
The OldDog Docker Image for OSIRRC at SIGIR 2019
Chris Kamphuis
ckamphuis@cs.ru.nl
Radboud University

Nijmegen, The Netherlands

Arjen P. de Vries
arjen@acm.org

Radboud University
Nijmegen, The Netherlands

ABSTRACT
Modern column-store databases are perfectly suited for car-
rying out IR experiments, but they are not widely used for
IR research. A plausible explanation would be that setting
up a database system and populating it with the documents
to be ranked provides enough of a hurdle to never get started
on this route.

We took up the OSIRRC challenge to produce an easily
replicable experimental setup for running IR experiments on
modern database architecture. OldDog, named after a short
paper on SIGIR proposing the use of column-stores for IR
experiments, implements standard IR ranking using BM25
as SQL queries issued to MonetDB SQL. This provides a
baseline system on par with custom IR implementations and
a perfect starting point for the exploration of more advanced
integrations of IR and databases.

Reflecting on our experience in OSIRRC 2019, we found a
much larger effectiveness penalty than anticipated in the prior
work for using the conjunctive variant of BM25 (requiring
all query terms to occur). Simplifying the SQL query to
rank the documents using the disjunctive variant (the normal
IR ranking approach) results in longer runtimes but higher
effectiveness. The interaction between query optimizations
for efficiency and the resulting differences in effectiveness
remains a research topic with many open questions.

CCS CONCEPTS
• Information systems → Search engine indexing; Evaluation
of retrieval results.

KEYWORDS
information retrieval, replicability, column store

Image Source: https://github.com/osirrc/olddog-docker
Docker Hub: https://hub.docker.com/r/osirrc2019/olddog
DOI: https://doi.org/10.5281/zenodo.3255060

1 OVERVIEW
OldDog is a software project to replicate and extend the
database approach to information retrieval presented in Müh-
leisen et al. [2]. The authors proposed that IR researchers
would use column store relational databases for their retrieval
experiments. Specifically, researchers should store their docu-
ment representation in such a database. The ranking function
can then be expressed as SQL queries. This allows for easy

Copyright © 2019 for this paper by its authors. Use permitted under
Creative Commons License Attribution 4.0 International (CC BY 4.0).
OSIRRC 2019 co-located with SIGIR 2019, 25 July 2019, Paris, France.

comparison of different ranking functions. IR researchers will
only need to focus on the retrieval methodology while the
database takes care of efficiently retrieving the documents.

OldDog represents the data using the schema proposed by
Mühleisen et al. [2]. An extra ‘collection identifier’ column
has been added to include the original collection identifiers.
The original paper [2] produced the database tables to repre-
sent ‘postings’ using a custom program running on Hadoop.
Instead, we rely on the Anserini toolsuite [4] to create a
Lucene1 index. Anserini takes care of standard document
pre-processing.

Like [2], OldDog uses column store database MonetDB
[1] for query processing. Term and document information
is extracted from the Lucene index, stored as CSV files
representing the columns in the database, and loaded into
MonetDB using a standard COPY INTO command.2

After initialisation, document ranking is performed by
issuing SQL queries that specify the retrieval model. Inter-
active querying can support the researcher with additional
examples.

2 TECHNICAL DETAILS
Supported Collections:

robust4, core18

Supported Hooks:

init, index, search, interact

The OldDog docker image itself consists of bash/python
‘hooks’ that wrap the underlying OldDog, Anserini and Mon-
etDB commands.

Anserini builds a Lucene index, where we are happy end-
users of the utilities provided to index common test collections.
The code has been tested for Robust04 and Core18 in our
first release; extending to other collections readily supported
by Anserini should be trivial.

OldDog provides the Java code to convert the Lucene in-
dex created by Anserini into CSV files that are subsequently
loaded into the MonetDB database. OldDog further contains
the Python code necessary to call Java code to pre-process
the topics (calling the corresponding Anserini code, to guar-
antee that topics are processed exactly the same way as the
documents) and issue SQL queries to the MonetDB database
to rank the collection.

1https://lucene.apache.org, last accessed June 26th, 2019.
2The intermediate step exporting and importing CSV files is not
strictly necessary, but simplifies the pipeline and is robust to failure.

47

https://github.com/osirrc/olddog-docker
https://hub.docker.com/r/osirrc2019/olddog
https://doi.org/10.5281/zenodo.3255060
https://lucene.apache.org

OSIRRC 2019, July 25, 2019, Paris, France Kamphuis and de Vries

Apart from the required init, index and search hooks,
OldDog supports the interact hook to spawn an3 SQL shell
that allows the user to query the database interactively.

2.1 Schema
Consider an example document doc1 with contents I put on
my shoes after I put on my socks. to illustrate the database
schema. Indexing the document results in tables 1, 2 and 3:

Table 1: dict

termid term df
1 put 2
2 shoes 1
3 after 1
4 socks 1

Table 2: terms

termid docid count
1 1 2
2 1 1
3 1 1
4 1 1

Table 3: docs

collection_id id len
doc1 1 5

2.2 Retrieval Model
OldDog implements the BM25 [3] ranking formula. The values
for 𝑘1 and 𝑏 are fixed to 1.2 and 0.75, respectively. The
original paper [2] uses a conjunctive variant of this formula,
that only produces results for documents where all query
terms appear the document; this yields lower effectiveness
scores, but speeds up query processing leading to a better
runtime performance.

OldDog implements disjunctive query processing as well,
included after noticing a surprisingly large difference in effec-
tiveness when compared to other systems applied to Robust04.
In the disjunctive variant, documents are considered when
they contain at least one of the query terms. As expected,
runtimes for an evaluation increase when using this strategy.

Table 4 summarises effectiveness scores for both methods
on two test collections, Robust04 and Core18.

Listing 1 shows the conjunctive BM25 SQL query for robust
topic 301: International Organized Crime. The disjunctive
variant simply omits the having clause.

3Or, ‘a SQL shell’, pronouncing SQL as sequel like database folk do.

Table 4: Effectiveness scores

Robust04 Core18
MAP P@30 MAP P@30

Conjunctive BM25 0.1736 0.2526 0.1802 0.3167
Disjunctive BM25 0.2434 0.2985 0.2381 0.3313

/∗ For all topic terms ∗/
WITH qterms AS (SELECT termid, docid, count FROM terms

WHERE termid IN (591020, 720333, 462570)),
/∗ Calculate the BM25 subscores ∗/
subscores AS (SELECT docs.collection_id, docs.id , len ,

term_tf.termid, term_tf.tf, df ,
(log((528030−df+0.5)/(df+0.5))∗((term_tf.tf∗(1.2+1)/
(term_tf.tf+1.2∗(1−0.75+0.75∗(len/188.33)))))) AS

subscore
/∗ Calculate BM25 components ∗/
FROM (SELECT termid, docid, count as tf FROM qterms) AS

term_tf
JOIN (SELECT docid FROM qterms

GROUP BY docid HAVING COUNT(distinct termid) = 3)
AS cdocs ON term_tf.docid = cdocs.docid

JOIN docs ON term_tf.docid = docs.id
JOIN dict ON term_tf.termid = dict.termid)

/∗ Aggregate over the topic terms ∗/
SELECT scores.collection_id , score

FROM (SELECT collection_id, SUM(subscore) AS score
FROM subscores
GROUP BY collection_id) AS scores
JOIN docs ON scores. collection_id=docs.collection_id

ORDER BY score DESC;
Listing 1: Conjunctive BM25

3 OSIRRC EXPERIENCE
Overall, we look back at an excellent learning experience tak-
ing part in the OSIRRC challenge. The setup using Docker
containers worked out very well during coding, by multiple
people on different machines. Automated builds on Docker
Hub and the integration with Zenodo complete a fully repli-
cable experimental setup.

The standardised API for running evaluations provided by
the ‘jig’ made it easy to learn from other groups; and mixing
version management using git (multiple branches) with build-
ing (locally) Docker containers with different tags allowed
progress in parallel when implementing different extensions
of the initial code (in our case, including disjunctive query
processing and adding Core18).

Recording the evaluation outcomes at release time let us
catch a bug that would have been easily overlooked without
such a setup - after including Core18, a minor bug introduced
in the code to parse topic files lead to slightly different scores
on Robust04, that we could easily detect and fix (one topic

48

The OldDog Docker Image for OSIRRC at SIGIR 2019 OSIRRC 2019, July 25, 2019, Paris, France

was missing) thanks to the structured approach of recording
progress.4

4 INTERACT EXAMPLES
Let us conclude the paper by discussing a few advantages
of database-backed IR experiments. Using the interact hook,
it is possible to issue SQL queries directly to the database.
This is useful if one wants to try different kinds of ranking
functions, or just to investigate the content of the database.
We show some examples of queries on the Robust04 test
collection.

The three most occurring terms are easily extracted from
the dict table:

SELECT ∗ FROM dict ORDER BY df DESC LIMIT 3;
+--------+-------+--------+
| termid | term | df |
+========+=======+========+
541834	from	355901
563475	ha	320097
894136	which	302365
+--------+-------+--------+

As expected, the term distribution is skewed with a very
long tail; consider for example the number of distinct terms
that occur only once:

SELECT COUNT(∗) AS terms FROM dict WHERE df = 1;
+--------+
| terms |
+========+
| 516956 |
+--------+

Apart from applying a brief static stopword list to all pre-
processing (defined in StandardAnalyzer.STOP_WORDS_SET),
Anserini ‘stops’ the query expansions in its RM3 module by
filtering on document frequency, thresholded at 10% of the
number of documents in the collection.

Having such a collection-dependent stoplist would be an
interesting option in the initial run as well, so let us use the in-
teractive mode to investigate the effect on query effectiveness
of applying this df filter to the initial run.

We can easily evaluate the effect of removing the terms with
high document frequency, e.g. by modifying the dictionary
table as follows:

ALTER TABLE dict RENAME TO odict;
CREATE table dict AS
SELECT ∗ FROM odict WHERE df <=

(SELECT 0.1 ∗ COUNT(∗) FROM docs);

4We may also conclude that a unified topic format for all TREC col-
lections would be a useful improvement to avoid errors in experiments
carried out on these test collections.

We find the effectiveness scores shown in table 5 for dis-
junctive BM25. Performance drops for both MAP and early
precision, suggesting that filtering query term presence based
on document count is not a good idea, and should be lim-
ited to pseudo relevance feedback (not yet implemented in
OldDog).

Table 5: Effectiveness scores after high df term removal

Robust04 Core18
MAP P@30 MAP P@30

Disjunctive BM25 0.2285 0.2727 0.1907 0.2693

A natural next step is to include the ‘qrel’ files in the
database, to explore more easily the relevant documents that
are (not) retrieved by specific test queries.

5 CONCLUSION
We conclude that we could successfully apply the methods
from [2], and have learned that conjunctive query processing
for BM25 degrades retrieval effectiveness more than we ex-
pected a priori. The Docker image produced for the workshop
is a perfect starting point for exploration of IR on relational
databases, where we build on standard pre-processing and
test collection code in the Anserini project. Of course, we
should extend the retrieval model beyond plain BM25 to
obtain more interesting results from an IR perspective. Inter-
active querying the database representation of the collection,
especially after including relevance assessments, seems like a
promising avenue to pursue. Finally we found that the ‘jig’
setup not only allows for easy replication of the software, it
serves as a tool for supporting continuous integration.

ACKNOWLEDGMENTS
This work is part of the research program Commit2Data
with project number 628.011.001 (SQIREL-GRAPHS), which
is (partly) financed by the Netherlands Organisation for
Scientific Research (NWO).

We also want to thank Ryan Clancy and Jimmy Lin for
the excellent support with the ‘jig’ framework.

REFERENCES
[1] Peter Boncz. 2002. Monet: A next-generation DBMS kernel for

query-intensive applications. Universiteit van Amsterdam.
[2] Hannes Mühleisen, Thaer Samar, Jimmy Lin, and Arjen De Vries.

2014. Old dogs are great at new tricks: Column stores for IR
prototyping. In Proceedings of the 37th international ACM SIGIR
conference on Research & development in information retrieval.
ACM, 863–866.

[3] Stephen E Robertson and Steve Walker. 1994. Some simple effective
approximations to the 2-poisson model for probabilistic weighted
retrieval. In Proceedings of the 17th international ACM SIGIR
conference on Research & development in information retrieval.
Springer, 232–241.

[4] Peilin Yang, Hui Fang, and Jimmy Lin. 2017. Anserini: Enabling
the use of Lucene for information retrieval research. In Proceedings
of the 40th International ACM SIGIR Conference on Research
and Development in Information Retrieval. ACM, 1253–1256.

49

	Abstract
	1 Overview
	2 Technical Details
	2.1 Schema
	2.2 Retrieval Model

	3 OSIRRC Experience
	4 Interact examples
	5 Conclusion
	Acknowledgments
	References

