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ABSTRACT
Performant Indexes and Search for Academia (PISA) is an experimen-
tal search engine that focuses on efficient implementations of state-
of-the-art representations and algorithms for text retrieval. In this
work, we outline our effort in creating a replicable search run from
PISA for the 2019 Open Source Information Retrieval Replicability
Challenge, which encourages the information retrieval community
to produce replicable systems through the use of a containerized,
Docker-based infrastructure. We also discuss the origins, current
functionality, and future direction and challenges for the PISA sys-
tem.
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1 INTRODUCTION
Reproducibility, replicability, and generalizability have become in-
creasingly important within the Information Retrieval (IR) commu-
nity. For example, weak baselines [3, 18] are often used as compari-
son points against newly proposed systems, resulting in what often
appear to be large improvements. One possible reason that weak
baselines are used is that they are usually simple and well estab-
lished, making it easy to reproduce or replicate them. Indeed, repli-
cating experimental runs is not a trivial task; minor changes in soft-
ware, datasets, and even hardware can result in significant changes
to experimental runs [10]. To this end, the 2019 Open Source Infor-
mation Retrieval Replicability Challenge (OSIRRC) brings together
academic groups with the aim of defining a reusable framework for
easily running IR experiments with a particular focus on replica-
bility, where a different team (to those who proposed the system)
uses the original experimental artifacts to replicate the given result.
In an attempt to improve replicability, the OSIRRC workshop pro-
poses to package and deploy various IR systems within a Docker
container ,1 which enables low-effort replication by reducing many
experimental confounders.

The goal of this paper is to give an overview of the PISA system
and to outline the process of building replicable runs from PISA
with Docker. We outline the particulars of our submitted runs, and

Copyright© 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0). OSIRRC 2019 co-located with SIGIR
2019, 25 July 2019, Paris, France.
1https://www.docker.com/

discuss where PISA is suited for use in IR experimentation. The
remainder of this paper is structured as follows. In Section 2 we
describe some of the core functionality that makes PISA the state-
of-the-art for efficient search. Section 3 outlines the particular runs
that were deployed for the workshop, and shows some reference
experiments across a variety of collections. In Section 4, we briefly
outline the future of the PISA system. Finally, we conclude this
work in Section 5.

2 THE PISA ENGINE
PISA2 is an open source library implementing text indexing and
search, primarily targeted for use in an academic setting. PISA im-
plements a range of state-of-the-art indexing and search algorithms,
making it useful for researchers to easily experiment with new tech-
nologies, especially those concerned with efficiency. Nevertheless,
we strive for much more than just an efficient implementation.
With clean and extensible design and API, PISA provides a general
framework that can be employed for miscellaneous research tasks,
such as parsing, ranking, sharding, index compression, document
reordering and query processing, to name a few.

PISA started off as a fork repository of the ds2i library3 by Otta-
viano et al., which was used for prior research on efficient index
representations [26, 27]. Since then, PISA has gone through sub-
stantial changes, and now considerably extends the original library.
PISA is still being actively developed, integrating new features and
improving its design and implementation at regular intervals.

2.1 Design Overview
PISA is designed to be efficient, extensible, and easy to use. We now
briefly outline some of the design aspects of PISA.

Modern Implementation. The PISA engine itself is built using
C++17, making use of many new features in the C++ standard.
This allows us to ensure the implementations are both efficient and
understandable, as some of the newest language features can make
for cleaner code and APIs. We aim to adhere to best design practices,
such as RAII (Resource Acquisition Is Initialization), C++ Core
Guidelines4 (aided by Guidelines Support Library5), and strongly-
typed aliases, all of which result in safer and cleaner code without
sacrificing runtime performance.

2https://https://github.com/pisa-engine/pisa
3https://github.com/ot/ds2i
4https://github.com/isocpp/CppCoreGuidelines
5https://github.com/Microsoft/GSL
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Performance. One of the biggest advantages of C++ is its perfor-
mance. Control over data memory layout allows us to implement
and store efficient data structures with little to no runtime overhead.
Furthermore, we make use of low level optimizations, such as CPU
intrinsics, branch prediction hinting, and SIMD instructions, which
are especially important for efficiently encoding and decoding post-
ings lists. Memory mapped files provide fast and easy access to data
structures persisted on disk. We also avoid unnecessary indirection
of runtime polymorphism in performance-sensitive code in favor of
the static polymorphism of C++ templates and metaprogramming.
Our performance is also much more predictable than when using
languages with garbage collection. Finally, we suffer no runtime
overhead as is the case with VM-based or interpreted languages.

Extensibility. Another important design aspect of PISA promotes
extensibility. For example, interfaces are exposed which allow for
new components to be plugged in easily, such as different parsers,
stemmers, and compression codecs. This is achieved through heavy
use of generic programming, similar to that provided by the C++
Standard Template Library. For example, an encoding schema is as
much a parameter of an index as a custom allocator is a parameter
of std::vector. By decoupling different parts of the framework,
we provide an easy way of extending the library both in future
iterations of the project, as well as by users of the library.

2.2 Feature Overview
In this section, we take a short tour of several important features
of our system. We briefly discuss the indexing pipeline, document
reordering, scoring, and implemented retrieval methods.

Parsing Collection. The objective of parsing is to represent a
given collection as a forward index, where each term is assigned a
unique numerical ID, and each document consists of a list of such
identifiers. This is a non-trivial task that involves several steps that
can be critical to retrieval performance.

First, the document content must be accessed by parsing a certain
data exchange format, such asWARC, JSON, or XML. The document
itself is typically represented byHTML, XML, or a custom annotated
format, which must be parsed to retrieve the underlying text. The
text must be then tokenized, and the resulting words are typically
stemmed before indexing.

PISA supports a selection of file and content parsers. The parsing
tool allows input formats of many standard IR collections, such as
ClueWeb096, ClueWeb127, GOV28, Robust049, Washington Post10,
and New York Times.11 We also provide an HTML content parser,
and the Porter2 [31] stemming algorithm for English language.
As discussed in Section 2.1, PISA is designed to allow new com-
ponents, such as parsers or stemmers, to be plugged-in with low
implementation overhead.

As part of a forward index, we also encode a term lexicon. This is
simply a mapping between strings and numerical IDs. We represent

6https://lemurproject.org/clueweb09/
7https://lemurproject.org/clueweb12/
8http://ir.dcs.gla.ac.uk/test_collections/gov2-summary.htm
9https://trec.nist.gov/data/robust/04.guidelines.html
10https://trec.nist.gov/data/wapost/
11https://catalog.ldc.upenn.edu/LDC2008T19

it as a payload vector. The structure is divided into two memory ar-
eas: the first one is an array of integers representing payload offsets,
while the other stores the payloads (strings). This representation
allows us to quickly retrieve a word at a given position—which
determines its ID—directly from disk using memory mapping. We
achieve string lookups by assigning term IDs in lexicographical
order and performing binary search. Note that reassigning term
IDs requires little overhead, as it is applied directly when a number
of small index batches are merged together. This design decision
enables us to provide a set of command line tools to quickly access
index data without unnecessary index loading overhead. Docu-
ment titles (such as TREC IDs) are stored using the same structure
but without sorting them first, as the order of the documents is
established via an index reordering stage as described below.

The entire parsing process is performed in parallel when ex-
ecuted on a multi-core architecture. The forward index can be
created under tight memory constraints by dividing the corpus and
processing it in batches, and then merging the resulting forward
indexes at the end. Currently, PISA only supports merging forward
indexes together prior to generating the canonical inverted index.
However, future work will aim to allow index updates through
efficient inverted index merging operations.

Indexing. Once the parsing phase is complete, the forward index
containing a collection can be used to build an inverted index in a
process called inverting. The product of this phase is an inverted
index in the canonical format. This representation is very similar
to the forward index, but in reverse: it is a collection of terms,
each a containing a list of document IDs. The canonical representa-
tion is stored in an uncompressed and universally readable format,
which simply uses binary sequences to represent lists. There are
a few advantages of storing the canonical representation. Firstly,
it allows various transformations, such as document reordering
or index pruning, to be performed on the index before storing it
in its final compressed form. Secondly, it allows for different final
representations to be built rapidly, such as indexes that use different
compression algorithms. Thirdly, it allows the PISA system to be
used to create an inverted index without requiring the PISA system
to be used beyond this point, making it easy for experimenters to
import the canonical index into their own IR system.

Document Reordering. Document reordering corresponds to re-
assigning the document identifiers within the inverted index [4]. It
generally aims to minimize the cost of representing the inverted in-
dex with respect to storage consumption. However, reordering can
also be used to minimize other cost functions, such as query process-
ing speed [41]. Interestingly, optimizing for space consumption has
been empirically shown to speed up query processing [14, 15, 24],
making document reordering an attractive step during indexing.
In theory, index reordering can take place either on an existing
inverted index, or before the inverted index is constructed. PISA
opts to use the canonical index as both input and output for the doc-
ument reordering step, as this allows a generic reordering scheme
to be used which can be easily extended to various reordering tech-
niques, and allows the reordering functionality to be used without
requiring further use of PISA.

Many approaches for document reordering exist, including ran-
dom ordering, reordering by URL [33], MinHash ordering [6, 9],
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Figure 1: Index building pipeline in PISA. A collection is first parsed and encoded in a forward index. Subsequently, it is inverted and
stored in the canonical inverted index format. This can be used to efficiently reorder documents. Eventually, a compressed representation is
produced, which will be used at query time. Additional data might be extracted, depending on the algorithms used. The simplicity of the
inverted index format (uncompressed) makes it easy to convert it to any given format used by another framework.

and recursive graph bisection [13]. PISA supports efficient index
reordering for all of the above techniques [21].

Index Compression. Given the extremely large collections in-
dexed by current search engines, even a single node of a large
search cluster typically contains many billions of integers in its
index structure. In particular, compression of posting lists is of
utmost importance, as they account for much of the data size and
access costs. Compressing an inverted index introduces a twofold
advantage over a non-compressed representation: it reduces the
size of the index, and it allows us to better exploit the memory
hierarchy, which consequently speeds up query processing.

Compression allows the space requirements of indexes to be sub-
stantially decreased without loss of information. The simple and
extensible design of PISA allows for new compression approaches
to be plugged in easily. As such, a range of state-of-the-art com-
pression schemes are currently supported, including variable byte
encoders (VarIntGB [12], VarInt-G8IU [34], MaskedVByte [30],
and StreamVByte [17]), word-aligned encoders (Simple8b [2], Sim-
ple16 [43], QMX [35, 37], and SIMD-BP128 [16]), monotonic en-
coders (Interpolative [25], EF [40], and PEF [27]), and frame-of-
reference encoders (Opt-PFD [42]).

Oftentimes, the choice of encoding depends on both the time
and space constraints, as compression schemes usually trade off
space efficiency for either encoding or decoding performance, or
both. We refer the reader to [24] for more details.

Scoring. Currently, BM25 [32] is used as the weighting model for
ranked retrieval. BM25 is a simple yet effective ranker for process-
ing bag-of-words queries, and promotes effective dynamic prun-
ing [28]. Given a document d and a query q, we use the following
formulation of BM25:

BM25(d,q) =
∑
t ∈q

IDF(t) · TF(d, t), (1)

IDF(t) = log
(
N − ft + 0.5

ft + 0.5

)
, (2)

TF(d, t) =
fd,t · (k1 + 1)

fd,t + k1 · (1 − b + b · ld/lavg)
, (3)

where N is the number of documents in the collection, ft is the
document frequency of term t , fd,t is the frequency of t in d , ld is
the length of document d , and lavg is the average document length.
We set parameters k1 = 0.9 and b = 0.4, as described by Trotman
et al. [36]. For a more exhaustive examination of BM25 variants,
we refer the reader to the work by Trotman et al. [38].

Search. Because PISA supports document-ordered index organiza-
tion, both Boolean and scored conjunctions or disjunctions can be
evaluated, exploiting either a Document-at-a-Time or a Term-at-a-
Time index traversal strategy.

Furthermore, PISA supports a range of state-of-the-art dynamic
pruning algorithms such as MaxScore [39] and WAND [5], and
their Block-Max counterparts, Block-MaxMaxScore (BMM) [7] and
Block-Max WAND (BMW) [14].

In order to facilitate these dynamic pruning algorithms, an aux-
iliary index metadata structure must be built, which stores the re-
quired upper-bound score information to enable efficient dynamic
pruning. It can be built per postings list (for algorithms likeWAND
and MaxScore), or for each fixed-sized block (for the Block-Max
variants). In addition, variable-sized blocks can be built (in lieu of
fixed-sized blocks) to support the variable-block family of Block-
Max algorithms listed above, such as Variable Block-MaxWAND
(VBMW) [22, 23]. Ranked conjunctions are also supported using
the Ranked AND or (Variable) Block-Max Ranked AND (BMA) [14]
algorithms.

Indeed, the logical blocks stored in the index metadata are de-
coupled from the compressed blocks inside the inverted index. The
advantage of storing the metadata independently from the inverted
index is that the metadata depends only on the canonical index,
needs to be computed only once, and does not change if the under-
lying compression codec is changed.

PISA provides two ways to experiment with query retrieval. The
first one performs end-to-end search for a given list of queries, and
prints out the results in the TREC format. It can also be used to
evaluate query speed, as was done for this workshop. Additionally,
we provide a more granular approach, which focuses on comparing
different retrieval methods directly. Here, we only report the time
to fetch posting lists and perform search, excluding lexicon lookups
and printing results to the standard output or a file. We encourage
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Robust04 Core17 Core18 Gov2 ClueWeb09 ClueWeb12

16.5 15 13.5 17 22.5 25.5

Table 1: Values of λ for the given collections using the Gumbo
parser, Porter2 stemmer, and reordering with recursive graph bi-
section. These values will yield an average block size of 40 ± 0.5
for the variable block metadata.

the interested reader to refer to PISA’s documentation for more
details about running experiments.12

3 REPRODUCIBLE EXPERIMENTATION
In the spirit of OSIRRC, we utilize the software and metrics made
available by the organizers, including the jig13 and the trec_eval14
tool. In addition, we have decided to provide some further informa-
tion and reference experiments that we consider important.

3.1 Default Runs
Given the many possibilities for the various components of the
PISA system, we now outline the default system configuration for
the OSIRRC workshop. Further information can be found in the
documentation of our OSIRRC system.15 Note that the block size for
the variable-block indexes depends on a parameter λ [22]. In order
to get the desired average block size for the variable blocks, the
value of λ was searched for offline, and differs for each collection.
For convenience, we tabulate the values of λ in Table 1. Note that
such values of λ only apply when using the same parsing, stemmer,
and reordering as listed below.

• Parsing: Gumbo16 with Porter2 stemming; no stopwords
removed. We discard the content of any document with over
1,000 HTML parsing errors.

• Reordering: Recursive graph bisection. We optimize the
objective function using the posting lists of lengths at least
4,096.

• Compression: SIMD-BP128 with a posting list block size
of 128.

• Scoring: BM25 with k1 = 0.9 and b = 0.4
• Index Metadata: Variable blocks with a mean block size of
40 ± 0.5.

• Index Traversal: Variable BlockMax WAND.

3.2 Experimental Setup
Now, we briefly outline the experimental setup and the resources
used for our experimentation.

Datasets. We performed our experiments on the following text
collections:

• Robust04 consists of newswire articles from a variety of
sources from the late 1980’s through to the mid 1990’s.

12https://pisa.readthedocs.io/en/latest/
13https://github.com/osirrc/jig/
14https://github.com/usnistgov/trec_eval
15https://github.com/osirrc/pisa-docker
16https://github.com/google/gumbo-parser

Documents Terms Postings

Robust04 528,155 587,561 107,481,358
Core17 1,855,660 1,048,294 448,998,765
Core18 595,037 621,941 191,042,917
Gov2 25,205,178 32,407,061 5,264,576,636
ClueWeb09 50,220,110 87,896,391 14,996,638,171
ClueWeb12 52,343,021 133,248,235 14,173,094,439

Table 2: Quantitative properties of our indexes.

Collection Track Topics # Topics

Robust04 Robust ’04 301–450, 601–700 250
Core17 Common Core ’17 301–450, 601–700† 250
Core18 Common Core ’18 321–825‡ 50
Gov2 Terabyte ’04-’06 701–850 150
ClueWeb09 Web ’09-’12 51–200 150
ClueWeb12 Web ’13-’14 201–300 100

Table 3:Query topics used in the experiments. Note that theCore17
topics are the same as the Robust04 topics, but some were modified
to reflect temporal changes†, andCore18 used 25 topics fromCore17
and 25 new topics.‡

• Core17 corresponds to the New York Times news collection,
which contains news articles between 1987 and 2007.

• Core18 is the TRECWashington Post Corpus, which consists
of news articles and blog posts from January 2012 through
August 2017.

• Gov2 is the TREC 2004 Terabyte Track test collection con-
sisting of around 25million .gov sites crawled in early 2004;
the documents are truncated to 256 kB.

• ClueWeb09 is the ClueWeb 2009 Category B collection con-
sisting of around 50 million English web pages crawled be-
tween January and February, 2009.

• ClueWeb12 is the ClueWeb 2012 Category B-13 collection,
which contains around 52million English web pages crawled
between February and May, 2012.

Some quantitative properties of these collections are summarized
in Table 2. The first three are relatively small, and contain newswire
data. The remaining corpora are significantly larger, containing
samples of the Web. Thus, the latter two should be more indicative
of any differences in query efficiency. In fact, each of these can
be thought of as representing a single shard in a large distributed
search system.

Test queries. Each given collection contains a set of test queries
from various TREC tracks which we use to validate the effectiveness
of our system. These queries are described in Table 3.

Testing details. All experiments were conducted on a machine
with two Intel Xeon E5-2667 v2 CPUs, with a total of 32 cores
clocked at 3.30 GHz with 256 GiB RAM running Linux 4.15.0. Fur-
thermore, the experiments presented here are deployed within the
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Docker framework. Although we believe that this may cause a
slight reduction in the efficiency of the presented algorithms, we
preserve this setup in the spirit of the workshop and comparabil-
ity. We leave further investigation of potential overhead of Docker
containers as future work.

A note on ClueWeb12. In preliminary experiments, we found
that the memory consumption for reordering the ClueWeb12 index
was high, which slowed down the indexing process considerably.
Thus, we opted to skip reordering the ClueWeb12 collection in the
following experiments, and our results are reported on an index
that uses the default (crawl) order. Since index order impacts the
value of λ, we use λ = 26, which results in variable block metadata
with a mean block size in the desired range of 40 ± 0.5. Note that
this value differs from the one reported in Table 1, which is correct
if reordering is applied based on Recursive Graph Bisection (see
Section 3.1).

3.3 Results and Discussion
We now present our reference experiments, which involve end-to-
end processing of each given collection.

Indexing and Compression. The HTML content of each docu-
ment was extracted with the Gumbo parser. We then extracted
three kinds of tokens: alphanumeric strings, acronyms, and pos-
sessives, which were then stemmed using the Porter2 algorithm.
We reordered documents using the recursive graph bisection al-
gorithm which is known to improve both compression and query
performance [13, 21, 24]. Thenwe compressed the index with SIMD-
BP128 encoding, which has been proven to exhibit one of the best
space-speed trade offs [24].

Table 4 summarizes indexing times broken down into individual
phases, while Table 5 shows compressed inverted index sizes as
well as average numbers of bits used to encode document gaps and
frequencies. The entire building process was executed with 32 cores
available; however, at the time of writing, only some parts of the
pipeline support parallel execution. We also note that the index
reordering step is usually the most expensive step in our indexing
pipeline. If a fast indexing time is of high importance, this step can
be omitted, as we did for ClueWeb12. Alternatively, less expensive
reordering operations can be used. However, skipping the index
reordering stage (or using a less effective reordering technique)
will result in a larger inverted index and less efficient query-time
performance.

System Effectiveness. Next, we outline the effectiveness of the
PISA system. In particular, we are processing rank-safe, disjunctive,
top-k queries to depth k = 1,000. Since processing is rank-safe, all of
the disjunctive index traversal algorithms result in the same top-k
set. Table 6 reports the effectiveness for Mean Average Precision
(MAP), Precision at rank 30 (P@30), and Normalized Discounted
Cumulative Gain at rank 20 (NDCG@20).

Query Efficiency. To measure the efficiency of query processing,
we measure how long it takes to process the entire query log for
each collection. We use 32 threads to concurrently retrieve the
top-k documents for all queries using either theMaxScore or the
VBMW algorithm, with a single thread processing a single query at

a time. MaxScore has been shown to outperform other algorithms
for large values of k on the Gov2 and ClueWeb09 collections [24].
Table 7 shows the results. While MaxScore usually outperforms
VBMW, we did not optimize the block size of the index metadata,
so comparisons should be made with caution. Indeed, VBMW is
likely to outperform MaxScore with optimized blocks and small
values of k . For a more detailed analysis of per-query latency within
PISA, we refer the interested reader to the recent work by Mallia
et al. [24].

3.4 Discussion
PISA is built for performance. We are able to rapidly process each
query set thanks to efficient document retrieval algorithms and
extremely fast compression. On the other hand, as we have shown,
SIMD-BP128 encoding also exhibits a reasonable compression ratio,
which allows us to store the index in main memory. We encour-
age the reader to study the work by Mallia et al. [24] for more
information about query efficiency under different retrieval and
compression methods.

At the present moment, our query retrieval is tailored towards
fast candidate selection, as we lack any complex ranking functional-
ity, such as a learning-to-rank document reranking stage. However,
the effectiveness we obtain using BM25 is consistent with other
results found in the literature [19].

Furthermore, we provide a generic index building pipeline, which
can be easily customized to one’s needs. We unload most of the com-
putationally intensive operations onto the initial stages of indexing
to speed up experiments with many configurations; in particular, to
deliver additional indexes with different integer encodings quickly
and easily.

As per the workshop rules, we deliver a Docker image, which
reproduces the presented results. Note that the initial version of the
image was derived from an image with a precompiled distribution
of PISA. However, we quickly discovered this solution was not
portable. The source of our issues was compiling the code with
AVX2 support. Once compiled, the binaries could not be executed
on a machine not supporting AVX2. One solution could be to cross-
compile and provide different versions of the image. However, we
chose to simply distribute the source code to be compiled at the
initial stage of an experimental run.

4 FUTURE PLANS
Despite its clear strengths, PISA is still a relatively young project,
aspiring to become a more widely used tool for IR experimentation.
We recognize that many relevant features can be still developed to
further enrich the framework. We have every intention of pursuing
these in the nearest future.

An obvious direction is to continue our work on query perfor-
mance. For instance, we intend to support precomputing quantized
partial scores in order to further improve candidate selection perfor-
mance [11]. We are also considering implementing other traversal
techniques, including known approaches, such as Score-at-a-Time
methods [1, 20], as well as novel techniques.

The next step would be to implement more complex document
rankings based on learning-to-rank. Many of the data structures
required for feature extraction are indeed already in place. We
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Parse Invert Reorder Compress Metadata Total

Robust04 0:06:22 0:00:08 0:01:21 0:00:07 0:00:44 0:08:42
Core17 0:11:41 0:00:42 0:07:18 0:00:14 0:02:59 0:22:54
Core18 0:10:42 0:00:14 0:02:11 0:00:07 0:01:11 0:14:25
Gov2 1:37:52 1:00:12 2:28:04 0:06:42 0:37:04 5:49:52
ClueWeb09 4:08:08 3:11:50 10:28:30 0:32:42 2:01:01 20:22:12
ClueWeb12 5:09:58 3:27:51 — 0:34:55 2:11:46 11:24:30

Table 4: Indexing times broken down into five phases: parsing, inverting, reordering, compression, and index metadata construction. Times
are reported in the following format: hours:minutes:seconds.

Index size (MiB) Docs (bpi) Freqs (bpi)

Robust04 136.88 7.48 3.21
Core17 545.90 7.07 3.13
Core18 238.33 7.24 3.22
Gov2 5,410.89 5.59 3.03
ClueWeb09 20,715.29 7.96 3.63
ClueWeb12 23,206.16 9.22 4.52

Table 5: Total index size and average number of bits per integer
while encoding documents and frequencies within posting lists.

Topics MAP P@30 NDCG@20

Robust04 All 0.2534 0.3120 0.4221

Core17 All 0.2078 0.4260 0.3898

Core18 All 0.2384 0.3500 0.3927

Gov2
701-750 0.2638 0.4776 0.4070
751-800 0.3305 0.5487 0.5073
801-850 0.2950 0.4680 0.4925

ClueWeb09

51-100 0.1009 0.2521 0.1509
101-150 0.1093 0.2507 0.2177
151-200 0.1054 0.2100 0.1311

ClueWeb12
201-250 0.0449 0.1940 0.1529
251-300 0.0217 0.1240 0.1484

Table 6: The effectiveness of the submitted run for each respective
corpus.

would also like to enhance our query retrieval pipeline with ranking
cascades that are capable of applying learned models [8].

Other planned features include query expansion, content ex-
traction (template detection, boilerplate removal), sharding, and
distributed indexes. Work on some of these has in fact already
started.

5 CONCLUSION
PISA is a relative newcomer on the scene of open source IR software,
yet it has already proven its many benefits, including a flexible
design which is specifically tailored for use in research. Indeed, PISA

k = 10 k = 1,000

Collection MaxScore VBMW MaxScore VBMW

Robust04 7 7 21 26
Core17 10 8 16 15
Core18 5 4 12 14
Gov2 115 99 215 200
ClueWeb09 225 138 285 424
ClueWeb12 220 415 248 842

Table 7: Time taken to process the entire query log for each collec-
tion. Time is reported in milliseconds.

has been successfully used in several recent research papers [21,
23, 24, 29].

One of the indisputable advantages of PISA is its extremely fast
query execution, achieved by careful optimization and the zero-
cost abstractions of C++. Furthermore, it supports a multitude of
state-of-the-art compression and query processing techniques that
can be used interchangeably.

Although there are still several shortcomings, these are mostly
due to the project’s young age, and we hope to address these very
soon. Furthermore, we plan to continue enhancing the system with
novel solutions. Indeed, a good amount of time has been spent on
PISA to provide a high quality experimental IR framework, not
only in terms of performance, but also from a software engineering
point of view.We usemodern technologies and libraries, continuous
integration, and test suites to ensure the quality of our code, and
the correctness of our implementations.

We encourage any interested researchers to get involved with
the PISA project.
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