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Abstract. Extant approaches to supply network planning (SNP) are
not capable of dealing with increasing requirements due to more volatile
markets and the digital transformation of business. This paper proposes
multi-model-based analytics approaches as a beneficial and promising
avenue for further research in this field. Risk-based planning provides a
suitable framework to this end.
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1 Introduction

Supply networks aim at providing superior value to the ultimate customer by
integrating business processes across the boundaries of single organizational en-
tities [1]. Advanced Planning and Scheduling (APS) systems are prevalent in
business practice to support decision-making concerning the design and opera-
tion of such global networks [2]. For these purposes, APS systems use predictive
and prescriptive analytics approaches to forecast, plan, and optimize integrated
production and logistics systems.

However, the business environment has changed after the 2008/2009 finan-
cial crisis including persistent volatility and uncertainty of markets as well as
increased competitive pressure in the course of the ongoing digital transformation
[3]. This basically involves more demanding customer requirements concerning
availability and customization of value offerings [4]. But high service levels, short
lead-times, and product variety typically involve high costs to match supply net-
work capabilities with customer demand.

At the same time, supply networks become more complex and interconnected
driving exposure to various risks such as supplier failure or equipment breakdown
[5]. As a consequence, operating models of supply networks need to become more
responsive and need to manage the adverse effects of variability proactively while
keeping operations cost-efficient. Ultimately, this mandates novel approaches to
risk-based decision support in this field.

Due to their deterministic and simplified planning approach, APS systems are
not qualified to support these aforementioned requirements. Integrating stochas-
tic modeling into supply network planning (SNP) could be one way to overcome
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these deficiencies [6]. Most recently, multi-model approaches and predictive ana-
lytics are intensively discussed (or even hyped) for advanced decision support in
this context [7]. This paper thus investigates the merit of multi-model-based an-
alytics approaches using a risk-based planning perspective and outlines avenues
for further research in this field

The paper is structured as follows: section 2 provides the research background
and summarizes conceptual foundations. In Sections 3 and 4, a research frame-
work for multi-model SNP approaches is developed and open research topics are
discussed. The paper concludes in Section 4 with a summary of the findings.

2 Research background and conceptual foundations

Planning-related tasks within supply networks can be structured along the four
value chain stages procurement, manufacturing, distribution, and sales and most
fundamentally involve two hierarchical levels: (i) strategic design of the supply
network in the long term, and (ii) mid- to short-term operations of the supply
network [8] which is in focus of this paper.

Predictive and prescriptive analytics provide necessary approaches for deci-
sion support in supply networks. Prescriptive analytics approaches (esp. math-
ematical programming) have mostly dominated the discussion around APS sys-
tems [1] answering the questions ‘what shall we do?’ and ‘why shall we do it?’
[6]. In contrast, the questions ‘what will happen?’ and ‘why will it happen?’ fall
within the scope of predictive analytics. Predictive analytics methods are mostly
applied for time series analysis in the domain of demand forecasting [1].

The key deficit of APS systems refers to lacking decision support for manag-
ing variability [6]. Variability results from random demand and stochastic events
in supply network processes such as supplier/equipment failure or variation in
operating times. APS systems accommodate variability indirectly by implement-
ing exogenous static buffers, i.e., safety stocks and/or safety capacity, or simply
adjust parameters to arrive at more conservative plans [9]. However, inadequate
buffers involve substantial potential for improvement.

Corresponding to the two fundamental principles of production planning and
control (push vs. pull), there are two distinct approaches to manage the impli-
cations of variability directly: (i) lean planning [10] or demand-driven material
requirements planning [11] that follow the pull paradigm aim at avoiding the
adverse effects of variability, and (ii) push-oriented stochastic planning that uses
predictive and/or prescriptive analytics methods such as discrete-event simu-
lation (DES) or queuing models to anticipate variability [12]. Subsequently,
this paper focuses on queuing model-related approaches. For an overview of
simulation-based optimization, the reader is referred to [13].

Stochastic planning approaches also allow capturing non-linear system be-
havior which is mostly omitted in traditional SNP approaches [14]. This relates
to the simplistic assumptions of APS systems that order lead times are inde-
pendent of the capacity utilization. However, increasing the capacity utilization,
i.e., releasing additional orders into the supply network, drives ‘congestion‘ in
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the system and thus leads to longer lead times [12]. Early papers of Graves [16]
and Karmarkar [17] have initiated the literature stream around clearing func-
tions that aim at capturing this non-linear relationship within mathematical
programming models. For these purposes, clearing functions can be derived from
both theoretical queuing models or empirical shop floor data [14]. Summaries of
related work can be found in [14] and [18].

Given that clearing functions need to be integrated into discrete-time (linear)
mathematical programming models, this implies substantial modeling restric-
tions. Multi-model approaches that combine mathematical programming with
DES have thus been proposed and are widely discussed [12]. DES provides ex-
tensive modeling flexibility with the drawback that numerical effort rises or even
gets intractable. Keeping the concept of multi-model approaches that allows for
additional modeling flexibility, this research aims at investigating alternative
multi-model SNP approaches in this context.

3 Multi-model SNP approaches

3.1 Planning scope

The planning problem in focus is located at the mid- to short-term level of sales
and operations planning (S&OP) [19]. Detailed characteristics and trade-offs in
S&OP are summarized in Figure 1. The objective function involves maximizing
(economic) profit for a planning horizon of 6 to 18 months [20]. S&OP cov-
ers the three perspectives of sales, operations, and finance and aims at aligning
respective plans cross-functionally. These plans cover price ranges and sales vol-
umes (sales), material flows, capacities, and production volumes (operations),
and current assets and liabilities esp. accounts payable and receivable (finance).

Sales: 

Customer Value 

Operations: 

Utilization 

Finance: 

Net Working 

Capital 

flexible due dates 

vs. 

leveled 

production 

low WIP/FGI1 

vs. 

high inventory 

buffers 

high 

service level 

vs. 

low WIP/FGI1 

1 WIP = work in progress (inventory); FGI = Finished goods inventory 

Typical trade-off discussions in S&OP meetings 

▪ Objective: Maximize
Economic Profit

▪ Decision Variables: Price
ranges, sales volumes;
capacities, production
volumes, material flows;
current assets/liabilities

▪ Focus: Customer segments,
product families, supply 
chain segments, balance
sheet positions

▪ Participants: Sales,
Operations, Finance

Characteristics of  Sales & 

Operations Planning (S&OP) 

Fig. 1. Key characteristics and trade-offs in S&OP
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While the sales function aims at improving customer value, operations is
interested in maximizing utilization to reduce capacity-related costs. Net working
capital and the reduction of costs of capital are in focus of the finance function.
Consequently, three mutual trade-offs emerge that boil down to the strategic
question of efficiency vs. responsiveness [21]. Notably, the trade-offs related to the
operations function involve the non-linear clearing function relationship. More
specifically, leveled production allows for higher utilization at the cost of longer
lead times and increased inventory buffers due to larger batches.

There are two risk mitigation approaches that also foster responsiveness of
supply networks: flexibility and redundancy [22]. Measures of flexibility can re-
fer to the supply side (e.g. multi sourcing, flexible supply contracts), internal
operations (e.g. multi-process equipment, postponement), or the demand side
(responsive pricing). Responsive pricing represents the key lever at the opera-
tional level. Redundancy aims at finding the ‘right’ amount of buffer with respect
to safety time, capacity, and inventories. Consequently, there are two major op-
erational levers to manage the responsiveness of the supply network using a
risk-based planning approach: responsive pricing and buffer management.

3.2 Conceptual framework

Capturing the stochastic and dynamic behavior of a supply network for plan-
ning purposes would require a stochastic non-linear programming approach [15].
However, one can use hierarchical decomposition [23] to simplify matters as fol-
lows: first, a deterministic linear programming (LP) model serves as the top
level determining key sales, operations, and finance decisions given dynamic de-
mand. An exemplary LP model for S&OP can be found in [20]. Second, an
anticipated base level is implemented below that captures the stochastic and
non-linear implications of the top-level decisions. Specific modeling approaches
for the anticipated base level are discussed further below.

Capacity levels and production volumes serve as the top-down instructions
for the anticipated base level. They basically determine inflow into the supply
network and thus the workload in the system. Lead times or (WIP inventories)
and capacity buffers in turn represent the bottom-up reaction and are incorpo-
rated as feedback at the top-level. The feedback can be implemented via ‘hard’
constraints or penalty costs in the objective function. Given that the overall ap-
proach aims at perfect anticipation [23] full coordination can be reached when
applying an iterative algorithm. The hierarchical planning framework is summa-
rized in Figure 2.

3.3 Methodological approaches

Modeling the anticipated base level involves two design decisions: scope/number
of the model(s) and the analytics approaches. Both approaches of establishing
one single model for the entire supply network and dividing the network into
several sub-models can be found in the literature [24]. Here, the considerations for
hierarchical decomposition also apply concerning the trade-off between modeling
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Sales & Operations Planning 

• Aggregate planning,
balancing S&OP trade-offs 

• Deterministic LP model

Anticipated Base Level: 

Clearing function-based Model 

Planning 

Control 

• Anticipating stochastic and non-
linear behavior of supply network

• Mixed-/multi-model analytics
approaches 

Order acceptance/ 
release decisions 

State of supply 
network 

Supply Network 

Top Level: Network Flow Model 

Capacity levels, 
production volumes 

Lead times, 
capacity buffers 

Our focus 

Fig. 2. Hierarchical planning framework (based on [24, 15])

accuracy and numerical tractability. Decomposition can also be required along
the time dimension if parameters such as demand are time-dependent and the
application of queuing theory requires steady state conditions [15].

Predictive and prescriptive analytics approaches or a combination of both
can be applied. Predictive analytics approaches such as data mining have been
proposed to estimate lead times in manufacturing systems [25]. [15] use a queu-
ing networks-based approach to determine lead-time optimal batch sizes in a
stochastic job shop setting (prescriptive analytics). Furthermore, one can find
combined approaches: [24] use a moment-iteration algorithm to determine the
workload in the system and apply a local smoothing algorithm to find a lead-time
feasible schedule of planned order releases.

4 Avenues for further research

4.1 Planning scope

There are three avenues for further research concerning the planning problem:
first, single-model approaches have been presented for supporting order accep-
tance decisions including workload considerations [26]. This could be further de-
veloped towards a responsive pricing approach to capture additional value from
the customer. Second, the issue of multi-stage supply networks and especially
the integration of production and logistics processes has not yet been considered
and thus provides opportunities for further research.

Third, existing approaches for buffer management could be enhanced to ar-
rive at more accurate predictions that would allow for the reduction of costly
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buffers while keeping supply network risk under control. This could involve more
sophisticated approaches to modeling failure of technical equipment and corre-
sponding repair activities [15] or approaches for predictive maintenance. More-
over, levers of manufacturing flexibility based on alternative routings in the job
shop could be evaluated. [27] provide a corresponding approach for the process
industries which could be extended to further domains of application.

4.2 Conceptual framework

The digitalization of the industrial sector – also known as Industry 4.0 (i4.0)
– envisions intelligent and interconnected ‘things’, i.e. smart products and ma-
chines, that operate autonomously and that can form self-coordinating smart
supply networks [3]. Literature in this field mostly focuses on issues of oper-
ational scheduling and shop floor control [28]. Consequently, further research
is warranted to develop novel planning frameworks and approaches that could
support operational decision-making in smart supply networks.

Although the smart supply network paradigm proposes fully customized man-
ufacturing using orders of ‘lotsize 1’ [29], component manufactures will still pro-
duce in small batch sizes for economic reasons. Given the volatile market envi-
ronment, a dynamic batch planning approach could be one avenue for further
research. Batch sizes need to be adjusted dynamically to support more flexible
i4.0-like control approaches in supply networks. A corresponding comprehensive
framework for integrated planning and control of supply networks should be
developed to this end.

4.3 Methodological approaches

As outlined above, evaluating further predictive analytics approaches could yield
novel approaches to risk-based SNP. There are two avenues that should be fur-
ther considered: first, data-driven approaches could be applied extending extant
concepts of data mining. This could involve determining relevant queuing-related
statistics from empirical shop floor data to derive clearing function relationships.
Related approaches are currently scant in the literature [30].

The second avenue relates to making more extensive use of data via predic-
tive analytics which can inform prescriptive analytics approaches. [24] provide a
corresponding example for the specific context of SNP. Further research in this
direction would require investigation of existing methods and development of
novel approaches considering both solution quality and numerical performance.
Besides, the benefit of using a multi-model approach (compared to a single-model
approach) should be evaluated for both aforementioned avenues.

5 Conclusion and outlook

Motivated by current developments in global supply networks due to more
volatile markets and increasing customer requirements as well as shortcomings
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of extant APS systems, this paper investigated the merit of multi-model analyt-
ics approaches for risk-based SNP. For these purposes, current state of the art
and avenues for further research have been identified along three lines: planning
scope, conceptual framework, and methodological approaches.

From a business application perspective, this research area is closely related
to Industry 4.0 and the smart factory paradigm. Especially component manu-
facturers that produce to order in small batches might represent an interesting
industry for applications and case studies. Consequently, a design-oriented re-
search approach should be pursued which could also yield managerial insights
with respect to general rules for planning and decision support.
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