
Dockerising Terrier for The Open-Source IR Replicability
Challenge (OSIRRC 2019)

Arthur Câmara
A.BarbosaCamara@tudelft.nl
Delft University of Technology

Delft, the Netherlands

Craig Macdonald
craig.macdonald@glasgow.ac.uk

University of Glasgow
Glasgow, UK

ABSTRACT
Reproducibility and replicability are key concepts in science, and
it is therefore important for information retrieval (IR) platforms
to aid in reproducing and replicating experiments. In this paper,
we describe the creation of a Docker container for Terrier within
the framework of the OSIRRC 2019 challenge, which allows typical
runs to be reproduced on TREC Test Collections such as Robust04,
GOV2, Core2018. In doing so, it is hoped that the produced Docker
image can be of aid to other (re)producing baseline experiments on
these test collections. Initiatives like OSIRRC are key in advancing
these key concepts in the IR area. By making not only the source
code available, but also the exact same environment and standardis-
ing inputs and outputs, it is possible to easily compare approaches
and thereby improve the quality of the research for Information
Retrieval.

1 OVERVIEW
Terrier (Terabyte Retriever) is an information retrieval (IR) toolkit,
initiated by the University of Glasgow, which has been developed
since 2001 [5]. It implements a number of retrieval and indexing
methods, ready to be used in both research and production.

Given its open source nature, Terrier has been used in a number
of papers in the field of IR and others over the years, particularly
using standard IR test collections such as those from the Text RE-
trieval Conference (TREC). For this reason, we agreed to join the
OSIRRC 2019 challenge, to create a Docker container image to
allow standard baseline results to be obtained using Terrier in a
manner that can be easily cross-compared with other platforms
implementing the OSIRRC design. Moreover, it is hoped that the
produced Docker image can be of aid to others in (re)producing
baseline experiments on these test collections.

This paper describes the implementation of the Terrier Docker
image. In particular: Section 2 describes the various scripts imple-
mented, as well as the obtained retrieval performances; Section 3
describes the lessons learned in this implementation; Concluding
remarks and outlook follow in Section 4.

2 TECHNICAL DESIGN
The nature of the OSIRRC challenge is that implementing systems
should provide a Dockerfile that can be used to create a Docker
container image that can be run on any Docker installation. The
container image is required to implement to a number of “hooks” -
simply put, an executable at a known location in the image filesys-
tem. These hooks are then called by the OSIRRC jig, which also

Copyright© 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). OSIRRC 2019 co-located with SIGIR
2019, 25 July 2019, Paris, France.

mounts any additional files required into the container image (for
instance, the corpus files for indexing, or the topic files for retrieval).
In the following, we describe the Dockerfile used to build the con-
tainer image, and the hooks that we implemented for Terrier within
the image.

2.1 Dockerfile
The Dockerfile builds a container image with the necessary pre-
requisites for Terrier. As Terrier is developed in Java, we base the
Terrier container image on the OpenJDK standard image for Java
8. A number of other libraries are installed, including Python (for
interacting with the OSIRRC jig); gcompat (standard C libraries for
trec_eval); and the Jupyter pre-requisites. We chose not to install
Terrier using the Dockerfile, to maintain a lightweight container
image.

2.2 Standard Hooks
2.2.1 init. This hook is used to prepare the container. We use this
hook to download and extract Terrier. We provide example code for
both downloading a pre-built “tarball” Terrier from the Terrier.org
website, or checking out a version from the Github repository. This
hook is configured to use Terrier latest stable version, 5.2. It can,
however, be easily configured for fetching other Terrier versions,
by changing the variable version in the init script.

The hook is also compatible with git, making it possible to fetch
bleeding-edge versions of Terrier directly from the terrier-core
Github repository1. This can be controlled by the variable github
in the same init script. Note that when using the Github version
the init hookmay take longer to run, since the code will be compiled
manually for your system. In our experiments, this could take up
to 3 extra minutes.

2.2.2 index. This hook is used to index the corpus that has been
mounted by the jig. The jig provides the name of the corpus (see
Table 1 for supported corpora), as well as the format (trectext,
trecweb or json). The index jig uses the corpora name to configure
the indexing process. For example, for the robust04 corpus which
uses TREC Disks 4 & 5, we remove the Congressional Record from
the indexing manifest (the collection.spec file that lists the files
Terrier should index) as well READMEs and other unnecessary files,
and configure an additional decompression plugin. Similarly, for the
core18 corpus, we configure Terrier to download2 an additional
indexing plugin to support parsing of the TREC Washington Post
corpus.
1https://github.com/terrier-org/terrier-core
2Indeed, inspired by Apache Spark, since version 5.0, Terrier supports downloading
additional plugins fromMavenCentral, based on the value of the terrier.mvn.coords
configuration property.

26

https://github.com/terrier-org/terrier-core


OSIRRC 2019, July 25, 2019, Paris, France Arthur Câmara and Craig Macdonald

Name Description
robust04 TREC Disks 4 & 5, minus CR

gov2 TREC GOV2
core18 TREC Washington Post
cw09b TREC ClueWeb09 part B
cw12b TREC ClueWeb12 part B

Table 1: Supported corpora.

Finally, we note that Terrier supports a variety of indexing con-
figurations - we document here our choices and the alternatives
available:

• Positions: Terrier, by default, does not record positions (also
called blocks) in the direct or inverted index. Passing the
optional argument of block.indexing to the jig will result
in positions being saved. This allows proximity weighting
models to be run.

• Indexer: Terrier’s “classical” indexer creates a direct index
(also called a forward index) before inversion of the direct
index to create the inverted index. Indeed, the direct index
allows pseudo-relevance feedback query expansion. How-
ever, the classical indexer is known to be slower than the
alternative “single-pass” indexer that Terrier also provides.
If the direct index is not required, the single-pass indexer
could be used by passing a -j flag to Terrier during indexing.

• Fields: Including fields in the index allow the frequency
of query terms within different parts of the document (e.g.
TITLE tags) to be recorded separately. This allows the use of
field-based weighting models such as BM25F or PL2F, or use
of fields for features within a learning-to-rank setting.

• Stemming & Stopwords: We retain Terrier’s default set-
ting of Porter Stemming and standard stopword removal.
Terrier’s stopword list has 733 words.

2.2.3 search. This hooks makes use of Terrier’s batchretrieve
command to execute a ‘run’, i.e. to extract 1000 results for each
of a batch of information needs (topics/queries). The jig mounts
the topics into the container image. In addition to learning-to-rank
(discussed further below), we provide off-the-shelf support for 12
retrieval configurations. These are broken down by three orthogo-
nal components: weighting model (BM25 [8], as well as PL2 [1] and
DPH [2] from the Divergence from Randomness framework); prox-
imity (pBiL Divergence from Randomness model [7]); and query
expansion (Bo1 Divergence from Randomness model [1]).

The combination of these three components yields the following
possible configurations, to be passed to the hook using the --opts
config=<setting> parameter:

• BM25
– bm25: Vanilla BM25
– bm25_qe: BM25 with query expansion
– bm25_prox: BM25 with proximity
– bm25_prox_qe: BM25 with proximity and query expan-
sion

• PL2
– pl2: Vanilla PL2
– pl2_qe: PL2 with query expansion

– pl2_prox: PL2 with proximity
– pl2_prox_qe: PL2 with proximity and query expansion

• DPH
– dph: Vanilla DPH
– dph_qe: DPH with query expansion
– dph_prox: DPH with proximity
– dph_prox_qe: DPH with proximity and query expansion

The expected results for each of these runs can be found in Ta-
ble 2, together with the relative improvements of each configuration
over the vanilla version. On analysing the results in the table, it
is of interest to note that query expansion always improves the
final result considerably, reaching up to 27.90% of improvement
over the vanilla versions. However, the same cannot be said about
the proximity option. While yielding improvements of up to 3.61%
(bm25_prox), it can, sometimes, decrease the performance of the
vanilla version up to 1.70% (pl2_prox). These results are interest-
ing, since they show that different methods can result in diverse
observations across the multiple corpora and query sets.

When combining both proximity and query expansion, the re-
sults, overall, show improvements over both the vanilla and qe
or proximity alone, with improvements of up to 27.26% over the
vanilla versions. In the cases where proximity decreased the origi-
nal results, combining query expansion and proximity search does
not improve the results, as expected. However, the results from
scenarios like the DPH model on Core18 and GOV2 (topics 701-
750) show that, even if both query expansion and proximity search
are combined, the overall result may not improve over only the
stronger of the two methods (usually, query expansion).

This again reinforces the knowledge that each dataset is differ-
ent, and that a practitioner should be aware not to simply stack
methods that provides marginal gains, but instead test multiple
combinations, and understand how each method may behave when
used in combination with others.

2.3 Learning To Rank Hooks
Terrier provides support for learning-to-rank in several manners -
the ability to integrate additional features during ranking, including
additional query dependent features without having to re-traverse
the inverted or direct index [6], as well as providing integration of
the Jforests 3 implementation of LambdaMART [9].

Learning to Rank integration is demonstrated through two hooks,
train and search.

2.3.1 train. This hook extracts features for the training and val-
idation topics, before calling Jforests to build the learned model.
To aid implementation, train calls the search hook internally to
obtain results for the training and validation sets, specifying the
bm25_ltr_features retrieval configuration. The retrieval features
to use are configurable by specifying the features argument to
the jig.

2.3.2 search. Search also supports generation of the final learning-
to-rank run, using the bm25_ltr_jforest retrieval configuration.
This configuration assumes that train has already been called and
hence a Jforests learned model file already exists.

3https://github.com/yasserg/jforests/

27

https://github.com/yasserg/jforests/


Dockerising Terrier for The Open-Source IR Replicability Challenge (OSIRRC 2019) OSIRRC 2019, July 25, 2019, Paris, France

Table 2: Expected performance per method and corpus. The best result for each corpus and query set is emphasised.

Method Robust04 Core18 GOV2
701-750 751-800 801-850

BM25

Vanilla 0.2363 0.2326 0.2461 0.3081 0.2629
+QE 0.2762 (+16.89%) 0.2975 (+27.90%) 0.2621 (+6.50%) 0.3506 (+13.79%) 0.3118 (+18.60%)
+Proximity 0.2404 (+1.74%) 0.2369 (+1.85%) 0.2537 (+3.09%) 0.3126 (+1.46%) 0.2724 (+3.61%)
+QE +Proximity 0.2781 (+17.69%) 0.2960 (+27.26%) 0.2715 (+10.32%) 0.3507 (+13.83) 0.3085 (+17.34%)

PL2

Vanilla 0.2241 0.2225 0.2334 0.2884 0.2363
+QE 0.2538 (+13.25%) 0.2787 (+25.26%) 0.2478 (+6.17%) 0.3160 (+9.57%) 0.2739 (+15.91%)
+Proximity 0.2283 (+1.87%) 0.2248 (+1.03%) 0.2347 (+0.056%) 0.2835 (-1.70%) 0.2361 (-0.08%)
+QE +Proximity 0.2575 (+14.90%) 0.2821 (+26.79%) 0.2455 (+5.18%) 0.3095 (+7.32%) 0.2628 (+11.21%)

DPH

Vanilla 0.2479 0.2427 0.2804 0.3311 0.2917
+QE 0.2821 (+13.80%) 0.3055 (+25.88%) 0.3120 (+11.27%) 0.3754 (+13.38%) 0.3439 (+17.90%)
+Proximity 0.2501 (+0.89%) 0.2428 (+0.04%) 0.2834 (+1.07%) 0.3255 (-1.69%) 0.2904 (-0.45%)
+QE +Proximity 0.2869 (+15.73%) 0.3035 (+25.05%) 0.3064 (+9.27%) 0.3095 (-6.52%) 0.3288 (+12.72)

2.4 Interaction
In the interact hook, we provide three HTTP-accessible methods
that allow a researcher to interact with the Terrier instance. Two
of these provide access to the results of the search engine, while
the third allows the user to conduct further experiments within a
Jupyter notebook environment, making use of Terrier-Spark [3].
Each HTTP server is made available on a separate port, as detailed
below4.

2.4.1 Port 1980: Simple search interface. This provides a user-friendly
simple web presentation of the search results, allowing the user to
enter queries, and receive ranked search results.

2.4.2 Port 1981: REST API. This provides a REST endpoint for
Terrier to provide search results from. This can be used directly, or
can be used by another instance of Terrier to query the index in
a running container (i.e. Terrier can be both a server or a client).
Figure 1 shows an example of using Terrier from the command
line of another machine to access an index hosted within a Docker
container.

2.4.3 Port 1982: Terrier-Spark Jupyter Notebook. Finally, port 1982
starts a Jupyter notebook with Apache Toree’s Scala kernel installed.
This allows use of Terrier-Spark - a Scala interface built on top of
Apache Spark that allows Terrier retrieval experiments to be con-
ducted, including in a Jupypter notebook [3, 4]. An example note-
book is provided that allows the user to run more experiments on
the available indices. Functionalities include querying and evaluat-
ing outcomes (as shown in Figure 2), as well as combining Terrier’s
learning-to-rank feature support with Apache Spark’s machine
learning capabilities.

3 LESSONS LEARNED
While developing this work, a number of roadblocks appeared,
prompting new insights and workarounds that ended up improving
the overall reproducibility of the work. Some of these roadblocks,
formulated as questions, are described in this section.

4Note that the ports on the host machine may differ, due to the way that Docker
assigns ports. It is foreseen that this will be resolved in future versions of the OSIRRC
jig - see https://github.com/osirrc/jig/issues/112.

#this starts the REST endpoint on port 1981
[dockerhost]$ cd jig
[dockerhost]$ python run.py interact --repo terrier --tag latest
------
#this demonstrates access to that index from another machine
[anotherhost]$ cd terrier
[anotherhost]$ bin/terrier interactive -I http://dockerhost:1981/
terrier query> information retrieval end:5

Displaying 1-6 results
0 FBIS4-20699 10.268754805435458
1 FBIS4-20702 9.768490153503198
2 FR941027-2-00046 9.491347902606723
3 FBIS4-20701 9.456022500508775
4 FBIS3-24510 9.31403481019499
5 FBIS4-20700 8.792342494849281

Figure 1: Accessing an index hosted on the Terrier Docker
container via the Terrier REST API.

3.1 Do you really have the original version of
the corpus?

We discovered, like several other research labs involved in the
OSIRRC challenge, that TREC Disks 4 & 5 had been originally
compressed using the archaic Unix compress utility, resulting in .z
.1z and .2z filename suffices. Our own copies in Glasgow and Delft
had at sometime been recompressed using more contemporary Gzip
compression (with a resulting .gz filename suffix).

We made some minor adjustments in Terrier version 5.2 that al-
lowed decompression of .z files using an Apache Commons package
to be integrated into Terrier on-the-fly.

3.2 How much memory is in this container?
Like any Java process, Terrier is limited in the amount of memory
available in the Java Virtual Machine (JVM). We worked hard to
ensure that the JVM is allowed to use as much memory once a con-
tainer is running. This allows Terrier potential speed improvements
for both indexing and retrieval.

28

https://github.com/osirrc/jig/issues/112


OSIRRC 2019, July 25, 2019, Paris, France Arthur Câmara and Craig Macdonald

Figure 2: An example of evaluating a run from Terrier-Spark

3.3 Can the classical indexer be more
aggressive in using the available memory?

In OSIRRC, we elected to default to Terrier’s classical indexer, as
this allows more flexibility in the index due to the creation of a
direct index compared to the faster single-pass indexer. However, it
was recognised that the classical indexer had seen less attention in
recent years, and hence could be further optimised. In particular, in
Terrier 5.2, we made changes to the classical indexer to recognise
the available memory, and bemore aggressive in its use of that RAM.
In particular, we have observed significant efficiency improvements
when building a block index for GOV2 (an 11% reduction in indexing
time for a Docker host machine with many CPU cores, with larger
benefit observed for less powerful hosts).

4 CONCLUSIONS & OUTLOOK
This paper has described the implementation of the Terrier-Docker
container image within the OSIRRC replicability challenge. This
has been a worthwhile effort that has allowed many IR platforms
and toolkits to be made available within a standardised Docker

environment. We have aimed to provide a range of standard re-
trieval configurations that Terrier can provide for the relevant test
collections. Meanwhile, participation in the challenge has allowed
some improvements to the Terrier platform, that will be released
in version 5.2.

On the other hand, while the Docker image is a step in the di-
rection of allowing replication of IR experiments, we believe that it
should be combined with a notebook-like environments that facili-
tate the scripting of advanced experiments. We have provided one
example Terrier-Spark notebook, which demonstrates the possible
functionality of conducting an IR experiment within a notebook.
However, we acknowledge the overheads of operating in a Spark en-
vironment (both in efficiency and in code complexity). In the future,
we seek better integration of Terrier into a Python environment, to
allow easier scripting of complex retrieval experiments.

REFERENCES
[1] Giambattista Amati. 2003. Probabilistic Models for Information Retrieval based

on Divergence from Randomness. Ph.D. Dissertation. Department of Computing
Science, University of Glasgow.

29



Dockerising Terrier for The Open-Source IR Replicability Challenge (OSIRRC 2019) OSIRRC 2019, July 25, 2019, Paris, France

[2] Giambattista Amati. 2006. Frequentist and Bayesian Approach to Information
Retrieval. In ECIR (Lecture Notes in Computer Science), Vol. 3936. Springer, 13–24.

[3] Craig Macdonald. 2018. Combining Terrier with Apache Spark to create Agile
Experimental Information Retrieval Pipelines. In SIGIR. ACM, 1309–1312.

[4] Craig Macdonald, Richard McCreadie, and Iadh Ounis. 2018. Agile Information
Retrieval Experimentation with Terrier Notebooks. In DESIRES (CEUR Workshop
Proceedings), Vol. 2167. CEUR-WS.org, 54–61.

[5] Craig Macdonald, Richard McCreadie, Rodrygo L. T. Santos, and Iadh Ounis. 2012.
From puppy to maturity: Experiences in developing Terrier. Proc. of OSIR at SIGIR
(2012), 60–63.

[6] Craig Macdonald, Rodrygo L. T. Santos, Iadh Ounis, and Ben He. 2013. About
learning models with multiple query-dependent features. ACM Trans. Inf. Syst. 31,
3 (2013), 11.

[7] Jie Peng, Craig Macdonald, Ben He, Vassilis Plachouras, and Iadh Ounis. 2007.
Incorporating term dependency in the dfr framework. In SIGIR. ACM, 843–844.

[8] Stephen E. Robertson and Hugo Zaragoza. 2009. The Probabilistic Relevance
Framework: BM25 and Beyond. Foundations and Trends in Information Retrieval 3,
4 (2009), 333–389.

[9] Qiang Wu, Chris J. C. Burges, Krysta M. Svore, and Jianfeng Gao. 2008. Ranking,
Boosting, and Model Adaptation. Technical Report MSR-TR-2008-109. Microsoft.

30


	Abstract
	1 Overview
	2 Technical design
	2.1 Dockerfile
	2.2 Standard Hooks
	2.3 Learning To Rank Hooks
	2.4 Interaction

	3 Lessons Learned
	3.1 Do you really have the original version of the corpus?
	3.2 How much memory is in this container?
	3.3 Can the classical indexer be more aggressive in using the available memory?

	4 Conclusions & Outlook
	References

