CEUR-WS.org/Vol-2405/02_paper.pdf

Extracting Correspondences from Metamodels
Using Metamodel Matching

Shichao Fangl0000—-0002-3556-4346] 514 Kevin Lanol0000—0002-9706—1410]

Department of Informatics, King’s College London, London, UK
{shichao.fang, kevin.lano}@kcl.ac.uk

Abstract. In Model-Driven Engineering (MDE), metamodels define the
structure of software models such as Petri Nets. This paper proposes
a new approach to extract correspondences from metamodels, in order
to automatically derive transformations on models. We present the ap-
proach on an example of two versions of metamodels for Petri Nets, and
evaluate it on benchmark examples of metamodel matching.

Keywords: Model-Driven Engineering - Model Transformation - Meta-
model Matching.

1 Introduction

In the Model-Driven Engineering (MDE) paradigm, software systems are spec-
ified and maintained as models, whose structure is defined by metamodels. Eg.,
Figure 1(a) is a metamodel of a simple Petri Net language, whose models consist
of sets of linked places and transitions within nets. Model transformation (MT)
is the most important process of MDE. Transformations are a set of rules defin-
ing how to transform a source model to a target model. One example of a MT
language is QVT-R [10]. A correspondence of two metamodels defines a map-
ping between classes of the metamodels, and between properties (class features)
in the source classes and target classes. These correspondences can be used to
define transformations.

In this paper, we propose an approach to extract correspondences between
a source metamodel and target metamodel. First, this requires transforming
classes of both metamodels to a normalised form (which explicitly contain all
their inherited and composed features). Secondly, we calculate the similarity of
each pair of classes, and thirdly determine correspondences based on all similar-
ities. We have evaluated its accuracy using several examples including the Petri
Net case (Fig. 1(a) and Fig. 1(b)) of [11]. In addition, we have evaluated the
quality of the approach by using the benchmark cases of [12].

2 Related Works

A few tools have been created for the synthesis of model transformations from
metamodels. AML [3] requires a user to specify metamodelling matching strate-
gies, but this needs high knowledge of metamodelling. Only ATL transformations

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).

4 S. Fang and K. Lano

name: Siring =

name: String =

transitigns
[Net |
—

(a) version 0 (b) version 3

Fig. 1. Petri Net metamodels

are produced. COPE [4] supports metamodel-specific migrations. However, for
complex metamodel matching, they still need developers to manually match
metamodels.

For similarity measures we considered several different alternatives: Graph
structural similarity (GSS) tests if two classes have similar graph structure met-
rics [8] in the different metamodels. Graph edit similarity (GES) evaluates the
graph edit distance of the reachability graphs of 2 classes in the 2 metamod-
els [2]. Name syntactic similarity (NSS) measures the string edit distances [7]
of the names of two classes. Name semantic similarity (NMS) identifies if class
names are synonymous terms or in the same/linked term families according to a
thesaurus [6]. Semantic context similarity (SCS) applies measures of ontological
similarity between the 2 metamodels [9].

Graph similarity measures treat a metamodel as a graph of nodes (classes)
and edges (associations, aggregations and inheritances).

We evaluated the different measures on a large collection of different meta-
model pairs. We found that data-structure similarity (DSS) was the consistently
best approach. GSS overall has a poor average. GES is quite accurate, however it
has exponential time complexity [2]. NSS can be misleading — eg., in the WebML
and EER case of [5] Relationship in WebML corresponds to RelationshipEnd in
EER, not to its namesake. Likewise, NMS is more useful for cases where there
is a common vocabulary.

The state of the art in metamodel matching is represented by [5], who use
evolutionary algorithms with NSS/NMS to search for possible class and fea-
ture matchings. However they do not consider DSS or composed features in
their matchings, but only non-composed (directly owned) and inherited features.
Transformation synthesis is not addressed in [5]. We consider DSS is a better ba-
sis for producing transformations. Using a deterministic procedure is preferable,
since the results of evolutionary algorithms can vary from run to run. It was
feasible to apply deterministic search to some examples of [5] with comparable
results (Table 3).

Extracting Correspondences from Metamodels Using Metamodel Matching 5

3 Flattening Classes

Flattening a class is the process of representing the class in a form which rep-
resents all of its recursively inherited and composed features [1]. For a class, in
addition to its owned properties, its other properties are derived from inheri-
tance and navigation. The process of flattening inheritance is: for each class C,
if C' has a superclass D, copy properties of D to C if they are not already in
C. To flatten navigation, the process is: for each class C| if it has an association
r to another class D, add properties r.a (for each property a : T of D) to C.
Specifically, Table 1 summarizes the types of r.a under different conditions.

Table 1. Types of r.a for a : T

Type Condition
T if » has 1-multiplicity
Set(T) if has *-multiplicity and T is not a collection type
Sequence(T)|if r has * ordered-multiplicity and 7' is not a collection type
Set(S) if 7 has *-multiplicity and 7 is a collection type Set(sS)
or Sequence(S)
Sequence(S) if 7 has * ordered-multiplicity and T is Sequence(S)

These two steps are repeated until there is no change in the metamodel. The
associations are also represented as properties in the flattened representation,
which ensures that the structure of the metamodel is fully expressed in the flat
version. The flattening process terminates when reaching loops in the graph.
Fig. 2 shows the flattening results on the Petri Net metamodels. The flattened
class of a class C' is named CS$.

g | PlaceT. TPAI
ransition; e T AL o 5t: Place]
mnsmung ""t S't i.c) ‘“'tb (F(}%'A?) sre: Transitionl
pame: Zet 2mn om dn sa r:mmonl)) insre: s,.(plml 5;: name: jqrr
ame: Set(Strin SecctbAne?| | & SeQuing) dst.out.dst: Set(Transitionl
,‘:: i;‘lf‘g"“‘ th (T%Ar) i ('“ dst.out. dst namq Sel(Stmlg))
Transition in.src.name: Sel(!nnng) out. dst name: s.t %mng) Sre.:
Tamne: Siag= in.srein: Set(PTArc) out.dst.ont: Set(PTArc) sren: ,‘_'(}me“d
sre: Set(Place in.sre -
{ PTAn:

dst: Set(Place)
srename: Set(Strin,
dst.name: Set(Strin

sre: Placel
dst Trnmmonl
name: String

Net$
Elaces Set(Place

ansitions: Set(Transition)
]

tring) [Aref]

t <)
dn ok et name: sa(znmg)

places.) nnme Set tring) s“(rulm B))
: Sel(String)
(PTArc)
e: Set Slnn 2)
.name: Sctébh'm)
ransitions.name: $et(String)
transitions.src: Set| lace; Sns,hm'ng)
tr dst: Set(Place ™
transitions.src.name: Set&Suil\ Zlnng)
transit dst.name: Set(Strin, mmmons out.dst.out: sa ‘Arc)
(a) source metamodel (b) target metamodel

Fig. 2. Flattened classes of Petri Net metamodels

4 Calculating Similarity

In assessing similarity, it is only necessary to look at the types of the properties,
not at their names. This kind of similarity is called data structure similarity

6 S. Fang and K. Lano

(DSS). Although sometimes property names are very similar, names may be
too much influenced by human factors. For example, two completely different
properties in different metamodels can have the same name if the developer
chooses. In contrast, the types of properties are much more objective.

To make the similarity result more accurate, we need to consider all possible
matches of classes. Eg., if we assume that class F1 matches class F2, then type
E1 is considered fully similar (value 1 equivalent) to type E2. However, equality
of types can be fuzzy, for example, a type E property with 0..1 multiplicity could
be considered 0.75 similar to a type E property with 1 multiplicity. This allows
more flexible matches than strict equality of the types. In this paper we use fixed
similarity values for types (see Table 2).

Table 2. Type similarity measures between different types of properties a, b

Similarity |a : T|a : Set(T)|a : Sequence(T)
b:T 1 0.5 0.5
b Set(T) | 05 1 08
b : Sequence(T)| 0.5 0.8 1

For two flattened classes A$ and B$, the data structure similarity (DSS) is:

SumO fTypeSimilarities

DSS =

max(AS$.properties.size, BS.properties.size)

5 Metamodel Matching and Transformation Derivation

We sum the individual class DSS similarities to obtain a mapping score. How-
ever, sometimes there are multiple mappings with the same highest map score.
In this case, calculating name similarity is used to choose one map. To calculate
the name similarity, we use string edit distance [7]. This measures the mini-
mum number of operations (insertions, deletions, substitutions) which change
one string into another one. For two strings A and B, the name syntactic simi-

larity (NSS) is: A.size + B.size — ed(A, B)
A.size + B.size

The correspondences are expressed as mappings of classes and their features.
Eg.: Transition$ — Transitionl$ with

NSS =

name — name src — in.src dst — out.dst

where Place$ — Placel$. From these mappings, transformations in different
MT languages can be synthesised. So far, we generate QVT-R, QVT-O and
UML-RSDS. Eg., in QVT-R the Transition mapping is:

top relation MapTransition2Transitionl

{ enforce domain sourc t : Transition
{ name = n, src = t_src : Place {}, dst = t_dst : Place {} };
enforce domain targ tl : Transitionl

Extracting Correspondences from Metamodels Using Metamodel Matching 7

{ name = n, in = ti_in : PTArc { src = ti1_in_src : Placel {} 7},
out = tl_out : TPArc { dst = tl_out_dst : Placel {} } };

when

{ Transition2Transitioni(t,t1) and
Place2Placel(t_src,tl_in_src) and
Place2Placel(t_dst,t1_out_dst) }

6 Evaluation

In the Petri Net example, the source metamodel contains 3 classes, and the target
metamodel contains 5 classes, meaning there are 60 potential class mappings.
After calculating these 60 mappings, we found 2 mappings with the highest
map score, 1.6825396825396826. The first mapping is: Transition$ — Transi-
tion1$, Net$ — Net1$, Place$ — Placel$. The second mapping is: Transition$
> Placel$, Net$ — Net1$, Place$ — Transitionl$. This arises because of the
structural symmetry of the Place and Transition classes — they can be validly
interchanged according to DSS.

By calculating name similarity, the first result is selected as the best mapping,
and its detailed correspondences are as follows:

— Matching for Transition$ and Transition1$: [name, src, dst, src.name, dst.na-
me] — [name, in.src, out.dst, in.src.name, out.dst.name]. Similarity of Tran-
sition$ and Transition1$ is: 0.5555555555555556.

— Maiching for Net$ and Net1$: [places, transitions, places.name, places.dst,
places.src, places.dst.name, places.src.name, transitions.name, transitions.sr-
¢, transitions.dst, transitions.src.name, transitions.dst.name] — [places, tra-
nsitions, places.name, places.out.dst, places.in.src, places.out.dst.name, plac-
es.in.src.name, transitions.name, transitions.in.src, transitions.out.dst, tran-
sitions.in.src.name, transitions.out.dst.name]. Similarity of Net$ and Net1$
is: 0.5714285714285714.

— Matching for Place$ and Placel$: [name, dst, src, dst.name, src.name] —
[name, out.dst, in.src, out.dst.name, in.src.name]. Similarity of Place$ and
Place1$ is: 0.5555555555555556.

Table 3 shows the result of the evaluation on the large benchmark cases of [5].

Table 3. Evaluation on cases of [5]
Case [Precision[Recall[F-measure

EER2WebML [0.611 1.0 |0.805
Ecore2EER 0.471 0.667 |0.569
Ecore2WebML |0.476 0.526 {0.501
UML1.4-EER]0.476 0.5]0.483
UML2.0-EER [0.563 0.667 |0.615
UML1.4-WebML|0.714 0.462 |0.588
UML2.0-WebML|0.733 0.556 |0.645

Data of these and other cases may be found at nms.kel.ac.uk/kevin.lano/mtsy
nthesis. The prototype tools used are at: nms.kcl.ac.uk/kevin.lano/uml2web.

8 S. Fang and K. Lano

7 Conclusion

In this paper, we have presented an approach for extracting correspondences by
using metamodel matching. The core step has been calculating the similarities of
all possible class matches, and using name similarity or human choice to select
the best matching. Evaluation has shown the feasibility and relevance of the
approach.

Our future research plan involves (i) compare different similarity measures for
metamodel matching based on graph or data structures, naming, or semantics
using several cases; (ii) compare different evolutionary approaches and other
techniques for handling larger metamodels; (iii) develop a general approach for
automatically transforming correspondences to transformations in QVT-R and
other MT languages, and evaluate it with several examples to verify efficiency
and quality. (iv) Finally, a tool will be developed based on our approach for
automated model transformation.

References

1. Beyer, D., Lewerentz, C., Simon, F.: Impact of inheritance on metrics for size,
coupling, and cohesion in object-oriented systems. In: International Workshop on
Software Measurement. pp. 1-17. Springer (2000)

2. Bunke, H., Riesen, K.: Recent advances in graph-based pattern recognition with
applications in document analysis. Pattern Recognition 44(5), 1057-1067 (2011)

3. Garcés, K., Jouault, F., Cointe, P., Bézivin, J.: Managing model adaptation by
precise detection of metamodel changes. In: European Conference on Model Driven
Architecture-Foundations and Applications. pp. 34-49. Springer (2009)

4. Herrmannsdoerfer, M., Benz, S., Juergens, E.: Cope-automating coupled evolution
of metamodels and models. In: European Conference on Object-Oriented Program-
ming. pp. 52-76. Springer (2009)

5. Kessentini, M., Ouni, A., Langer, P., Wimmer, M., Bechikh, S.: Search-based meta-
model matching with structural and syntactic measures. Journal of Systems and
Software 97, 1-14 (2014)

6. Kless, D., Milton, S.: Comparison of thesauri and ontologies from a semiotic per-
spective. In: Proc. of the 6th Australian Ontology Workshop (AOW 2010), T.
Meyer, MA Orgun and K. Taylor (eds.) Adelaide, AU: Australian Computer Soci-
ety. pp. 35—44. Citeseer (2010)

7. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. In: Soviet physics doklady. vol. 10, pp. 707-710 (1966)

8. Macindoe, O., Richards, W.: Graph comparison using fine structure analysis. In:
2010 IEEE Second International Conference on Social Computing. pp. 193-200.
IEEE (2010)

9. Maedche, A., Staab, S.: Comparing ontologies-similarity measures and a compari-
son study. AIFB (2001)

10. OMG: Meta Object Facility (MOF) 2.0 Query/View/ Transformation Specifica-
tion. http://www.omg.org/spec/QVT/1.1, last accessed 17 Feb 2019

11. Wachsmuth, G.: Metamodel adaptation and model co-adaptation. In: European
Conference on Object-Oriented Programming. pp. 600-624. Springer (2007)

12. Wimmer, M., Langer, P.: A benchmark for model matching systems: The hetero-
geneous metamodel case. Softwaretechnik-Trends: Vol. 33, No. 2 (2013)

