
 1

Performance Assessment and Configuration
of Enterprise-Wide Workflow Management Systems

(Extended abstract)

Michael Gillmann1, Jeanine Weissenfels1, Gerhard Weikum1, Achim Kraiss2

1University of the Saarland
Department of Computer Science

P.O.Box 15 11 50
D-66041 Saarbrücken

{gillmann,weissenfels,weikum}@cs.uni-sb.de
http://www-dbs.cs.uni-sb.de/

2Dresdner Bank AG
Organization and Information Technology

IT Research and Standards
Jürgen-Ponto-Platz 1

D-60301 Frankfurt a.M.
achim.kraiss@dresdner-bank.com
http://www.dresdner-bank.com/

1 Introduction
The main goal of workflow management systems (WFMS) is to support the efficient, largely automated
execution of business processes. Large enterprises demand the reliable execution of a wide variety of
workflow types. For some of these workflow types, the availability of the components of the underly-
ing, often distributed WFMS is crucial; for other workflow types, high throughput and short response
times are required. However, finding a configuration of the WFMS (e.g., with replicated components)
that meets all requirements is a non-trivial problem. Moreover, it may be necessary to adapt the configu-
ration over time due to changes of the workflow load, e.g., upon adding new workflow types. There-
fore, it is not sufficient to find an appropriate initial configuration; it should rather be possible to recon-
figure the WFMS dynamically. The first step towards a dynamic configuration tool is the analysis of the
WFMS to predict the performance and the availability that would be achievable under a new configura-
tion, and to determine the best configuration for the current workflow load.
In this paper, we present an analytic approach that considers the performance as well as the availability
of the WFMS in its assessment of the quality of a given configuration of a distributed WFMS. The ap-
proach is based on well known stochastic methods [Nel95, STP96, Tij94] and shows the suitability of
these models to a new application field. The presented combination of the methods allows an analytic
assessment of WFMS eliminating the usual time- and cost-intensive trial-and-error practice for system
configuration. Particularly, we are able to rank the performance and the availability of different config-
urations which use replicated workflow servers. Moreover, we can predict the performance degradation
caused by transient failures of servers. These considerations lead to the notion of performability
[STP96], a combination of performance and availability metrics. Likewise, we are able to calculate the
necessary number of workflow server replications to meet the specified requirements for performance
and availability. So, a crucial part of a configuration tool for distributed WFMS becomes analytically
tractable and no longer depends on trial-and-error practices or the subjective intuition of the system
administration staff.
Although the literature includes much work on scalable WFMS architectures, there are only few re-
search projects that have looked into the quantitative assessment of WFMS configurations with regard
to performance and availability [DKO+98]. [BD99] presents several types of distributed WFMS archi-
tectures and discusses the influence of different distribution methods on the network and workflow
server load, based on simulations. In [BD97], the sustainable throughput of a distributed WFMS is in-

This work was performed within the research project “Architecture, Configuration and Administration of Large Work-
flow Management Systems” funded by the German Science Foundation (DFG).

 2

creased by assigning subworkflows to appropriate workflow servers, based on online statistics about
network partitions, network load, and expected communication costs. [SNS99] presents simple heuris-
tics for the allocation of workflow type and workflow instance data onto servers. Work on WFMS avail-
ability has been presented in [HA98, KAG+96] that discuss how to efficiently increase the availability
of process support systems by using standby mechanisms that allow a backup server to take over in the
case of server failures.
The rest of the paper is organized as follows. In Section 2, we present our model of a distributed WFMS.
In Sections 3 and 4, we develop a performance model and an availability model. In Section 5, we com-
bine both models into the performability model that allows us to predict the influence of transient fail-
ures on the overall performance. Section 6 concludes the paper with a summary and an outlook on ongo-
ing work.

2 System model of distributed WFMS

In this section, we describe a generic model of enterprise-wide distributed WFMS. Although the chosen
system model is simple, it is powerful enough that we are able to capture the architecture models of most
WFMS products and research prototypes in a reasonable way. Based on this model, we will introduce
the central notions of the state and the configuration of a distributed WFMS. Finally, we present a model
that stochastically describes the behavior of a single workflow instance.
Typically, distributed WFMS execute workflow instances in a partitioned and distributed manner, i.e.,
the workflow instance is partitioned into several subworkflows, which are executed in a distributed way
on different workflow engines (e.g., with one workflow engine per partition/subworkflow type). These
workflow engines typically run on several server machines distributed across an Intranet or even the
Internet. Moreover, services that are “imported” from external companies can be integrated into the
WFMS as subworkflows, and the WFMS of such a provider merely becomes another kind of workflow
engine with a specific interface. The communication is handled by separate components, such as object
request brokers (ORBs), other modules are responsible for workflow-specific functions like worklist
management or monitoring, and the runtime state data of workflows is often stored in a DBMS. Finally,
applications that are invoked from workflow activities may be spawned on dedicated application serv-
ers. All these components will be viewed as abstract servers of specific types in our system model.

2.1 Workflow server model

In workflows like the above examples, several cooperating components of a distributed WFMS are in-
volved in the execution of a single workflow instance. We refer such to each component as a server type.
For scalability and availability reasons, nearly all WFMS, both products and research prototypes, pro-
vide the replication of (performance-critical) server types within the system. Note that we have so far
not said anything about the hardware (i.e., the server machines) that the workflow servers run on. It is
possible (and often favorably or even unavoidable) to start workflow servers of different server types on
the same server machine.
Figure 1 shows an example of the workflow server model. The dotted arcs indicate service requests
between the several server types. But also within a single server type, workflow servers can request
services from each other. For example, the execution of a subworkflow by a workflow engine that is not
the same as the engine of the parent workflow is a service request, too. In our model, the communication
services are only provided by some kind of communication servers such as object request brokers
(ORBs) or TP monitors. The other server types do not communicate directly with each other but only
via a communication server. In Figure 1, this is indicated by the solid lines.
In our system model, every server type s has a failure rate �s and a repair rate �s (i.e., restart speed after a

 3

failure). For simplicity, we assume that the time between two successive failures of a server type as well
as the time to repair one workflow server are exponentially distributed with the expected values 1/ �s

and 1/�s, respectively.

2.2 Configuration of a distributed WFMS

With the presented workflow server model at hand, we are now able to define the central notion of the
system configuration of a distributed WFMS.
Because of failures and repairs of workflow servers, the number of available workflow servers of one
server type varies over time. For a given point of time, we call the vector (X1, X2, ���, XN) of the numbers of
currently available workflow servers of each workflow server type the current system state of the
WFMS. The initial system state of the WFMS, i.e., the system state with all workflow servers available,
is called the system configuration of the WFMS.
The goal of this work is to build a configuration tool, based on the above system model, that is able to
derive the best system configuration for a given workflow load. The configuration tool should aim to
optimize the ratio of performance and cost or availability and cost, respectively, or even the combina-
tion of both, the performability. We will discuss our approaches to these three kinds of goals in the fol-
lowing sections. As all such optimizations depend on the (probable) behavior of workflow instances,
we first need to introduce an appropriate model for the control flow of a workflow instance.

2.3 Stochastic modeling of control flow

For predicting the expected load induced by the execution of a workflow instance, we have to be able to
predict the control flow of workflow instances. As workflows include conditional branches and loops,
the best we can do here is to describe the execution stochastically.
A suitable stochastic model for describing the control flow of a simple workflow instance without sub-
workflows is the model of continuous-time, first-order Markov chains (CTMC) [Nel95, STP96, Tij94].
A CTMC is a process that proceeds through a set of states in certain time periods. Its basic property is
that the probability of entering the next state within some time only depends on the currently entered
state, and not on the previous history of entered states. The mathematical implication is that the resi-
dence time in a state - that is, the time the process resides in the state before it makes its next transition -

Figure 1: Server model of an enterprise-wide distributed WFMS

server type 2

ORB

server type 1

server type N

Clients

generates requests to
communicate with each other

Clients

. . .

...

 4

follows a (state-specific) exponential distribution. Consequently, the behavior of a CTMC is uniquely
described by a matrix P �

�pij
� of transition probabilities between states and the mean residence times Hi

of the states.
Let {ai | i � 1..n} be the set of n activities being part of a workflow type X. Let X be a workflow type
without any subworkflows. The impact of subworkflows can be handled recursively and will be ex-
plained later. The control flow of an instance of X will be modeled by a CTMC where the states corre-
spond to the workflow activities ai. The state transition probability pij corresponds to the probability that
a workflow instance of workflow type X starts activity aj after it has completed activity ai. The transition
probabilities have to be explicitly specified by the workflow designer based on the semantics of the
conditions between the workflow activities or observed from real-life business processes. The mean
residence time Hi corresponds to the mean turnaround time of activity ai and also needs to be estimated
at workflow specification time. Finally, we add an artificial absorbing state A to the CTMC. This state
represents the point when the workflow instance represented by the CTMC is terminated; the residence
time of state A is infinity. Furthermore, we add a transition from every state of the CTMC that represents
a termination activity of the workflow instance into state A with the transition probability 1.
For workflow types with subworkflows, the subworkflows are initially represented by single fictitious
states, i.e., each subworkflow is represented by a single state within the CTMC of the parent workflow.
When workflows include parallelism, the parallel paths of the control flow are defined as subwork-
flows. In this case, the fictitious state represents all parallel subworkflows at once. As the mean resi-
dence time of the fictitious state, we use the maximum of the mean time until termination of all sub-
workflows within the fictitious state.
We derive the mean time until termination of a workflow type by the transient analysis of the CTMC
representing the workflow type [Tij94]. In our model, a workflow instance of a workflow type termi-
nates when the corresponding CTMC makes a transition into the absorption state A. So, the time until
termination of a workflow type is equivalent to the mean time until the CTMC makes the first transition
into state A. With the CTMC at hand, we are able to predict the expected load of workflow instances
during their execution [Tij94] as shown in the following section.

3 Performance model

In this section, we present a performance model for a complete WFMS. We show how to describe the
load for each workflow server type induced by the execution of a single workflow activity. We use this
and the results from the transient analysis of CTMC presented in Section 2 for predicting the load in-
duced by the execution of a entire workflow instance. Finally, we show how to predict the expected
performance, i.e., sustainable throughput and expected response times of service requests, of the
WFMS with a given system configuration.

3.1 Modeling activity-specific load

The execution of a workflow instance leads to the execution of a set of workflow activities. The execu-
tion of a workflow activity leads to the generation of service requests to different server types. Typical-
ly, the invocation of an activity leads to some initialization and termination load induced exactly once
during the execution of the activity and to operational load induced continuously during the whole exe-
cution time of the activity. Therefore, we differentiate between the two following kinds of service re-
quests.

• Lump requests. Lump requests are generated exactly once during the execution of the workflow
activity. For example, if the activity corresponds to editing a text document, the activity generates

 5

a number of lump requests for loading the text document, updating a database to reflect the
changed workflow state, etc.

• Operational requests. During the execution of an activity, operational requests are generated with
a specific rate. For example, these are generated by the exchange of messages between workflow
engines for synchronisation and migration of workflow instances, saving of intermediate versions
of the currently processed documents, etc.

In the following, the matrix (Lt
sa) denotes the number of lump requests being generated for workflow

server type s when workflow activity a is invoked during the execution of an instance of workflow type
t. The matrix (Nt

sa) denotes the generation rate of operational requests for workflow server type s during
the execution of activity a.

3.2 Predicting the load induced by a single (sub-)workflow instance

To calculate the workflow load that one workflow instance generates on the several server types, we use
the transient analysis of the CTMC presented in Section 2. To be exact, we combine the equivalent
normalized CTMC [Tij94] and the already presented load matrices (Lt

sa) and (Nt
sa) to a Markov reward

model (MRM). The feature of a MRM is that there are rewards for every state of the CTMC. To get the
expected number of service requests by a single workflow instance, we calculate the expected reward
earned until absorption [Tij94]. Let the matrix (Lt

sa) of lump requests and the matrix (Nt
sa) of rates of op-

erational request be given for a workflow type without any subworkflows. Then, the expected number
of service requests an instance of the workflow type t generates at server type s is given by

rs,t �
1
�t
��

a�A

Nt
sa�

�

z�0

pt
	a(z)
�

a�A

�

�

z�0

pt
	a(z) �

b�A,b�a

qt
ab Lt

sb�,

where �t is the maximum of the departure rates of the states of the CTMC representing workflow type t,
qt

ab is the transition rate from state a to state b, and pt
	a(z) is the taboo probability that the process will be in

state a after z steps without having visited the absorbing state A (starting in the initial state).
The mean runtime Rt of an instance of a (sub-)workflow of type t is given by the mean time that the
CTMC needs to enter the absorbing state for the first time, the so called first-visit-time of state A, and
can be calculated by solving a system of linear equations [Tij94].

3.3 Incorporation of subworkflows

The expected number of service requests generated by an instance of a workflow type including sub-
workflows can be calculated recursively. For every state of the CTMC that represents a subworkflow or
a set of parallel subworkflows, the entries Lt

sx and Nt
sx within the matrices (Lt

sa) and (Nt
sa) represent the lump

requests and the rate of operational requests of the set x of nested subworkflows. We approximate the
number of lump requests Lt

sx for a server type s by the sum of the expected number of service requests
generated by the parallel subworkflows.

Lt
sx ��

y�x

rs,y

The rate of operational requests Nt
sx is set to 0 for every server type s.

3.4 Incorporation of multiple active workflows

By Little’s law, the steady-state number of active instances Nt
active of workflow type t is given by the prod-

uct of the arrival rate �t of new instances of type t and the mean runtime Rt of a single workflow of type t.
Nt

active � �tRt

The server-type-specific request arrival rate of a single instance of workflow type t is given by dividing

 6

the expected number of service requests to server type s, rs,t, by the mean runtime of an instance of t. We
obtain the server-type-specific request arrival rate ls,t of all instances of workflow type t by multiplying
rs,t with the mean number of active workflow instances.

ls,t � Nt
active

rs,t

Rt
� �t rs,t

Finally, the request arrival rate ls to workflow server s induced by all active instances of all workflow
types is given by

ls ��

t

ls,t.

3.5 Predicting response times for service requests

For predicting the mean response time of service requests, we model every server type as a set of k
M/G/1 queueing systems where k is the number of server replications of the server type. We assume that
the arriving service requests are uniformly distributed over all server replications. We thus compute the
mean arrival rate of service requests for each M/G/1 queue by dividing the mean arrival rate of service
requests for the server type by the number of servers k of the server type. The mean service time of
service requests and the second moment of the service time distribution are parameters that can be esti-
mated by online monitoring.

4 Availability model

In this section, we describe our availability model. It is based on the workflow server model described in
Section 2. Based on this model, we analyze the influence of transient component failures on the avail-
ability of the WFMS.
Our availability model is again based on Continuous Time Markov Chains (CTMC). Here, every state
of the CTMC represents a possible system state of the WFMS. A system state of the WFMS is modelled
as an n-tuple with n being the number of different server types and each entry of the tuple representing
the number of available workflow servers of a server type at one point of time. For example, the state
(2,1,1) means that the WFMS consists of three different server types and there are 2 workflow servers of
type 1, 1 workflow server of type 2, and 1 workflow server of type 3 currently available (the others have
failed and are being restarted). When a workflow server of type i fails, the CTMC performs a transition
to the state where the corresponding value for server type i is decreased by one. For example, the state
�X1, ���, Xj, ��� � is left when a workflow server of type j fails, and the state �X1, ���, �Xj
 1�, ��� � is entered.

Analogously, when a workflow server of type i completes its restart, the value for server type i is in-
creased in the target state of the firing transition. The failure rates and the repair rates of the server types
are the corresponding transition rates of the CTMC. Note that non-exponential failure or repair rates
(e.g., anticipated periodic downtimes for software maintenance) can be accommodated by refining the
corresponding state with non-exponential residence time into a chain of exponential states [Tij94].
With the CTMC at hand, we are able to calculate for every state of the WFMS its steady-state probabili-
ty by solving a system of linear equations [STP96]. From these probabilities, we can then derive the
probability distribution of the number of available workflow servers for each server type, and thus the
server type’s steady-state availability.

5 Performability model

In this section, we briefly sketch a performability model that allows us to predict the performance of the
WFMS with the effects of temporarily non-available servers (i.e., the resulting performance degrada-
tion) taken into account.

 7

Our performability model is a hierarchical model constituted by a Markov reward model (MRM) for the
availability CTMC and the performance model presented in Section 3. The probability of being in a
specific state of the WFMS is given by the availability model presented in Section 4. As state-specific
rewards, we use a function that assigns to every state of the availability CTMC the mean response time
of service requests of the WFMS in the current state. The steady-state analysis of the MRM delivers the
expected value for the response time of service requests for a given configuration of the WFMS
[STP96].

6 Summary and Outlook

In this paper, we have discussed three models to derive quantitative information about performance,
availability, and performability of distributed workflow management systems (WFMS) configura-
tions. These models form the core towards an assessment and configuration tool for enterprise-wide,
large scale WFMS. We are in the process of implementing such a tool. The tool consits of four compo-
nents: mapping of workflow specification onto the presented models, calibration by means of statistics
from monitoring the system, evaluation for given input parameters, and the computation of recommen-
dations with respect to specified administration goals. When the tool is to be used for configuring a
completely new workflow environment, most input parameters have to be inetellectually estimated by a
human expert. Later, after the system has been operational for a while, these parameters can be automat-
ically adjusted, and the tool can the make appropriate recommendations for reconfiguring the system.
For a first evaluation of our overall approach, we have defined a WFMS benchmark [GMW+99] and
we are conducting measurements of various products and prototypes, including our own Mentor-lite
system. These measurements will serve as a first yardstick for the accuracy of our performance assess-
ment model.

References
[BD97] T. Bauer, P. Dadam, A Distributed Execution Environment for Large-Scale Workflow Management Systems with
Subnets and Server Migration, 2nd IFCIS Conf. on Cooperative Information Systems (CoopIS), Charleston, South Caroli-
na, 1997
[BD99] T Bauer, P. Dadam, Distribution Models for Workflow Management Systems - Classification and Simulation (in
German), Technical Report, University of Ulm, Germany, 1999
[DKO+98] A. Dogac, L. Kalinichenko, M. Tamer Ozsu, A. Sheth (Eds.), Workflow Management Systems and Inter-
operability, NATO Advanced Study Institute, Springer-Verlag, 1998
[GMW+99] M. Gillmann, P. Muth, G. Weikum, J. Weissenfels, Benchmarking of Workflow Management Systems (in
German), 8th German Conf. on Database Systems in Office, Engineering, and Scientific Applications (BTW), Freiburg,
Germany, 1999
[HA98] C. Hagen, G. Alonso, Backup and Process Migration Mechanisms in Process Support Systems, Technical Report,
Swiss Federal Institute of Technology (ETH), Zurich, Switzerland, 1998
[KAG+96] M. Kamath, G. Alonso, R. Günthör, C. Mohan, Providing High Availability in Very Large Workflow Manage-
ment Systems, 5th Int’l Conf. on Extending Database Technology (EDBT), Avignon, France, 1996
[Nel95] R. Nelson, Probability, Stochastic Processes, and Queueing Theory, Springer-Verlag, 1995
[STP96] R. A. Sahner, K. S. Trivedi, A. Puliafito, Performance and Reliability Analysis of Computer Systems, Kluwer
Academic Publishers, 1996
[SNS99] H. Schuster, J. Neeb, R. Schamburger, A Configuration Management Approach for Large Workflow Manage-
ment Systems, Int’l Joint Conf. on Work Activities Coordination and Collaboration (WACC), San Francisco, California,
1999
[Tij94] H.C. Tijms, Stochastic Models, John Wiley and Sons, 1994

