
Debugging of Answer Set Programs Using
Paracoherent Reasoning

Bernardo Cuteri1, Carmine Dodaro2, and Francesco Ricca1

1 University of Calabria, Italy - lastname@mat.unical.it
2 University of Genoa, Italy - dodaro@dibris.unige.it

Abstract. Answer Set Programming is a well-known declarative pro-
gramming paradigm proposed in the area of logic programming and
non-monotonic reasoning. Although ASP features a simple syntax and an
intuitive semantics, errors are common during the development of ASP
programs. In this paper we propose a novel debugging approach based on
paracoherent reasoning, which allows a user to identify bugs when they
are related to wrong constraints. The approach has been implemented in
a tool called paradebug, that is made freely available.

Keywords: Answer Set Programming · Debugging Techniques · Para-
coherent Reasoning.

1 Introduction

Answer Set Programming (ASP) [21, 42] is a well-established declarative pro-
gramming paradigm based on the stable model semantics. The simple syntax [22]
and the intuitive semantics [42], combined with the availability of robust imple-
mentations [4, 11, 12, 24, 36–40, 43, 44, 46, 48, 49], make ASP an ideal candidate
for addressing hard combinatorial problems. As matter of fact, ASP has been
successfully used in several research areas, including Artificial Intelligence [3,
10, 14, 18, 34], Hydroinformatics [35], Nurse Scheduling [7], Bio-informatics [31,
45], Game Theory [9, 17], and Databases [47, 50]; more recently ASP has been
applied to solve industrial applications [1, 27, 30].

Albeit the basic syntax and the semantics of ASP are in general clear also
for novice programmers, during the development of ASP encodings, the identi-
fication of (trivial) errors can be time consuming. For this reason, during the
recent years, several techniques and tools, called debuggers, emerged to help the
programmer to deal with faults in ASP programs [19, 28, 29, 41, 51], thus making
the development process faster and more comfortable.

In this paper we provide a practical contribution in the aforementioned con-
text by considering an important question related to debug, i.e. why an inter-
pretation is not an answer set of a program under consideration. In particular,
we report on a preliminary debugging technique based on paracoherent reason-
ing [8, 15, 16], which allows a user to debug ASP programs when the fault is
localized into the constraints of the program. Roughly, the suggested approach

can be described as follows: First, given a non-ground program P, the debugger
generates a ground program Π. Next, the constraints of Π are processed and
normalized, i.e. they are converted into normal rules. Rules created in the nor-
malization step are then rewritten using the paracoherent techniques presented
in [11–13] and a paracoherent answer set is computed, which is subsequently
used to identify the faulty constraints. This approach has been implemented in
a python tool paradebug, that is based on the well-known ASP system dlv2 [5,
2]. The resulting implementation can be used via command-line interface.

2 Preliminaries

2.1 Answer set programming

Syntax. An ASP program P is a finite set of rules of the form

h1 ∨ . . . ∨ hn ← `1, . . . , `m

where n,m ≥ 0, n+m 6= 0, h1, . . . , hn are atoms and represent the head of the
rule, while `1, . . . , `m are literals and represent the body of the rule. In particular,
an atom is an expression of the form p(t1, . . . , tk), where p is a predicate of ariety
k and t1, . . . , tk are terms. Terms are alphanumeric strings, and are distinguished
in variables and constants. According to the Prolog’s convention, only variables
start with an uppercase letter. A literal is an atom a or its negation not a, where
not denotes the negation as failure. For an atom p, p = not p, for a negated atom
not p, not p = p. A rule is called a constraint if n = 0, and a fact if n = 1 and
m = 0. An object (atom, rule, etc.) is called ground or propositional, if it contains
no variables. Given a program P, let the Herbrand Universe UP be the set of all
constants appearing in P and the Herbrand Base BP be the set of all possible
ground atoms which can be constructed from the predicate symbols appearing
in P with the constants of UP . Given a rule r, Ground(r) denotes the set of
rules obtained by applying all possible substitutions σ from the variables in r
to elements of UP . Similarly, given a program P, its ground instantiation is the
set

⋃
r∈P Ground(r). Given a ground program Π, let Rules(Π), Constr(Π), and

At(Π) denote the set of ground rules, ground constraints and ground atoms
occurring in Π.

Semantics. Given a program P, its stable models are defined using its ground
instantiation Π. Any set I ⊆ At(Π) is an interpretation for a program Π. A
ground atom p is true w.r.t. I if p ∈ I; p is false w.r.t. I if p 6∈ I. A ground literal
not p is true w.r.t. I if p 6∈ I; not p is false w.r.t. I if p ∈ I. An interpretation I
is a model for Π if, for every r ∈ Π, at least one atom in the head of r is true
w.r.t. I whenever all literals in the body of r are true w.r.t. I. The reduct of a
ground program Π w.r.t. a model I is the program ΠI , obtained from Π by (i)
deleting all rules r ∈ Π whose negative body is false w.r.t. I and (ii) deleting
the negative body from the remaining rules. An interpretation I is an answer
set (stable model) of a program Π if I is a model of Π, and there is no J ⊂ I

such that J is a model of ΠI . Let AS (Π) denote the set of all answer sets of Π.
A program Π is coherent if AS (Π) 6= ∅, incoherent otherwise.

Example 1. Consider the following program P:

node(X)← edge(X,Y)
node(X)← edge(Y,X)
col(X, blue) ∨ col(X, red) ∨ col(X, green)← node(X)
← col(X,C1), col(Y,C2), edge(X,Y), C1 6= C2

and the set of facts F :

edge(1, 2)← edge(2, 3)←

the ground instantiation of P ∪ F is the program Π comprising
the following set of rules Rules(Π):

edge(1, 2)← edge(2, 3)←
node(1)← node(2)← node(3)←
col(1, red) ∨ col(1, green) ∨ col(1, blue)←
col(2, red) ∨ col(2, green) ∨ col(2, blue)←
col(3, red) ∨ col(3, green) ∨ col(3, blue)←

and the following set of constraints Constr(Π):

← col(2, red), col(1, green) ← col(2, red), col(1, blue)
← col(2, green), col(1, red) ← col(2, green), col(1, blue)
← col(2, blue), col(1, red) ← col(2, blue), col(1, green)
← col(3, red), col(2, green) ← col(3, red), col(2, blue)
← col(3, green), col(2, red) ← col(3, green), col(2, blue)
← col(3, blue), col(2, red) ← col(3, blue), col(2, green) .

The set of all answer sets of Π is AS(Π) = {I1, I2, I3}, where

I1 = A ∪ {col(1, red), col(2, red), col(3, red)}
I2 = A ∪ {col(1, blue), col(2, blue), col(3, blue)}
I3 = A ∪ {col(1, green), col(2, green), col(3, green)}

and A = {edge(1, 2), edge(2, 3), node(1), node(2), node(3)}.

2.2 Paracoherent semantics

Let Π be a ground ASP program such that each rule in Π is of the form:

a1 ∨ · · · ∨ an ← b1, · · · , bk, not bk+1, · · · , not bm (1)

where n ≥ 1,m ≥ k ≥ 0, and a1, . . . , an, b1, . . . , bm are ground atoms. Note that
Π does not include constraints (since n ≥ 1).

Externally supported program. The externally supported program is a ground
program Πs obtained as follows. For each rule r ∈ Π of the form (1), Πs

contains the rule:

a1 ∨ · · · ∨ an ← b1, · · · , bk, not bk+1, · · · , not bm, not Kbk+1 , · · · , not Kbm

and for each atom p ∈ At(Π), Πs contains the rules Kp∨nKp ← and gap(Kp)←
Kp, not p, where Kp, nKp and gap(Kp) are atoms not appearing in Π. Intu-
itively, an atom Kp can be read as p is believed to hold.

Externally extended supported program. The externally extended supported pro-
gram of Π is the program Πes formed by Πs and by rule:

Ka1 ∨ · · · ∨Kan ∨Kbk+1 ∨ · · · ∨Kbm ← Kb1 , · · · ,Kbk ,

not a1, · · · , not an, not bk+1, · · · , not bm

for each r ∈ Π of the form (1).

Paracoherent answer sets. For a set of atoms S, let GS denote {gap(p) | gap(p) ∈
S}. For a program Π, I ∈ AS (Π es) is an externally supported model (resp.
externally extended supported model) of Π if there is no M ∈ AS (Π s) (resp.
M ∈ AS (Π es)) such that GM ⊂ GI . In the following, we refer to externally
supported models and externally extended supported models as paracoherent
answer sets.

3 Debugging approach

In this section, we present our approach to the localization of faults in ground
ASP programs. In general, one can differentiate between syntactic and semantic
faults. In the first case, syntactic errors are automatically detected by parser of
ASP systems, whereas semantic faults can be detected by a user by analyzing
the output of the ASP system.

In the latter case, users usually verify the correctness of programs by checking
(simple) test instances, as it is common for software development. In particular,
the debugging process is carried out by comparing a number of answer sets
computed by an ASP system with solutions determined by hand. Therefore, in
order to detect a bug, a user must know at least one answer set of the program
for the analyzed instance.

Definition 1 (Buggy program). Let Πc be a ground intended (correct) pro-
gram that a user is going to formulate and AS(Πc) be a set of its known answer
sets. Then, a ground program Π is said to be buggy with respect to a program
Πc if there exists an answer set A ∈ AS(Πc) such that A 6∈ AS(Π).

Note that by this definition our approach deals only with situations in which
some answer set of the correct program is missing. The opposite problem – there
is an answer set A ∈ AS(Π) such that A 6∈ AS(Πc) – is not the focus of this
paper.

Example 2 (Buggy program). Consider the program P of Example 1, represent-
ing a (buggy) encoding for the graph coloring problem. During the development
of the encoding the user might create a simple graph, e.g. considering the sample
instance of the two facts in F . For this instance the user expects the assignment
of the blue color to the nodes 1 and 3 as well as of the red color to the node 2
to be among the solutions. However, the corresponding answer set encoding this
solution is missing due to a bug in the encoding. In particular, note that the
condition C1 6= C2 should be replaced by C1 = C2. C

The situation in which some solution is missing can be detected by means of
testing, which is a common approach in software engineering aiming at identifi-
cation and localization of faults in programs.

Definition 2 (Test case). Let Πc be a ground intended program, and Π be a
ground program. A set of atoms T ⊆ At(Π) is a test case for Π iff there exists
an answer set A ∈ AS(Πc) such that T ⊆ A.

Definition 3 (Test case failure). Given a ground program Π and a test case
T , let ΠT = {← l | l ∈ T}, we say that T fails if Π ∪ΠT is incoherent.

Assertions of a test case are modeled by constraints that force the asserted
atoms to be in all answer sets. As a result, checking whether a test case T of a
program Π passes or not is reduced to checking whether Π ∪ΠT is coherent, as
illustrated in Example 3.

Example 3 (Failing Test Case). Consider the program Π from Example 1 and
the test case

T = {col(1, blue), col(2, red), col(3, blue)}.

The program ΠT is composed by the constraints:

← not col(1, blue) ← not col(2, red) ← not col(3, blue).

Thus, T is failing since Π ∪ΠT is incoherent. C

Whenever a test case fails, i.e. the given program Π is buggy, the goal of a
debugger is to find an explanation for this observation.

In the following, we assume that given a ground program Π and a test case
T , the set Rules(Π)∪ΠT is coherent and correct, and the buggy rule is located
in Constr(Π). Indeed, the goal of our debugger is to find a set of constraints
that are causing the incoherence.

Definition 4 (Diagnosis). Given a ground program Π and a failing test case
T , a diagnosis D of the fault is a minimal set of constraints C ⊆ Constr(Π)
such that (Π ∪ΠT) \ C is coherent.

Example 4 (Diagnosis). Consider again the program Π from Example 1 and the
program ΠT of Example 3. A diagnosis of the fault D is the set of constraints
{← col(2, red), col(1, blue),← col(3, blue), col(2, red)}. Indeed, (Π ∪ΠT) \D is
coherent and no subset of D is a diagnosis. C

In our approach, fault identification is done by taking advantages of para-
coherent semantics to find buggy constraints. The key idea is as follows. Given
a ground program Π and the set of constraints Constr(Π), each constraint
c ∈ Constr(Π) of the form ← l1, . . . , lm is normalized, i.e. it is rewritten as the
following rule:

auxc ← not auxc, l1, . . . , lm

where auxc is a fresh symbol not appearing elsewhere in the program.

Definition 5 (Normalization). Given a ground program Π = Rule(Π) ∪
Constr(Π), then the normalized program of Π, denoted Norm(Π), is composed
by {auxc ← not auxc, `1, . . . , `m |← `1, . . . , `m ∈ Constr(Π)}.

The following example should clarify this aspect.

Example 5 (Normalization). Let Π be the ground program of Example 1. Then,
Norm(Π) comprises the following set of rules:

aux c1 ← not aux c1 , col(2, red), col(1, green)
aux c2 ← not aux c2 , col(2, red), col(1, blue)
aux c3 ← not aux c3 , col(2, green), col(1, red)
aux c4 ← not aux c4 , col(2, green), col(1, blue)
aux c5 ← not aux c5 , col(2, blue), col(1, red)
aux c6 ← not aux c6 , col(2, blue), col(1, green)
aux c7 ← not aux c7 , col(3, red), col(2, green)
aux c8 ← not aux c8 , col(3, red), col(2, blue)
aux c9 ← not aux c9 , col(3, green), col(2, red)
aux c10 ← not aux c10 , col(3, green), col(2, blue)
aux c11 ← not aux c11 , col(3, blue), col(2, red)
aux c12 ← not aux c12 , col(3, blue), col(2, green)

Note that the number of symbols added in Norm(Π) is bounded by the number
of constraints in Π. C

Then, paracoherent rewriting techniques described in Section 2.2 are applied
to the rules introduced in the normalization step.

Definition 6 (Debugging program). Let Π = Rules(Π) ∪ Constr(Π) be a
ground program and a test case T . The debugging program ΠD is the program
ΠT ∪ Rules(Π) ∪Norm(Π)χ, where χ ∈ {s, es}.

Given a debugging program ΠD, its paracoherent answer sets can be used
to build a diagnosis of the fault. Indeed, atoms of the form auxc are included in
a paracoherent answer set, say A, if and only if the corresponding constraint c
cannot be satisfied by any answer set. Therefore, all the constraints associated
to atoms of the form auxc that are true w.r.t. A are part of the diagnosis. Note
that, as shown in [15, 16], if the paracoherent reasoning is limited to constraints
the two rewriting techniques described in Section 2.2 coincide.

4 Tool description and usage example

In this section, we describe a practical implementation of the debugging tech-
nique for the computation of a diagnosis described in Section 3. The resulting
tool, namely paradebug, is freely available here: https://www.mat.unical.
it/~dodaro/paradebug. Moreover, we also present a usage example of parade-
bug to debug a program.

paradebug is implemented in Python and it takes advantage of the ASP
system dlv2 [5], which uses i-dlv [23] and wasp [6] as grounder and solver,
respectively. As far as we know, dlv2 is the only ASP system that is able to
compute paracoherent answer sets.

paradebug takes as input a ground program Π and a test case T . Then,
Π is normalized and the debugging program ΠD is built starting from Π and
T . Subsequently, ΠD is provided as input to the internal solver wasp, which
returns as output a paracoherent answer set of ΠD, say M . M is then processed
by paradebug and the set of constraints representing the diagnosis are returned.

Usage example. Consider the following buggy ASP program representing an
encoding of the Graph Coloring problem:

node(X) :- edge(X,_).

node(X) :- edge(_,X).

col(X,blue) | col(X,red) | col(X,green) :- node(X).

:- col(X1,C1), col(X2,C2), edge(X1,X2), C1 != C2.

edge(1,2).

edge(2,3).

Note that it represents the program P of Example 1. In this case, the buggy rule
is

:- col(X1,C1), col(X2,C2), edge(X1,X2), C1 != C2.

since the condition C1 != C2 should be C1 = C2.
Test cases can be specified according to the directives assertTrue, that spec-

ifies atoms that must be in an answer set, and assertFalse, that specifies atoms
that must not be in an answer set. In particular, a test case can be the following:

assertTrue: col(1,blue).

assertTrue: col(2,red).

assertTrue: col(3,blue).

which basically represent a scenario where the atoms col(1,blue), col(2,red),
and col(3,blue) are all true. However, this answer set cannot be obtained due
to the buggy rule. paradebug can thus be used to find what is the buggy rule
by using the following command:

dlv2 --mode=idlv test.asp | ./paradebug.py testcase

The output of paradebug is the set of buggy constraints as follows:

Set of constraints causing the incoherence:

:- col(1,blue), col(2,red).

:- col(2,red), col(3,blue).

which indeed represents a correct diagnosis as shown in Example 4.

5 Related work

There are multiple approaches to ASP debugging suggested in the literature
including algorithmic [19, 54] and meta-programming [20, 41, 51–53] methods,
see [32] for a comprehensive survey on the topic. The algorithmic approaches
include ideas [19], a state-of-the-art tool, that aims at identifying why a set of
atoms is an answer set or why a set of atoms is not in any answer set. More-
over, ideas implements a query-based interaction with users in order to find an
explanation of an observed fault.

Concerning meta-programming debuggers, they are usually based on a gen-
eral ASP encoding modeling all possible reasons of why some interpretation
of the faulty program is not an answer set. Among the tool based on meta-
programming, two tools emerged, namely spock [41] and Ouroboros [51, 52].
The first can be applied only to ground programs, whereas Ouroboros can
tackle non-grounded programs as well.

Our approach is also related to the one implemented in the debugging tool
dwasp, that is also built on top of the ASP solver wasp. The approach of
dwasp relies on iterative calls to the wasp and on the computation of the so-
called unsatisfiable cores. Our approach is instead based on only one call to the
underlying ASP system. Moreover, dwasp features a query-based approach to
help the user to identify the buggy rules. Such a feature is not yet implemented
in paradebug, but it can be integrated as well.

6 Conclusion and future work

In this paper we presented a debugging approach for ASP programs based on
paracoherent reasoning. This technique has been implemented in a tool called
paradebug, based on the ASP system dlv2. As future work, we plan to extend
the technique presented in this paper to normal and disjunctive rules that are
not supported at the moment. Moreover, we plan to implement the query-based
approach presented in [28, 29] and to integrate the resulting tool into the IDE
aspide [33]. Furthermore, we also plan to investigate whether the techniques
presented in this paper can be extended to other paracoherent semantics, e.g.
[25, 26].

References

1. Abseher, M., Gebser, M., Musliu, N., Schaub, T., Woltran, S.: Shift design with
answer set programming. Fundam. Inform. 147(1), 1–25 (2016)

2. Adrian, W.T., Alviano, M., Calimeri, F., Cuteri, B., Dodaro, C., Faber, W., Fuscà,
D., Leone, N., Manna, M., Perri, S., Ricca, F., Veltri, P., Zangari, J.: The ASP
system DLV: advancements and applications. KI 32(2-3), 177–179 (2018)

3. Adrian, W.T., Manna, M., Leone, N., Amendola, G., Adrian, M.: Entity set ex-
pansion from the web via ASP. In: ICLP-TC. OASICS, vol. 58, pp. 1:1–1:5 (2017)

4. Alviano, M., Amendola, G., Dodaro, C., Leone, N., Maratea, M., Ricca, F.: Evalua-
tion of disjunctive programs in WASP. In: LPNMR. LNCS, vol. 11481, pp. 241–255.
Springer (2019)

5. Alviano, M., Calimeri, F., Dodaro, C., Fuscà, D., Leone, N., Perri, S., Ricca, F.,
Veltri, P., Zangari, J.: The ASP system DLV2. In: LPNMR. Lecture Notes in
Computer Science, vol. 10377, pp. 215–221. Springer (2017)

6. Alviano, M., Dodaro, C., Leone, N., Ricca, F.: Advances in WASP. In: LPNMR.
Lecture Notes in Computer Science, vol. 9345, pp. 40–54. Springer (2015)

7. Alviano, M., Dodaro, C., Maratea, M.: An advanced answer set programming
encoding for nurse scheduling. In: AI*IA. Lecture Notes in Computer Science,
vol. 10640, pp. 468–482. Springer (2017)

8. Amendola, G.: Dealing with incoherence in ASP: split semi-equilibrium semantics.
In: DWAI@AI*IA. CEUR Workshop Proceedings, vol. 1334, pp. 23–32. CEUR-
WS.org (2014)

9. Amendola, G.: Preliminary results on modeling interdependent scheduling games
via answer set programming. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings,
vol. 2272 (2018)

10. Amendola, G.: Solving the stable roommates problem using incoherent answer set
programs. In: RiCeRcA@AI*IA. CEUR Workshop Proceedings, vol. 2272 (2018)

11. Amendola, G., Dodaro, C., Faber, W., Leone, N., Ricca, F.: On the computation
of paracoherent answer sets. In: AAAI. pp. 1034–1040. AAAI Press (2017)

12. Amendola, G., Dodaro, C., Faber, W., Pulina, L., Ricca, F.: Algorithm selection for
paracoherent answer set computation. In: JELIA. LNCS, vol. 11468, pp. 479–489.
Springer (2019)

13. Amendola, G., Dodaro, C., Faber, W., Ricca, F.: Externally supported models for
efficient computation of paracoherent answer sets. In: AAAI. pp. 1720–1727. AAAI
Press (2018)

14. Amendola, G., Dodaro, C., Leone, N., Ricca, F.: On the application of answer set
programming to the conference paper assignment problem. In: AI*IA. LNCS, vol.
10037, pp. 164–178. Springer (2016)

15. Amendola, G., Eiter, T., Fink, M., Leone, N., Moura, J.: Semi-equilibrium models
for paracoherent answer set programs. Artif. Intell. 234, 219–271 (2016)

16. Amendola, G., Eiter, T., Leone, N.: Modular paracoherent answer sets. In: JELIA.
Lecture Notes in Computer Science, vol. 8761, pp. 457–471. Springer (2014)

17. Amendola, G., Greco, G., Leone, N., Veltri, P.: Modeling and reasoning about NTU
games via answer set programming. In: IJCAI’16. pp. 38–45 (2016)

18. Balduccini, M., Gelfond, M., Watson, R., Nogueira, M.: The usa-advisor: A case
study in answer set planning. In: LPNMR. Lecture Notes in Computer Science,
vol. 2173, pp. 439–442. Springer (2001)

19. Brain, M., De Vos, M.: Debugging logic programs under the answer set semantics.
In: Answer Set Programming. CEUR Workshop Proceedings, vol. 142. CEUR-
WS.org (2005)

20. Brain, M., Gebser, M., Schaub, T., Tompits, H., Woltran, S.: ”That is Illogical
Captain !” – The Debugging Support Tool spock for Answer-Set Programs : System
Description. In: SEA. pp. 71–85 (2007)

21. Brewka, G., Eiter, T., Truszczynski, M.: Answer set programming at a glance.
Commun. ACM 54(12), 92–103 (2011)

22. Calimeri, F., Faber, W., Gebser, M., Ianni, G., Kaminski, R., Krennwallner, T.,
Leone, N., Ricca, F., Schaub, T.: ASP-Core-2 Input Language Format (2013),
https://www.mat.unical.it/aspcomp2013/files/ASP-CORE-2.01c.pdf

23. Calimeri, F., Fuscà, D., Perri, S., Zangari, J.: I-DLV: the new intelligent grounder
of DLV. Intelligenza Artificiale 11(1), 5–20 (2017)

24. Calimeri, F., Gebser, M., Maratea, M., Ricca, F.: Design and results of the fifth
answer set programming competition. Artif. Intell. 231, 151–181 (2016)

25. Costantini, S., Formisano, A.: Negation as a resource: a novel view on answer set
semantics. Fundam. Inform. 140(3-4), 279–305 (2015)

26. Costantini, S., Formisano, A.: Query answering in resource-based answer set se-
mantics. TPLP 16(5-6), 619–635 (2016)

27. Dodaro, C., Gasteiger, P., Leone, N., Musitsch, B., Ricca, F., Schekotihin, K.: Com-
bining answer set programming and domain heuristics for solving hard industrial
problems (application paper). TPLP 16(5-6), 653–669 (2016)

28. Dodaro, C., Gasteiger, P., Musitsch, B., Ricca, F., Shchekotykhin, K.M.: Inter-
active debugging of non-ground ASP programs. In: LPNMR. Lecture Notes in
Computer Science, vol. 9345, pp. 279–293. Springer (2015)

29. Dodaro, C., Gasteiger, P., Reale, K., Ricca, F., Schekotihin, K.: Debugging non-
ground ASP programs: Technique and graphical tools. TPLP 19(2), 290–316 (2019)

30. Dodaro, C., Leone, N., Nardi, B., Ricca, F.: Allotment problem in travel industry:
A solution based on ASP. In: RR. Lecture Notes in Computer Science, vol. 9209,
pp. 77–92. Springer (2015)

31. Erdem, E., Öztok, U.: Generating explanations for biomedical queries. TPLP
15(1), 35–78 (2015)

32. Fandinno, J., Schulz, C.: Answering the ”why” in answer set programming - A
survey of explanation approaches. TPLP 19(2), 114–203 (2019)

33. Febbraro, O., Reale, K., Ricca, F.: ASPIDE: integrated development environment
for answer set programming. In: LPNMR. Lecture Notes in Computer Science,
vol. 6645, pp. 317–330. Springer (2011)

34. Gaggl, S.A., Manthey, N., Ronca, A., Wallner, J.P., Woltran, S.: Improved answer-
set programming encodings for abstract argumentation. TPLP 15(4-5), 434–448
(2015)

35. Gavanelli, M., Nonato, M., Peano, A.: An ASP approach for the valves positioning
optimization in a water distribution system. J. Log. Comput. 25(6), 1351–1369
(2015)

36. Gebser, M., Leone, N., Maratea, M., Perri, S., Ricca, F., Schaub, T.: Evaluation
techniques and systems for answer set programming: a survey. In: IJCAI’18. pp.
5450–5456 (2018)

37. Gebser, M., Maratea, M., Ricca, F.: The design of the sixth answer set program-
ming competition - - report -. In: LPNMR. Lecture Notes in Computer Science,
vol. 9345, pp. 531–544. Springer (2015)

38. Gebser, M., Maratea, M., Ricca, F.: What’s hot in the answer set programming
competition. In: AAAI. pp. 4327–4329. AAAI Press (2016)

39. Gebser, M., Maratea, M., Ricca, F.: The design of the seventh answer set program-
ming competition. In: Balduccini, M., Janhunen, T. (eds.) LPNMR. LNCS, vol.
10377, pp. 3–9. Springer (2017)

40. Gebser, M., Maratea, M., Ricca, F.: The sixth answer set programming competi-
tion. Journal of Artif. Intell. Res. 60, 41–95 (2017)

41. Gebser, M., Pührer, J., Schaub, T., Tompits, H.: A meta-programming technique
for debugging answer-set programs. In: AAAI. pp. 448–453. AAAI Press (2008)

42. Gelfond, M., Lifschitz, V.: Classical negation in logic programs and disjunctive
databases. New Generation Comput. 9(3/4), 365–386 (1991)

43. Giunchiglia, E., Leone, N., Maratea, M.: On the relation among answer set solvers.
Ann. Math. Artif. Intell. 53(1-4), 169–204 (2008)

44. Giunchiglia, E., Maratea, M.: On the Relation Between Answer Set and SAT Pro-
cedures (or, Between cmodels and smodels). In: ICLP. LNCS, vol. 3668, pp. 37–51
(2005)

45. Koponen, L., Oikarinen, E., Janhunen, T., Säilä, L.: Optimizing phylogenetic su-
pertrees using answer set programming. TPLP 15(4-5), 604–619 (2015)

46. Lierler, Y., Maratea, M., Ricca, F.: Systems, engineering environments, and com-
petitions. AI Magazine 37(3), 45–52 (2016)

47. Manna, M., Ricca, F., Terracina, G.: Taming primary key violations to query large
inconsistent data via ASP. TPLP 15(4-5), 696–710 (2015)

48. Maratea, M., Pulina, L., Ricca, F.: A multi-engine approach to answer-set pro-
gramming. TPLP 14(6), 841–868 (2014)

49. Maratea, M., Ricca, F., Faber, W., Leone, N.: Look-back techniques and heuristics
in DLV: implementation, evaluation, and comparison to QBF solvers. J. Algorithms
63(1-3), 70–89 (2008)

50. Marileo, M.C., Bertossi, L.E.: The consistency extractor system: Answer set pro-
grams for consistent query answering in databases. Data Knowl. Eng. 69(6), 545–
572 (2010)

51. Oetsch, J., Pührer, J., Tompits, H.: Catching the ouroboros: On debugging non-
ground answer-set programs. TPLP 10(4-6), 513–529 (2010)

52. Polleres, A., Frühstück, M., Schenner, G., Friedrich, G.: Debugging non-ground
ASP programs with choice rules, cardinality and weight constraints. In: LPNMR.
Lecture Notes in Computer Science, vol. 8148, pp. 452–464. Springer (2013)

53. Shchekotykhin, K.M.: Interactive query-based debugging of ASP programs. In:
AAAI. pp. 1597–1603. AAAI Press (2015)

54. Syrjänen, T.: Debugging Inconsistent Answer Set Programs. In: NMR. pp. 77–84
(2006)

