 (soundness). Let sequent |–U–| be derivable in C
QCR

. Then 

U /  |=IR


 . 

Proof. If |–U–| is derivable then a finite closed tree was constructed.   From this 

follows that for any leaf of this tree its sequent |–W–| is closed. Thus, by Theorem 

4, W /  |=IR


   holds. Therefore, for the root of the tree (sequent |–U–|) we have 

that U /  |=IR


  holds. 

The completeness is traditionally proved on the basis of theorems of the existence 

of a counter-model for the set of formulas of a non-closed path in the sequent tree. In 

this case a method of model sets is used. 

We apply this method to the C
QCR

 calculus. 

Set Н of signed formulas is a model set (Hintikka’s set) for  L
QCR

 if the following 

conditions hold: 



 

Decomposition conditions: 

НСU) For any Fr at most one of |–, –|,   can belong to Н; 

Н C ) For any Fr it is not possible that  –| H ; 

НL) If |–Н, then –|Н; 

НR) If –|Н, then |–Н; 

НL) If |–Н, then |–Н or |–Н; 

НR) If –|Н, then –|Н and –|Н; 

НU) If Н, then Н; 

НU) If Н, then Н and Н  

or Н and –|Н  or  –|Н and Н; 

Н L) If |  Н, then Н; 

Н U) If   Н, then |–Н or –|Н.  

Conditions for the composition of renomination are formulated in a similar way, 

for example, sequent forms RI and R  induce the following conditions: 

НRIL) ,
| , ( )  z v

z xR H   | ( )  v
xR H ; 

НRIR) ,
| , ( )  z v

z xR H   | ( )  v
xR H ;  

НRIU) ,
, ( )  z v

z xR H   ( )  v
xR H ;  

Н R L) | ( )  v
xR H   | ( )  v

xR H ;  

Н R R) | ( )  v
xR H   | ( )  v

xR H ;  

Н R U) ( )  v
xR H   ( )  v

xR H . 

In the same way conditions НRL, НRR, НRU, НRUL, НRUR, НRUU, НRRL, НRRR, 

НRRU, НRL, НRR, НRU, НRL, НRR, НR can be formulated. 

A set H Fr is called satisfiable if there exist a set A, an interpretation J, and a 

nominative set   V A such that  

– |–Н  A() = T;  

– –|Н  A() = F; 

– Н  A() . 

A set Н of signed formulas for which the above-written conditions hold is called 

H
QCR

-model.  

Theorem 6. Let H be  H
QCR

-model for L
QCR

. Then H is satisfiable. 

Proof. Given H
QCR

-model Н, we should construct a set A, an interpretation J, and a 

nominative set   V A  that demonstrate satisfiability of H. These constructions are 

rather complicated due to undefinedness conditions therefore here we do not present 

the proof in all details but demonstrate only its main parts.  

Let W = nm(Н) be a set of subject names (variables) that occur in H. Let a set А 

duplicates W and 
V
A be a nominative set such that asn() = W.  



Let us prescribe values of basic predicates on nominative set  and nominative sets 

of the form  r ( )v
x .  To do this, we use notations PA() = T, PA() = F, and PA() ) to 

prescribe the value of P on d in algebra  QCR (V, A) equal to T, equal to F, and to be 

undefined respectively: 

– |– PН  PA() = T;   

– –| PН  PA() = F;  

–  PН  PA() ;  

– | ( ) v
xR P H    (r ( )) v

A xP T ;  

– | ( ) v
xR P H    (r ( )) v

A xP F ;  

– ( ) v
xR P H    (r ( ))v

A xP   .  

– Formulas of the form | ( )v
xR P  are called primitive.  

For a predicate symbol PPs that does not occur in H, its value can be chosen in 

arbitrary way. Also, we should treat variables from U as unessential. 

For atomic and primitive formulas the satisfiability statements follow from their 

definitions.  

Now the proof goes on by induction on the formula structure.  

Let us prove the theorem for conditions НRIL, Н R R, Н R U, НL, НR, НU, 

НL, НR, НU, Н U, Н L .  

Let ,
| , ( )  z v

z xR H . By НRIL we have | ( )  v
xR H . By induction hypothesis 

( ) ( )  v
x AR T , therefore ,

, ( ) ( )  z v
z x AR T .  

Let | ( )  v
xR H . By Н R R we have | ( )  v

xR H . By induction hypothesis 

( ) ( )  v
x AR F , therefore ( ) ( )  v

x AR F .  

Let ( )  v
xR H . By Н R U we have ( )  v

xR H . By induction hypothesis 

( ) ( )v
x AR    , therefore ( ) ( )v

x AR    . 

Let |–Н. By НL we have –|Н. By induction hypothesis A() = F, there-

fore A() = T. 

Let –|Н. By НR we have |–Н. By induction hypothesis A() = T, there-

fore A() = F.  

Let |–Н. By НL we have |–Н or |–Н. By induction hypothesis 

A() = T and A() = T, therefore ()A() = T.  

Let –|Н. By НR we have –|Н and –|Н. By induction hypothesis 

A() = F  and  A() = F, therefore ()A() = F.  

Let Н. By НU we have Н. By induction hypothesis A() , there-

fore A() .  

Let Н. By НU Н and Н  or Н and –|Н  or  –|Н 

and Н. By induction hypothesis A()  and A()  or A() and A() = F 

or A() = F and A() . Therefore (A)() . 



 

Let   Н. By Н U we have |–Н or –|Н. By induction hypothesis 

A() = T  or  A() = F, this gives A() , therefore ( )A d  .   

Let |  Н. By Н L we have Н. By induction hypothesis A() , there-

fore ( ) A d T .  

Theorem 7. Let  be unclosed path in a sequent tree for |–U–| and H be the set of 

all formulas in . Then H  is a model set. 

Proof. We should check that H satisfies all requirements that specify a model set. 

Details can be found in [12] but additionally undefinedness conditions should be tak-

en into account.  

The completeness theorem follows from Theorems 6 and 7.  

Theorem 8 (completeness). Let U /  |=IR


  hold. Then sequent |–U–| is derivable 

in C
QCR

.  

Proof. Assume that U /  |=IR


   and |–U–| is not derivable. In this case a se-

quent tree for |–U–| is not closed. Thus, an unclosed path  exists in this tree. Let 

H be the set of all formulas of this path. By Theorem 7, H is a model set. By theorem 

6 this means that a counter-model for |–U–| was constructed. But this contradicts to 

U /  |=IR


  .  

5. Conclusion  

The efficiency of program verification heavily depends on program logics supporting 

corresponding verification methods. Traditional Floyd-Hoare logic and its variants are 

oriented on total pre- and post-conditions (total predicates) and do not support partial 

predicates. In this paper we have studied a new method for constructing sound pro-

gram logics. This method is based on extending program logics with the composition 

of predicate complement. The method permits to construct a sound calculus for pro-

gram logic but it makes the calculus more complicated because undefinedness condi-

tions should be taking into consideration.  

Also, introduction of partial predicates required extension of a base predicate logic 

to a logic of partial quasiary predicate.  For this logic we have defined and investigat-

ed a special consequence relation called irrefutability consequence relation with unde-

finedness conditions. For a case of quantifier-free predicate logic of partial quasiary 

predicates (renominative level) we have constructed a calculus of sequent type and 

proved its soundness and completeness.    

In the future we plan to construct a sequent calculus for predicate logic over hier-

archical nominative data and prove its soundness and completeness. Also, we plan to 

develop a prototype of theorem prover oriented on such logics. Initial steps were 

made in [15]. 
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