
Extending Message Handlers with Pattern Matching

in the Jadescript Programming Language

Giuseppe Petrosino, Federico Bergenti

Dipartimento di Scienze Matematiche, Fisiche e Informatiche

Università degli Studi di Parma

43124 Parma, Italy

giuseppe.petrosino@studenti.unipr.it, federico.bergenti@unipr.it

Abstract—Software agents are characterized by sophisticated
messaging capabilities that support distributed problem solving
and that provide the basic ingredients for interoperability in
open agent-based systems. Jadescript is an agent-oriented pro-
gramming language that has been recently proposed to offer pro-
grammers the abstractions that characterize agents to concretely
and effectively support the implementation of complex agent-
based systems. As expected, the abstractions that Jadescript
provides include native support for the advanced messaging
capabilities that characterize agents. This paper describes a
recent development of Jadescript that extends the language with
a native support for pattern matching designed to simplify the
reception of structured messages and to ease the management
of complex conversations. The proposed support for pattern
matching is intimately correlated with the type system of the
language, and it can be used to effectively associate inbound
messages with specific handlers. From the point of view of
programmers, the proposed support for pattern matching allows
clearly expressing the intended scope of message handlers, and
it contributes to raise the level of abstraction of the language.

Index Terms—Jadescript, JADE, agent-oriented programming,
software agents

I. INTRODUCTION

Since the introduction of software agents (e.g., [1]), the

interest in AOP (Agent-Oriented Programming) (e.g., [2]) has

been constantly increasing mainly because AOP is expected

to deliver effective tools to design and implement complex

agent-based systems. AOP languages shield programmers from

many fine-grained details related, for example, to the routing

of messages or to the deployment of agents to network hosts.

AOP languages promote high-level views of agent-based sys-

tems that allow programmers to concentrate on the problems

at hand, rather than focusing on fine-grained details that tend

to distract attention from problems. All things considered,

AOP languages allow programmers to reason on agents at

a high level of abstraction because they provide support for

the abstractions that characterize the agent-oriented view of

software systems promoted, for example, by the IEEE FIPA

Standards Committee (www.fipa.org) or by the literature on

AOSE (Agent-Oriented Software Engineering) [3].

The main objective of this paper is to summarize the current

state of the development of Jadescript [4], an AOP language

whose main purpose is to help programmers to deal with the

complexity of building real-world agent-based systems using

JADE (Java Agent DEvelopment framework) (e.g., [5]). In

particular, this paper details one of the latest features of the

language that has been recently included to ease the reception

of structured messages and to support the management of

complex conversations among agents. Jadescript now provides

a specific support for pattern matching that was carefully

integrated with the type system of the language to readily

state the conditions used to route messages to proper message

handlers. The use of the new support for pattern matching, as

described in Section IV, allows programmers to clearly state

the intended scope of message handlers, and it ultimately helps

to further raise the level of abstraction of the language with

respect to previous versions (e.g., [6], [7]).

Even if the early JADE prototypes date back more than

twenty years, JADE is still one of the most popular agent

platforms [8], and it is still used for academic and industrial

projects [8]. In addition, JADE is the solid base for other

software platforms like WADE (Workflows and Agents Devel-

opment Environment) [9], which supports agent-based business

process management, AMUSE (Agent-based Multi-User Social

Environment) [10], which focuses on agent-based multi-player

games (e.g., [11]), and WANTS (Workflows and AgeNTS) [12],

which routinely participates in the management of a nation-

wide telecommunication network. Jadescript has been recently

added to the list of projects that use JADE in order to offer a

new way to reduce the complexity of building JADE systems,

and to provide concrete support for the adoption of the ab-

stractions that most substantially characterize JADE, namely,

agents, behaviours [13], and ontologies [14]. Jadescript is

intended to bring the power of JADE to programmers that

are not interested in directly using an agent platform, but that

are interested in taking advantage of the beneficial features of

software agents. Jadescript is meant to enable the effective use

of agents as software components (e.g., [15]), and it is already

planned that it would allow the adoption of a high-level agent

model (e.g., [16]) in the near future.

This paper is organized as follows. Section II provides a

brief survey of some of the most relevant languages proposed

to support the development of software agents and agent-based

systems. Section III describes the major features of Jadescript,

and it lists the elements of the language provided to support

message passing. Section IV describes the new support for

pattern matching. Finally, Section V concludes the paper and

outlines major future developments of the discussed research.

Workshop "From Objects to Agents" (WOA 2019)

113



II. RELATED WORK

Several AOP languages have been already proposed in

the literature, and for some of them, the needed tools, like

interpreters and compilers, have also been implemented. Doc-

umented experiments on such languages often show that pro-

gramming languages specifically designed for AOP are con-

venient for the development of complex agent-based systems.

However, most of the languages in use to program software

agents and agent-based systems are general-purpose OOP

(Object-Oriented Programming) languages, even if agents and

objects differ in important ways, which include, most notably,

the degree of autonomy. Objects directly and inevitably invoke

methods on other objects, while agents express their intentions

to delegate some of their goals to other agents.

AOP languages are based on specific agent models, and

they provide linguistic constructs to ease the adoption of

such models at a high level of abstraction. Ease of use and

expressivity are common characteristics of AOP languages.

However, AOP languages differ significantly in terms of the

selected agent mental attitudes (if any), of the integration with

an agent platform (if any), and of the underlying programming

paradigm and implementation language. The literature pro-

vides multiple classifications of AOP languages that consider

such a diversified landscape. A recent survey [17] proposes

a classification of AOP languages that is based on mental

attitudes. It identifies the following classes of languages: AOP

languages, BDI (Belief-Desire-Intention) languages, hybrid

languages, and other languages. Such a classification acknowl-

edges that BDI languages follow the AOP paradigm, but, for

their notable relevance in literature, it reserves special attention

to them by listing BDI languages in a separate category.

Another appreciated survey [18] proposes a classification

in which languages are divided into imperative, declarative,

and hybrid. It is worth noting that, in both classifications,

the languages that adhere to the declarative programming

paradigm are the most numerous because they are natively

well-suited to implement automated reasoning. On the con-

trary, the languages that adopt the imperative programming

paradigm are just a minority, and they are frequently obtained

by extending procedural programming languages with specific

linguistic constructs to support agents and related abstractions.

In the rest of this section, some of the most relevant AOP

languages are briefly described. Only the languages that share

features with Jadescript are considered.

The acronym AOP was first introduced by Shoham [19]

together with AGENT-0, a first example of the application of

the AOP paradigm. In AGENT-0, a computation is represented

by a sequence of collaborative and/or competitive interactions

among agents. Each agent has a mental state that is composed

of beliefs and commitments. The mental state of an agent

changes over time, which is represented as a sequence of dis-

crete steps. Agents share a sense/act cycle in which incoming

messages are processed, beliefs and commitments are updated,

and actions are executed. An AGENT-0 program is written by

enumerating initial states for beliefs and commitments, and

by listing commitment rules that refer to future actions. The

communication among agents is accomplished by exchanging

simple messages, which are classified into three types: inform

of a belief, request to perform an action, and unrequest of a

previously requested action.

PLAnning Communicating Agents (PLACA) [17] is a direct

descendant of AGENT-0, and it extends the capabilities of

AGENT-0 by providing new linguistic constructs and new

mental categories. The major improvement with respect to

AGENT-0 is that agents do not need to request for specific

actions to call for cooperation, but they can refer to high-

level goals. Such an improvement has two major benefits.

First, agent communication is lighter because the number of

messages is possibly reduced. Second, it allows agents to focus

on the desired results of actions, thus easily adding cooperative

planning capabilities to agents.

Concurrent METATEM [20] is an AOP language based

on temporal logics. In this language, sets of rules are used

to describe the lifecycle of agents and the execution of

actions. Such rules can be grouped into temporal rules and

non-temporal rules. Non-temporal rules are used to support

application-specific reasoning, while temporal rules are used

to govern agents and they are classified into three categories:

start rules, step rules and sometimes rules. In Concurrent

METATEM, agents act asynchronously and they interact by

message passing. The language does not mandate a structure

for messages, and messages are nothing but typed events.

AgentSpeak [21] is an important example of a declarative

AOP language. In AgentSpeak, an agent program is described

as a tuple that collects beliefs, events (internal and exter-

nal), actions, plans, and intentions. The approach adopted by

AgentSpeak allows to declaratively program agents based on

the BDI model. Jason [22] can be considered the first usable

implementation of AgentSpeak. Jason is tightly integrated with

Java, and it extends AgentSpeak by providing all features

needed to effectively adopt it for the implementation of com-

plex agent-based systems. Jason is currently one of the most

popular tools to adopt the declarative programming paradigm

for the implementation of agent-based systems.

3APL (An Abstract Agent Programming Language) [23]

is an AOP language that includes abstractions from both

declarative and imperative programming paradigms. Agents

in 3APL are based on the BDI model and for this reason the

language provides a set of abstractions to implement agents

with reasoning capabilities. The mental states of agents consist

of sets of goals and beliefs, while sets of practical reasoning

rules are used to modify mental states and to generate plans to

achieve goals. There are two official implementations of the

support tools for 3APL, one in Java and one in Haskell.

JACK [24] is an agent platform commercialized by AOS

(www.aosgrp.com). It supports the development of agent-

based systems composed of agents that are programmed in

terms of the BDI model. One of the main elements of the

JACK platform is JAL (JACK Agent Language), an AOP

language that is defined as a superset of Java. JAL extends Java

by introducing features borrowed from logic languages, and it

Workshop "From Objects to Agents" (WOA 2019)

114



provides statements to allow the construction of plans. One

of the most relevant features of JAL is the native support for

organizations and teams, which is provided to enable effective

distributed problem solving.

SEA L (Semantic web-Enabled Agent Language) [25], [26]

is a DSL (Domain-Specific Language) to program agent-based

systems for the Semantic Web. SEA L addresses some of

the limitations of other development frameworks intended

to implement agent-based systems for the Semantic Web. A

specific modeling language, called SEA ML (Semantic web-

Enabled Agent Modeling Language) [27], is available for the

graphical modeling of agent-based systems.

CLAIM (A Computational Language for Autonomous Intel-

ligent and Mobile Agents) [28] is an AOP language designed

with a focus on agent mobility. CLAIM supports holarchies

because agents can be built by hierarchically composing other

agents. CLAIM agents have two types of reasoning capa-

bilities: forward reasoning, for reactive tasks, and backward

reasoning, for goal-driven tasks. Agent communication is per-

formed by message passing, and the underlying agent platform

uses a set of specific messages to support agent mobility.

Jadex [29] is a framework to implement agent-based sys-

tems originally designed to work on top of JADE. A Jadex

agent is equipped with a BDI reasoning engine, and it is pro-

grammed in terms of beliefs, goals, and plans. Jadex combines

the imperative and the declarative paradigms because it uses

ADFs (Agent Definition Files) to define beliefs, goals and

plans, while it uses Java to procedurally define plans. Note

that, even if it does not introduce a specific syntax, Jadex

underpins an AOP language, and for this reason it is often

treated as such. Jadex is intended for practical and commercial

use, and a number of real-world applications that use it are

documented in the literature. Besides its name, the framework

is no longer tightly linked with JADE because now it provides

the needed tools to interface various agent platforms.

SARL [30] is an AOP language that follows the imperative

programming paradigm. It can be considered as an extension

of the Xtend language [31], which is a dialect of Java that

it is used to implement the procedural parts of SARL agents.

SARL is platform-agnostic, even if it is commonly used with a

dedicated agent platform called Janus. One of its most peculiar

features is the support for holarchies by means of specific

linguistic constructs. SARL compiler is implemented using

Xtext [32], which the same development framework used for

the Jadescript compiler.

JADEL [33]–[35] is the direct predecessor of Jadescript. It is

an AOP language that targets the Java virtual machine, and it is

intended to support the construction of agents and agent-based

systems using JADE. JADEL provides specific constructs for

message passing, for event handling, and for the definition of

agents, behaviours, and ontologies. It has direct support for

FIPA interaction protocols [36], and its operational semantics

is formalized [37]. Finally, its procedural parts are based on

the Xtend language, and its major support tools are a compiler

and an Eclipse plugin, both built using Xtext.

III. JADESCRIPT IN BRIEF

This paper introduces a new feature of Jadescript intended

to embed pattern matching in the core of the language. Such a

new feature represents a first attempt at supporting the declar-

ative programming paradigm in Jadescript, and it is designed

to make the aims and scope of message handlers explicit. The

remaining of this section briefly describes Jadescript and, in

particular, it highlights the elements of the language provided

to send and receive messages.

Jadescript is a novel programming language designed with

the explicit intent to make agent-oriented code similar to

semantically-equivalent pseudocode. It supports the develop-

ment of JADE agents and agent-based systems, and it is char-

acterized by distinctive features designed to make the language

very expressive. Notably, the language shares characteristics

with popular scripting languages like, for example, the use of

semantically-relevant indentation and collection types.

Every Jadescript source code is intended to be compiled

into one or more Java source codes, which are then compiled

into Java bytecode using any off-the-shelf Java compiler. Such

a design choice was taken primarily to grant interoperability

with Java, and to enable Jadescript agents to directly use

libraries and frameworks already available for the Java virtual

machine. Despite the close relationship with Java, Jadescript

is not an OOP language, rather it is an AOP language that

follows the path originally traced by AGENT-0. The minimal

interface to Java, which is still present in Jadescript to support

integration with the features of the underlying Java virtual

machine, is considered low-level and its use is discouraged.

Jadescript is a statically-typed language, and its type system

comprises the following data types:

• Primitive types;

• Collection types;

• Ontology types;

• Agent types; and

• Behaviour types.

Jadescript provides the following primitive types that are

immediately mapped to corresponding Java types: boolean,

double, float, integer, and text. It provides collec-

tion types in terms of lists and maps of typed values. It

supports structured types in terms of ontology types, which

can be declared in the scope of ontology declarations us-

ing concept, action, predicate, and proposition

declarations. Ontology types are declared (with the exception

of proposition declarations) in terms of sets of typed

properties, and they can include properties inherited from

other ontology types. Finally, agent and behaviour types are

provided for the manipulation of agents and behaviours. Values

of such types cannot be used freely in expressions, and they

can be used only in the scope of a limited number of linguistic

constructs. The restrictions on the use of agent and behaviour

types ensure that programmers cannot freely manipulate agents

and behaviours, and they are coherent with the underlying

management of the same abstractions in JADE.

Workshop "From Objects to Agents" (WOA 2019)

115



In order to improve readability, Jadescript is designed to

support a limited form of type inference. The Jadescript

compiler can identify when new variables are declared, and

it can infer the types of new variables in correspondence of

assignment statements. Similarly, the Jadescript compiler can

infer the types of properties from the types of expressions used

as initializers. Even if the supported form of type inference is

sufficient to improve readability, it is worth noting that it is

limited with respect to the form of type inference that other

languages provide. Actually, the types of some of the elements

referenced in source codes like, for example, the types of

the formal parameters of procedures, need to be explicitly

stated because the language does not provide to the compiler

sufficient information to infer them.

Agents are the core abstractions used to build Jadescript

agent-based systems, and they depend completely on JADE

agents. Each Jadescript agent operates within a JADE con-

tainer, it is identified by a unique AID (Agent IDentifier), and

it can be in one of several lifecycle states. Agents operate

by engaging one or more behaviours. For each agent, active

behaviours are executed following the characteristic non-

preemptive scheduling mechanisms of JADE behaviours [5].

Currently, Jadescript supports two types of behaviour: one

shot behaviours and cyclic behaviours. Interested readers

should consult the official JADE documentation [5] for de-

tailed descriptions of the behaviour scheduling mechanisms

and of possible agent-lifecycle states.

The runtime state of agents and behaviours is stored in

properties, which are declared using the keyword property

in the scope of agent and behaviour declarations. Similarly,

ontology types are also declared in terms of properties. Prop-

erties can be accessed in expressions using the of operator,

which mimics how the preposition of is used in English as a

synonym of belonging to. Agent and behaviour declarations

can also include parameterized blocks of procedural code in

the scope of function and procedure declarations.

Jadescript agents are fully interoperable with JADE agents,

and they communicate by exchanging FIPA ACL (Agent

Communication Language) messages. Jadescript provides a set

of linguistic constructs to send and receive messages, with

message reception expressed in terms of a specific type of

event. Jadescript agents can react to events using dedicated

linguistic constructs. Future versions of the language are

planned to support application-specific types of events, for

example, to let agents easily interface with the physical world

(e.g. [38]) through the underlying agent container. For the time

being, Jadescript supports only three types of events:

• Agent-lifecycle events, handled by the on create and

the on destroy constructs in agent declarations, to

allow agents to react to changes of their lifecycle states;

• Behaviour-activation events, handled by the on create

construct in behaviour declarations, to support the initial-

ization of the internal state of behaviours; and

• Message events, handled by the on message construct

and its variants in behaviour declarations, to allow the

reception of messages with specific characteristics.

1 ontology TemperatureSensor

2 proposition nonnegative

3 proposition negative

4 concept sample(value as double)

5

6 cyclic behaviour ReceiveNonNegative

7 uses ontology TemperatureSensor

8

9 on inform m

10 when content of m is sample do

11 s = content of m

12

13 if value of s >= 0 do

14 send inform nonnegative

15 to sender of m

16 else do

17 send inform s to aid of agent

18

19 cyclic behaviour ReceiveNegative

20 uses ontology TemperatureSensor

21

22 on inform m

23 when content of m is sample do

24 s = content of m

25

26 if value of s < 0 do

27 send inform negative

28 to sender of m

29 else do

30 send inform s to aid of agent

Fig. 1. Example of the limitations of the traditional approach used to associate
incoming messages to appropriate message handlers in Jadescript.

Event handlers, just like functions and procedures, have a body

where procedural code is included by means of statements

and expressions. Moreover, message handlers can specify a

when clause that is used to state a condition that interesting

messages are required to satisfy. In detail, Jadescript allows

the use of an expression after the optional keyword when in

the declaration of a message handler to allow programmers

to state a condition that messages must satisfy in order to

be extracted from the message queue of the agent. Such

expressions are not arbitrary Boolean expressions, but they

are conditions, which can be composed using the ordinary

logical connectives, on the performative, the ontology, and the

type of the content of messages. For the sake of readability, a

condition on the performative of messages can also be declared

by stating the accepted performative after the keyword on

so that, for example, on inform can be used to declare a

message handler that processes inform messages. Fig. 1 shows

an example of the use of the discussed mechanism to route

inbound messages to appropriate message handlers. Note that

the described mechanism also provides valuable compile-time

information about handled messages that is used to infer types.

Workshop "From Objects to Agents" (WOA 2019)

116



IV. PATTERN MATCHING IN MESSAGE HANDLERS

The urge to extend Jadescript with an improved mechanism

to declare message handlers is mainly motivated by the need

to provide more expressive linguistic constructs to associate

inbound messages with appropriate handlers. In particular, the

major weakness of the described support for message dispatch-

ing becomes evident when several behaviours work on similar

messages. Consider, for example, the behaviours shown in

Fig. 1. If the two behaviours are activated by the same agent,

then they would work on the same message queue, and they

would handle messages with the same ontology, the same

performative, and the same content type. However, behavior

ReceiveNonNegative is designed to handle messages for

which the property value is nonnegative, while behaviour

ReceiveNegative has the opposite requirement on the

same property. In this example, both behaviours reinsert the

received message into the message queue of the agent when

the message does not meet the intended requirements. Even if

the reinsertion into the message queue ensures that messages

are eventually processed by appropriated handlers, the example

emphasizes that the current support for message dispatching

is probably too limited.

A simple solution to the mentioned weakness of the support

for message dispatching that Jadescript has been providing

since its early releases could be based on the possibility of

allowing generic Boolean expressions to guard the activation

of handlers. However, such a solution is not fully satisfactory

because generic Boolean expressions could have uncontrol-

lable side effects. This is the reason why Jadescript has been

recently extended to allow the use of pattern matching in the

guard expressions of message handlers. In particular, the new

support for pattern matching in message handlers is made

available to programmers by means of a new binary operator

called matches that allows to compare a value against a

specified pattern. Such an operator evaluates to true when

the value matches to the provided pattern, and it evaluates to

false otherwise. Currently, Jadescript supports the following

four types of patterns:

• Ontology patterns, used to check a value of an ontology

type against a pattern;

• List patterns, used to check a list against a pattern;

• Map patterns, used to check a map against a pattern; and

• Regular-expression patterns, used to check if a text sat-

isfies a regular expression.

Ontology, list, and map patterns are called composite patterns

because they are defined as sequences of terms. Each term in

a composite pattern can be:

• A text, integer, float, double, or boolean

literal;

• A variable identifier, possibly not yet declared in the

current scope;

• An underscore placeholder symbol (_), which acts as a

dummy variable; or

• A pattern, which acts as a sub-pattern.

1 cyclic behaviour ReceiveNonNegative

2 uses ontology TemperatureSensor

3

4 on inform m

5 when

6 content of m matches sample(v) and

7 v >= 0 do

8 send inform nonnegative

9 to sender of m

10

11 cyclic behaviour ReceiveNegative

12 uses ontology TemperatureSensor

13

14 on inform m

15 when

16 content of m matches sample(v) and

17 v < 0 do

18 send inform negative

19 to sender of m

Fig. 2. Example of message handlers that use the matches operator with
appropriate ontology patterns.

The pattern matching mechanism for composite patterns

works by comparing each term of the pattern, from left to

right, to the corresponding value at the left-hand side of the

matches operator. In the case of a literal term, the value

represented by the literal is simply compared for equality.

The same sort of comparison is performed for identifier terms

that refer to variables already present in the current scope.

However, if the pattern refers to an identifier that cannot

be resolved to a declared variable in the current scope, the

matches operator binds the identifier to the corresponding

values in the left-hand side operand. Such bindings are then

treated as if they were declared variables. In particular, when

the checking of a pattern results in the implicit declaration of a

variable, such a new variable becomes accessible in the current

scope. Similarly, if the term to be checked is an underscore

placeholder, any value is considered to be a valid match

because the pattern is treated as a dummy variable. Finally,

when the term to be checked is a sub-pattern, the described

matching mechanism is performed recursively. Fig. 2 shows

an example of the use of ontology patterns.

List and map patterns are similar to list and map literals,

with the addition of the possibility of using the Prolog-inspired

optional pipe symbol to separate the head from the tail (also

known as rest) of the collection. Note that the optional pipe

symbol is particularly relevant because it is used to express

patterns that match lists and maps of unknown size.

Regular expression patterns, as the name suggests, are

regular expressions for strings of characters. The matches

operator checks if the value at the left-hand side of the operator

is a text, and if it is, returns true if the text matches the

pattern. The syntax of this type of patterns is inspired from

the syntax of regular-expression literals in Javascript.

Workshop "From Objects to Agents" (WOA 2019)

117



V. CONCLUSION

This paper described a recent development of Jadescript that

extends the language with a native support for pattern match-

ing. The proposed support for pattern matching is intimately

related with the type system of the language, and it can be

used to effectively associate inbound messages with specific

handlers. From the point of view of programmers, such a

new feature of the language allows clearly expressing the

intended aims and scope of message handlers, and it ultimately

contributes to raise the level of abstraction of the language.

REFERENCES

[1] J. Bradshaw, Software Agents. MIT Press, 1997.
[2] Y. Shoham, “An overview of agent-oriented programming,” in Software

Agents, J. Bradshaw, Ed., vol. 4. MIT Press, 1997, pp. 271–290.
[3] F. Bergenti, M.-P. Gleizes, and F. Zambonelli, Eds., Methodologies and

Software Engineering for Agent Systems: The Agent-Oriented Software

Engineering Handbook. Springer, 2004.
[4] F. Bergenti, S. Monica, and G. Petrosino, “A scripting language for

practical agent-oriented programming,” in Proc. 8
th ACM SIGPLAN

International Workshop on Programming Based on Actors, Agents, and

Decentralized Control (AGERE 2018) at ACM SIGPLAN Conference

Systems, Programming, Languages and Applications: Software for Hu-

manity (SPLASH 2018). ACM Press, 2018, pp. 62–71.
[5] F. Bellifemine, G. Caire, and D. Greenwood, Developing multi-agent

systems with JADE, ser. Wiley Series in Agent Technology. John Wiley
& Sons, 2007.

[6] F. Bergenti and G. Petrosino, “Overview of a scripting language for
JADE-based multi-agent systems,” in Proc. 19

th Workshop “From

Objects to Agents” (WOA 2018), ser. CEUR Workshop Proceedings,
vol. 2215. RWTH Aachen, 2018, pp. 57–62.

[7] G. Petrosino and F. Bergenti, “An introduction to the major features of
a scripting language for JADE agents,” in Proc. 17th Conference of the

Italian Association for Artificial Intelligence (AI*IA 2018), ser. Lecture
Notes in Artificial Intelligence, vol. 11298. Springer, 2018, pp. 3–14.

[8] K. Kravari and N. Bassiliades, “A survey of agent platforms,” Journal

of Artificial Societies and Social Simulation, vol. 18, no. 1, p. 11, 2015.
[9] F. Bergenti, G. Caire, and D. Gotta, “Interactive workflows with WADE,”

in Proc. 21
st IEEE International Conference on Collaboration Tech-

nologies and Infrastructures (WETICE 2012). IEEE, 2012, pp. 10–15.
[10] F. Bergenti, G. Caire, and D. Gotta, “An overview of the AMUSE social

gaming platform,” in Proc. Workshop “From Objects to Agents” (WOA

2013), ser. CEUR Workshop Proceedings, vol. 1099. RWTH Aachen,
2013.

[11] F. Bergenti and S. Monica, “Location-aware social gaming with
AMUSE,” in Advances in Practical Applications of Scalable Multi-

agent Systems. The PAAMS Collection: 14th International Conference,

PAAMS 2016, Y. Demazeau, T. Ito, J. Bajo, and M. J. Escalona, Eds.
Springer International Publishing, 2016, pp. 36–47.

[12] F. Bergenti, G. Caire, and D. Gotta, “Large-scale network and service
management with WANTS,” in Industrial Agents: Emerging Applica-

tions of Software Agents in Industry. Elsevier, 2015, pp. 231–246.
[13] F. Bellifemine, F. Bergenti, G. Caire, and A. Poggi, “JADE – A

Java agent development framework,” in Multi-Agent Programming:

Languages, Platforms and Applications, R. H. Bordini, M. Dastani,
J. Dix, and A. El Fallah Seghrouchni, Eds. Springer, 2005, pp. 125–147.

[14] M. Tomaiuolo, P. Turci, F. Bergenti, and A. Poggi, “An ontology
support for semantic aware agents,” in Proc. International Workshop

on Agent-Oriented Information Systems (AOIS 2005), ser. LNAI, vol.
3529. Springer, 2006, pp. 140–153.

[15] F. Bergenti, “A discussion of two major benefits of using agents in
software development,” in Engineering Societies in the Agents World

III: 3rd International Workshop ESAW 2002, P. Petta, R. Tolksdorf, and
F. Zambonelli, Eds. Springer, 2003, pp. 1–12.

[16] F. Bergenti and A. Poggi, “A development toolkit to realize autonomous
and inter-operable agents,” in Proc. 5

th International Conference on

Autonomous Agents, 2001, pp. 632–639.
[17] C. Bădică, Z. Budimac, H.-D. Burkhard, and M. Ivanovic, “Software

agents: Languages, tools, platforms,” Computer Science and Information

Systems, vol. 8, no. 2, pp. 255–298, 2011.

[18] R. H. Bordini, L. Braubach, M. Dastani, A. El Fallah Seghrouchni, J. J.
Gomez-Sanz, J. Leite, G. O’Hare, A. Pokahr, and A. Ricci, “A survey
of programming languages and platforms for multi-agent systems,”
Informatica, vol. 30, no. 1, 2006.

[19] Y. Shoham, “AGENT-0: A simple agent language and its interpreter,” in
Proc. 9th National Conference on Artificial Intelligence (AAAI), vol. 91,
1991, pp. 704–709.

[20] M. Fisher, “A survey of concurrent MetateM – The language and its
applications,” in Temporal Logic. Springer, 1994, pp. 480–505.

[21] A. S. Rao, “AgentSpeak(L): BDI agents speak out in a logical com-
putable language,” in MAAMAW 1996: Agents Breaking Away. Springer,
1996, pp. 42–55.

[22] R. H. Bordini, J. F. Hübner, and M. Wooldridge, Programming multi-

agent systems in AgentSpeak using Jason. John Wiley & Sons, 2007.

[23] K. V. Hindriks, F. S. De Boer, W. Van der Hoek, and J.-J. C. Meyer,
“Agent programming in 3APL,” Autonomous Agents and Multi-Agent

Systems, vol. 2, no. 4, pp. 357–401, 1999.

[24] M. Winikoff, “JACK intelligent agents: An industrial strength platform,”
in Multi-Agent Programming. Springer, 2005, pp. 175–193.

[25] S. Demirkol, M. Challenger, S. Getir, T. Kosar, G. Kardas, and
M. Mernik, “SEA L: A domain-specific language for Semantic Web en-
abled multi-agent systems,” in Proc. Federated Conference on Computer

Science and Information Systems (FedCSIS 2012), 2012, pp. 1373–1380.

[26] M. Challenger, M. Mernik, G. Kardas, and T. Kosar, “Declarative
specifications for the development of multi-agent systems,” Computer

Standards & Interfaces, vol. 43, pp. 91–115, 2016.

[27] M. Challenger, S. Demirkol, S. Getir, M. Mernik, G. Kardas, and
T. Kosar, “On the use of a domain-specific modeling language in
the development of multiagent systems,” Engineering Applications of

Artificial Intelligence, vol. 28, pp. 111–141, 2014.

[28] A. El Fallah-Seghrouchni and A. Suna, “Claim: A computational
language for autonomous, intelligent and mobile agents,” in Proc.

International Workshop Programming Multi-Agent Systems (ProMAS

2003). Springer, 2003, pp. 90–110.

[29] L. Braubach, A. Pokahr, and W. Lamersdorf, “Jadex: A BDI-agent
system combining middleware and reasoning,” in Software Agent-Based

Applications, Platforms and Development Kits, R. Unland, M. Calisti,
and M. Klusch, Eds. Birkhäuser, 2005, pp. 143–168.

[30] S. Rodriguez, N. Gaud, and S. Galland, “SARL: A general-purpose
agent-oriented programming language,” in Proc. IEEE/WIC/ACM Inter-

national Joint Conferences of Web Intelligence (WI 2014) and Intelligent

Agent Technologies (IAT 2014), vol. 3. IEEE, 2014, pp. 103–110.

[31] L. Bettini, Implementing Domain-Specific Languages with Xtext and

Xtend. Packt Publishing, 2013.

[32] M. Eysholdt and H. Behrens, “Xtext: Implement your language faster
than the quick and dirty way,” in Proc. ACM International Conference

on Object Oriented Programming Systems Languages and Applications

companion (OOPSLA 2010). ACM, 2010, pp. 307–309.

[33] F. Bergenti, “An introduction to the JADEL programming language,”
in Proc. IEEE 26

th International Conference on Tools with Artificial

Intelligence (ICTAI). IEEE Press, 2014, pp. 974–978.

[34] F. Bergenti, E. Iotti, and A. Poggi, “Core features of an agent-oriented
domain-specific language for JADE agents,” in Trends in Practical

Applications of Scalable Multi-Agent Systems, the PAAMS Collection.
Springer International Publishing, 2016, pp. 213–224.

[35] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Agent-oriented model-
driven development for JADE with the JADEL programming language,”
Computer Languages, Systems & Structures, vol. 50, pp. 142–158, 2017.

[36] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Interaction protocols
in the JADEL programming language,” in Proc. 6

th ACM SIGPLAN

International Workshop on Programming Based on Actors, Agents, and

Decentralized Control (AGERE 2016) at ACM SIGPLAN Conference

Systems, Programming, Languages and Applications: Software for Hu-

manity (SPLASH 2016). ACM Press, 2016, pp. 11–20.

[37] F. Bergenti, E. Iotti, S. Monica, and A. Poggi, “Overview of a formal
semantics for the JADEL programming language,” in Proc. 18th Work-

shop “From Objects to Agents”, ser. CEUR Workshop Proceedings, vol.
1867. RWTH Aachen, 2017, pp. 55–60.

[38] S. Monica and F. Bergenti, “Location-aware JADE agents in indoor
scenarios,” in Proc. 16

th Workshop “From Objects to Agents”, ser.
CEUR Workshop Proceedings, vol. 1382. RWTH Aachen, 2015, pp.
103–108.

Workshop "From Objects to Agents" (WOA 2019)

118


