
Learning Embeddings for Product Size Recommendations
Kallirroi Dogani∗

ASOS.com
London, UK

kallirroi.dogani@asos.com

Matteo Tomassetti∗
ASOS.com
London, UK

matteo.tomassetti@asos.com

Sofie De Cnudde
ASOS.com
London, UK

sofiede.cnudde@asos.com

Saúl Vargas
ASOS.com
London, UK

saul.vargassandoval@asos.com

Ben Chamberlain
ASOS.com
London, UK

ben.chamberlain@asos.com

ABSTRACT
Despite significant recent growth in online fashion retail, choosing 
product sizes remains a major problem for customers. We tackle 
the problem of size recommendation in fashion e-commerce with 
the goal of improving customer experience and reducing financial 
and environmental costs from returned items. We propose a novel 
size recommendation system that learns a latent space for product 
sizes using only past purchases and brand information. Key to the 
success of our model is the application of transfer learning from a 
brand to a product level. We develop a neural collaborative filtering 
model that is applicable to every product, without requiring specific 
customer or product measurements or explicit customer feedback 
on the purchased sizes, which are not available for most customers 
or products. Offline experiments using data from a major retailer 
show improvements of between 4-40 % over the matrix factorisation 
baseline.
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1 INTRODUCTION
Providing customers with accurate size guidance is one of the main 
challenges in the online fashion industry. Since customers can not 
try garments before purchasing them, e-commerce platforms often 
adopt free return policies to motivate customers to purchase items 
regardless of concerns about size. This effectively turns homes into 
fitting rooms and encourages customers to order multiple sizes of 
the same product and return the items that do not fit. According 
to a recent estimate [2], 15-40 % of online purchases are returned,
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with an even higher average return rate of 30-40 % for fashion
products. It is desirable to minimise returns as the process incurs
high operational and environmental costs.

The size problem can not be solved by simply mapping between
different sizing schemes such as mapping a EUR shoe size 45 to a
UK size 11. There are two reasons for this: (1) inconsistent sizes, for
example a men’s US size 8 shoe is 10 inches for a Nike trainer [3]
while an Adidas trainer measures 10.2 inches [1], (2) simple sizes
mask the complexity of the underlying products. For instance, a
t-shirt will be sold as small, medium or large, but the size is at
least seven dimensional∗ and there is no standardisation of these
dimensions, even for a given brand.

Personalised size recommendations provide a general solution
to the size and fit problem. However, the development of a size
recommendation system is accompanied by a number of challenges,
which we address in our model. Firstly, physical measurements of
customers and products are generally not available. Secondly, data
indicating that a return was due to incorrect sizing is often missing
or unreliable, as it is optionally collected from customers without
verification. Thirdly, the presence of an additional size variable
makes the data sparser than would be expected in the equivalent
product recommendations problem. Finally, the existence of differ-
ent sizing schemes (e.g. EU, UK, US etc.) introduces heterogeneous
data, which must be compared in some way.

We propose the Product Size Embedding (PSE) model, which
is a neural collaborative filtering approach that learns a latent
representation for all the possible size variations of products and
customers’ sizing preferences using solely purchase data. By doing
so we handle problems with missing physical measurements or
returns reasons. We map all sizes into a common continuous latent
space, which neatly overcomes heterogeneity in sizing schemes and
addresses the inconsistency in sizes that would be hard to address
with a discrete combinatorial representation†. To deal with sparsity,
we first solve the problem at a brand level by accepting the loose
assumption that sizing within the same brand is consistent. Then,
we transfer this knowledge onto a product level, where sizes of
products within the same brand now have separate representations.
Our main contributions are:
• A novel size recommendation system that maps sizes into a
single latent space without requiring customer or product

∗neck circumference, arm circumference, arm length, height, chest circumference,
waist circumference, shoulder width
†such as mapping products to a discrete platonic size scale
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physical measurements or explicit customers’ feedback on
returned items (e.g. too big/small). Our model leads to an im-
provement of between 4-40 % when compared to the matrix
factorisation baseline.
• We show that transferring knowledge learned from a higher
level (brands) leads to improved and generalised solutions
at a lower level (products).
• We introduce a method to filter out multiple personas from
our dataset. Our solution is independent of fixed thresholds
or empirically-tuned hyperparameters.

The rest of the paper is structured as follows: Section 2 presents
previous related work, Section 3 introduces our proposed model
and Section 4 describes how we handle accounts used by multiple
personas. Finally, in Section 5 we discuss our experiments and the
performance of our model.

2 RELATEDWORK
The size recommendation problem has been previously studied in
[4, 8, 13, 18–20]. Specifically, [18] models the size prediction task
as an ordinal regression problem, where the customer and prod-
uct true sizes are learned by taking their differences and feeding
them into a linear model. [19] extends the work of [18] with a
Bayesian logit and probit regression model with ordinal categories.
The posterior distribution over customer and product true sizes
is based on mean-field variational inference with Polya-Gammma
augmentation. The Bayesian approach allows the use of priors for
handling data sparsity and the computation of confidence intervals
for dealing with noisy data. Both [18] and [19] generate ordinal
categorical variables based on explicit customer feedback on re-
turned items (e.g. too small, too big or no return). [8] proposes a
Bayesian model that learns the joint probability of a customer pur-
chasing a given product size and the resulting return status being
either too small, too big or no return. The probability distribution
over sizes is conditioned on the return status and the probability
over return statuses is modeled as the empirical distribution over
the three possible return events along with a Dirichlet prior based
on the counts at the brand and category level. [13] learns a latent
space for customers and products by applying ordinal regression.
A fitness score is computed for each purchase and size ordering is
enforced based on customer’s feedback on the purchased size (i.e.
too small, too big or a good fit). In order to handle class imbalances,
metric learning techniques are applied to transform data into a
space where purchases of the same class are closer and purchases
of different classes are separated by a margin.

There are two additional studies [4, 20] that tackle the size and
fit problem. [4] learns latent product features using Word2Vec [12]
and feeds them into a Gradient Boosting classifier along with ad-
ditional product features (e.g physical measurements, colour, etc.).
However, additional product features are often difficult to obtain
[6]. Finally, [20] extends [4] to the specific case of footwear size rec-
ommendations and also proposes a probabilistic graphical approach
that exploits brand similarities.

In literature covering the size recommendation problem, multiple
approaches have been employed to reduce noise by identifying
multiple personas. The approaches vary from using empirically
determined thresholds on the range of purchased sizes to more

complex statistical models. [4] filters out users where the mean and
standard deviation of the purchased sizes exceeds a category-level
threshold. [18] uses a hierarchical clustering method where clusters
are iteratively merged as long as the standard deviation of the
cluster does not exceed an empirically determined threshold. Each
persona is then treated as a separate customer in the subsequent
prediction problem. An improvement to the latter work is made
in [19], where a persona distribution is drawn from a Dirichlet
distribution. Latent variables related to the specific persona are
then appended to each purchase transaction. Finally, [8] follows
a Gaussian kernel density estimation approach which is further
refined to a Gaussian mixture model. Two assumptions are made
here: (i) the maximum number of personas is fixed at four, and (ii)
the case where only one persona is active is deemed more likely.
Each identified persona is subsequently retained in the dataset.
A similar problem is tackled in literature focused on identifying
active household members in online rental services [5]. Contextual
variables such as day of week or time of day are used to identify
which member is responsible for which actions and which member
is active at a certain point in time.

3 THE PRODUCT SIZE EMBEDDING MODEL
The Product Size Embedding (PSE) model follows a neural collabo-
rative filtering approach to learn embeddings for each product-size
combination. The main advantage of the PSE over related latent
variable models (e.g. [13]) is that it does not rely on noisy and sparse
customer feedback on the returned items (i.e. customers optionally
reporting that the item was too big / small). Instead, only implicit
signals are used; the products that are purchased and the subset
that are returned.

Collaborative filtering [9, 17] uses customer-product interactions
and is based on the assumption that customers buying similar prod-
ucts have similar tastes. This principle naturally translates into the
size and fit domain as "customers with similar body shapes tend
to buy clothes in similar sizes". Matrix factorisation approaches,
such as the one proposed by Hu et al. [9], have been proposed to
capture the latent taste/preference/style space as reflected by the
interactions between customers and products. Matrix factorisation
decomposes customer-product interaction matrices into low-rank
user and item matrices that represent, respectively, customers and
products as vectors in a latent space that captures preferences and
styles. Our proposed PSE model similarly represents customers and
product sizes in a vector space. However, there are two important
differences between our approach and most matrix factorisation
approaches. Firstly, we learn a latent space at a product size level
instead of at a product level i.e. we have a different vector for every
possible size of a product. Secondly, we adopt an asymmetric frame-
work [15] so that users are not represented explicitly, but as the
aggregate of the product vectors with which they have interacted.
Accordingly, we train different models for each product category
(tops, bottoms or shoes), so all trained embeddings belong to the
same category and the learned latent space represents the same
body part. The asymmetric approach eliminates learning an em-
bedding layer for customers, which greatly reduces the number of
parameters. For example, the symmetric approach for menswear
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Figure 1: The architecture of the Product Size Embedding model, which is trained independently for each product category
(tops, bottoms or shoes) by maximising the dot product between the user vector Vu and the product size vector Vps of a pur-
chased size ps . The softmax is computed for each product over all of its possible sizes (i.e. the purchased size ps and the
non-purchased sizes p¬s ).

shoes requires ∼ 780K product size and ∼ 3M customer parame-
ters, therefore the asymmetric model is approximately five times
smaller. Another advantage of the asymmetric approach is that the
model does not require retraining for new customers since their
representations can be inferred from their purchase history. The
architecture for the PSE model is shown in Figure 1.

We model size recommendation as a multi-class classification
task. Given a user u and a product p, the task is to predict the
customers’ size in that product, p∗s . This differs from standard multi-
class classification as each product is only available in a small subset
of all possible size classes (t-shirts don’t come in shoe sizes etc.).

The input to the model is a set of user purchase histories, Hu .
For every customer we create a sequence of previously purchased
(and not returned) product sizes {ps1,ps2, ...psn }. For a sequence
on length n, the nth product-size is the target and the previous n−1
products are used to construct a customer vector. Each product-size
in the history indexes into an embedding matrix using a neural
network embedding layer to produce a product-size vector Vps ∈
Rk . User vectors Vu ∈ Rk are constructed by taking the first n −
1 product-sizes in the Hu , retrieving the associated product-size
vectors and taking the mean

Vu =
1

n − 1

∑
ps ∈Hu\n

Vps , (1)

whereHu\n is the history minus the target size-product. In practice,
to increase the amount of training data, for each Hu we will create

user and product vectors from all contiguous subsequences of length
k where the first (k-1) elements form a customer vector and the
kth is the target product-size. The similarity τ between customers
and product-sizes is given by the dot product between the user and
product vectors

τu,ps = VTuVps , (2)

and product size probabilities are computed as the softmax of the
similarity scores normalised over all sizes of the given product

f (τ )u,pi = P(s = i |u,p) =
eτu,pi∑
j e

τu,pj
, (3)

where the index j runs over all possible sizes of product p. To
evaluate this softmax we require the product-size vectors for ps∀s ,
which are stored in a key-value stored keyed on the product id.

The PSE is trained in Keras using the Adam optimiser [10] with
parameters α = 0.001, b1 = 0.9, b2 = 0.999 and the categorical
cross-entropy loss

L = −
∑
D

∑
j
tj log(f (τ )u,pj ) , tj =

{
1 if j = s
0 otherwise

(4)

where D is the extended set of purchase histories and s is the
purchased size.

3.1 Transfer from Brands to Products
As we model product-size combinations instead of just products,
our product-size interaction matrix is roughly ten times sparser (e.g.
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Figure 2: The size embeddings learned at a brand level are used to initialise the size embeddings at a product level.

from∼ 3×10−4 to∼ 4×10−5 for menswear shoes) than the data used
for product recommendations. As a result, learning representations
for all possible product-size combinations is challenging. Transfer
learning is a popular technique to generalise from small datasets to
larger ones [14]. We assume that each brand has consistent sizes
and we learn latent representations Vbs for every combination of
brand b = {p} and size s . Then, we transfer this knowledge to a
product level by initialising

Vps = Vbs ,∀ps ∈ bs . (5)

As shown in Figure 2, we train the model at a brand size level,
then we initialise the product size vectors Vps with the trained
brand size vectors Vbs and finally we train the model at a product
size level to fine tune the product size vectors. Applying the pre-
trained brand size vectors at a product level improves generalisation,
boosts performance and leads to faster convergence. In Section 5.3,
we demonstrate the improvements transfer learning offers over
random initialisation of latent vectors.

4 DETECTING MULTIPLE PERSONAS
A major challenge in the design of recommender systems is identi-
fying accounts that are shared across multiple users. Some services,
such as Netflix [7], solve this problem by creating explicit user
profiles for each persona. In our work, user profiles are not viable
and so we detect multiple personas as a preprocessing step.

To detect multiple personas we employ a Gaussian Mixture
Model (GMM) [11] that predicts the number of individuals us-
ing an account and identifies each persona’s purchases. Our pro-
posed method is independent of assumption-based thresholds or
empirically-tuned hyperparameters. When we detect an account
with multiple personas, we subsequently remove it from both train-
ing and test sets.

Our GMM approach is based on the assumption that the pur-
chases of every persona are centred around a core size. Customers

with at least two purchases and with a size difference‡ larger than
one, are potential candidates for the multiple persona detection pro-
cess. The output of the GMM consists of a mixture of components,
each representing a different persona in the purchase history. Each
component (or persona) is represented by a Gaussian distribution,
whose mean µ corresponds to the persona’s core size.

Since the number of personas λ using an account is unknown, we
employ the silhouette score sλ [16] to find the optimal number of
mixture components λopt (see Algorithm 1). The silhouette score is
a cluster evaluation metric that measures how well each purchased
size is clustered with similar purchased sizes. An sλ ≈ 1 implies
non-overlapping clusters with high density, while sλ = 0 points to
overlapping clusters.

Algorithm 1 Algorithm for multiple persona detection
Input: purchase history Hu
Output: λopt persona
λ← 2
sλ−1 ← 0
sλ = getSilhouetteScore(GMM(Hu , λ))

while sλ > sλ−1 and
λ

min
i, j=1;i,j

|µi − µ j | > 1 do

λ = λ + 1
sλ ← getSilhouetteScore(GMM(Hu , λ))

end while
λopt = λ − 1

The process of identifying multiple personas consists of running
the GMM to detect λ personas within Hu and calculating the sil-
houette score sλ associated with that mixture. The parameter λ
‡We have ordered each sizing scheme from the smallest to the largest size found in our
dataset and defined a set of sizing indexes. For examples, the sizing index for the sizing
scheme CAT ranges from 0 (3XS) to 25 (8XL). When referring to the size difference
between two sizes, we mean their difference when mapped to the sizing index.
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Table 1: Example of the output of the multiple persona de-
tection process for womenswear shoes.

Purchase history Hu Detection

UK3, UK3, UK3.5, UK4, UK4 1 persona
{UK2, UK2}, {UK5, UK5, UK6} 2 personas
{UK2, UK3, UK3, UK3, UK4, UK4}, {UK6, UK6}, {UK9} 3 personas
UK2, UK3, UK4, UK5, UK6, UK6, UK7, UK8, UK9 reseller

Figure 3: Percentage of multiple persona accounts (red line),
reseller accounts (blue line) and no multiple persona ac-
counts (green line) in function of the size difference of the
purchases for menswear bottoms.

is iteratively increased as long as (i) sλ is higher than sλ−1, and
(ii) the core size of each mixture component differs by at least 1
size unit. When the iterative process is finished, λopt is set to λ
and if λopt > 1 that customer is identified as buying for multiple
personas.

While dealing with the multiple persona problem, two additional
issues arise: i) the problem of resellers, and ii) the issue of purchases
in multiple sizing schemes. Resellers are customers who purchase
products with the intention of reselling them, so it is likely that
their purchases cover a wider range of sizes. In that case, a Gaussian
mixture model is not suitable for detecting them, as their purchases
are not centred around a core size, but instead have a uniform distri-
bution. Therefore, prior to performing multiple persona detection,
we eliminate all customers with a uniform purchase history.

To apply the GMM model, we first need to convert all sizes into
a single sizing scheme. Since most existing conversion tables are
incomplete and inaccurate, we have used the data to approximate
size conversions. Specifically, we build a co-purchase matrix per
product category between two sizing schemes and we convert sizes
according to the highest co-purchase frequency. Note that this
conversion is only an approximation for data cleaning purposes
and is not used in the final size prediction model.

Table 1 lists examples of purchase histories that are flagged as
either multiple personas or resellers.

Table 2: Size range for all sizing schemes.

Sizing Scheme Size Range

UK UK2, UK4, ..., UK34
EU EU30, EU32, ..., EU50
CAT 3XS, ..., 8XL
JNS W22in L26in, ..., W44in L34in
WST W22in, ..., W44in
CST Chest 32in, ..., Chest 56in

The evaluation of the detected multiple personas is similar to
evaluating clusters in unsupervised clustering techniques. During
the detection process, we calculate the silhouette score, and thus
have a built-in evaluation metric that guides the clustering. Figure 3
demonstrates that as the size difference of the purchases increases,
the probability of detecting a multiple persona account steadily
increases, but it then flattens out and decreases for very large size
differences, which indicate a higher probability of detecting a re-
seller.

5 EXPERIMENTS AND RESULTS
In this section, we first describe the experimental setup, then detail
the baselines for comparison and finally present our results. Our
experiments are based on data from a major online retailer collected
over one year. We have grouped all products into three categories
(Tops, Bottoms and Shoes), two genders (menswear (MW) and
womenswear (WW)), and six sizing schemes (see Table 2).

The size recommendation problem is solved independently for
each product category-gender combination e.g. menswear-tops.
Table 3 shows example product types that comprise each product
category as well as the supported sizing schemes and high-level
statistics. Products originate from a large and diverse network of
international suppliers, with thousands of new items added weekly
and so in general, physical measurements of products are not avail-
able.

5.1 Experimental Setup
Since we solve the size prediction problem separately for each
product category, the purchase history Hu has been computed
using all previous purchases of customer u from the same product
category (i.e. we do not use past purchases of shoes to predict sizes
for tops). We exclude any returned products from the purchase
history as there is no data specifying whether items are returned
due to poor fit or for other reasons.

Table 4 shows examples of the same purchase history computed
at different levels. In this case, applying transfer learning from
the brand level to the product level means that we initialise the
product size vector id43498_W34inL32in with the brand size vector
Levis_W34inL32in.

We divide the dataset for each product category into a training
and a test set using an 80:20 split.

5.2 Comparison Methods
We compare the performance of the following personalised meth-
ods:
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Table 3: Properties and high level statistics of the product categories. WW and MW refer to womenswear and menswear,
respectively.

Product Category Product Types Sizing Schemes #users #products #brands % MP % Resellers

TopsWW crop tops, hoodies, ... UK, CAT, EU 3.4M 105.6K 800 9.5% 0.3%
BottomsWW jeans, leggings, ... JNS, CAT 1.3M 24.7K 609 4.9% 0.1%
ShoesWW boots, trainers, ... UK, EU 1.2M 17.0K 206 3.0% 0.6%
TopsMW shirts, t-shirts, ... CAT, CST 1.3M 66.5K 430 5.3% 0.9%
BottomsMW jeans, chinos, ... JNS, CAT, WST 840.6K 21.0K 362 3.6% 0.4%
ShoesMW boots, trainers, ... UK 391.5K 12.2K 182 2.3% 1.1%

Table 4: The same purchase history generated at different levels.

Level Applied Purchase History Hu

Brand Level Adidas_L, Levis_W34inL32in
Brand & Product Type Level Adidas_Shorts_L, Levis_Jeans_W34inL32in
Product Level Adidas_Shorts_id3223_L, Levis_Jeans_id43498_W34inL32in

• MCS-SS. This method predicts the user’s most common size
(MCS) given the sizing scheme (SS) of productp. For instance,
ifHu = (id1432_UK8, id1564_UK8, id1055_UK9, id1453_EU36)
is the purchase history of user u, this method predicts UK8
for products available in UK sizes and EU36 for products
available in EU sizes. If there is a tie, MCS-SS predicts the
most recent purchased size.
• ALS. This is a symmetric matrix factorisation model opti-
mized through alternating least squares [9].
• LR. This is a multi-class Logistic Regression classifier that
takes as input the normalised counts of the purchased sizes
and one-hot encoded features for the product type, brand
and sizing scheme.
• PSE-B. Version of the PSE model where the size embeddings
are learned at a brand level.
• PSE-BPT. Version of the PSE model where the size embed-
dings are learned at a brand and product type level.
• PSE. The size embeddings are learned at a product level.
• t-PSE-BPT. The size embeddings are learned at a brand and
product type level and the embedding layer is initialised with
the latent space learned from PSE-B.
• t-PSE. This is our proposed PSE model. The size embeddings
are learned at a product level and the embedding layer is
initialised with the latent space learned from PSE-B.

We cannot compare our model against other size recommen-
dation algorithms recently published as they require extra data
sources that are not always available (i.e. the return reason). Our
model is more generic and could be applied to any fashion dataset.

All PSE experiments have been run with a fixed latent space
dimension k = 10. We have explored the dependency of this param-
eter on our results and found no statistically significant difference
when adopting a higher k (see Fig. 4).

5.3 Results
The results of our experiments are summarised in Table 5. All vari-
ations of the PSE model outperform the baselines. We observe that

Figure 4: PSE-B accuracy as a function of the latent space
dimension, k , for each category. The results are independent
of k when k ≥ 10.

the accuracy increases when the size embeddings are learned at a
brand and product type level (PSE-BPT) as opposed to the brand
level (PSE-B). However, when latent representations are learned
at a product size level (PSE), the accuracy drops for some product
categories. If we consider the case of menswear shoes, the num-
ber of latent vectors we need to train increases from 1.4K (PSE-B)
to 77.9K (PSE), therefore the latent space becomes sparser which
makes the model prone to overfitting (Figure 5). To overcome this
issue, we have used latent representations learned from PSE-B to
initialise the embedding layer in tPSE-BPT and tPSE. The results
show that transfer learning improves generalisation and leads to
more accurate predictions.

Table 7 shows examples where the tPSE model successfully pre-
dicts sizes that are not included in the purchase history, illustrating
the benefits of learning latent size representations.

To better understand how tPSE performs in different scenarios,
we have evaluated the model on purchase histories of different
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Table 5: Accuracy of each tested model for all product categories. The improvement in accuracy for the tPSE model is statisti-
cally significant (**α = 0.01). WW and MW used in the product categories refer to womenswear and menswear, respectively.

Product Category MCS-SS ALS LR PSE-B PSE-BPT PSE tPSE-BPT tPSE

TopsWW 38.917% 60.760% 60.361% 61.175% 61.302% 60.654% 61.294% 62.286%**
BottomsWW 30.129% 56.440% 57.456% 58.287% 58.446% 58.574% 58.500% 60.083%**
ShoesWW 63.098% 60.672% 68.354% 69.263% 69.276% 69.518% 69.289% 70.498%**
TopsMW 64.009% 62.496% 68.689% 69.796% 70.135% 69.542% 70.134% 70.962%**
BottomsMW 31.893% 52.789% 59.498% 59.964% 60.255% 57.910% 60.290% 61.992%**
ShoesMW 64.467% 49.160% 68.209% 68.319% 68.612% 65.644% 68.691% 69.344%**

Table 6: Hitrate@K for tPSE.

Product Category Hitrate@2 Hitrate@3

TopsWW 88.711% 96.939%
BottomsWW 84.909% 93.835%
ShoesWW 87.529% 94.668%
TopsMW 92.373% 98.315%
BottomsMW 82.485% 90.455%
ShoesMW 86.259% 93.793%

Table 7: Examples of tPSE successfully predicting a size that
has not been purchased before.

Purchase History Hu True Predicted Size

id3455_UK6.5, id5637_UK6, id4112_UK6.5 id9652_UK7
id6563_UK6, id1463_UK8, id3004_UK6 id8102_EU34

lengths. Figure 6a shows that the accuracy for menswear shoes
increases as more items are present in the purchase history. We
observe that the accuracy of the model for purchase histories with
six or more items is more than 75%. However, this occurs for less
than 10% of the data (Figure 6b). The same figure shows that more
than 50% of the customers only have one item in their purchase
history, which is not sufficient to accurately learn the customer’s
true size. We observe similar trends for all other product categories.

To confirm that our model does not deviate significantly from the
purchased size, we have also evaluated the Hitrate@K, defined as
the fraction of times the correct size is within the top K predictions.
To retrieve the top K recommended sizes, we rank the predictions
based on the similarity scores between the user vector Vu and the
product size vectors Vps . Hitrate@2 ranges between 85-92% for all
product categories (Table 6) and can explain cases where customers
may be in between two sizes. For instance, both sizes S and M could
fit well, but the customer has to pick just one when completing a
purchase.

5.4 Analysis on the Latent Space
Figures 7 and 8 show instances of the latent representations mapped
onto a 3D space using the t-SNE technique for dimensionality re-
duction [21]. Specifically, Figure 7 shows the menswear shoes graph
constructed by retrieving the closest vectors to redtape_UK8. The

Figure 5: Training (blue lines) and test (orange lines) accu-
racy as a function of the number of epochs for PSE (solid
lines) and PSE-B (dashed lines) in menswear shoes. The
model trained at a product level (PSE) starts overfitting af-
ter the third epoch, while the model trained at a brand level
(PSE-B) ismore stable. Similar trends have been observed for
the other product categories.

area around redtape_UK8 contains brands of size UK8. The neigh-
bourhood in the upper-left corner consists of UK7 sizes, while the
area in the bottom-right corner is constructed mainly with UK9
sizes. In the gap between these three big clusters, we observe the
half sizes UK7.5 and UK8.5, which show the transitions from the
UK8 cluster to the UK7 and UK8 neighbourhood, respectively. In a
similar context, Figure 8 shows the latent space of sizes for wom-
enswear tops. The size representations are sorted in ascending
order, starting with XS sizes in the upper-right corner and ending
with the cluster of XL sizes in the bottom-right corner. Additionally,
we observe that same or similar sizes from different sizing schemes
(e.g. XS and UK6) are mapped into the same neighbourhoods of
the latent space. Both figures confirm the assumption that similar
purchased sizes correspond to customers with similar body mea-
surements. Based on this assumption, we can use customer-product
interactions to learn a latent space for size representations.

6 CONCLUSION
We introduced the Product Size Embedding (PSE) model, a novel
approach to solve the size recommendation problem in fashion
e-commerce. The PSE model requires only customer-product inter-
actions and brand information without needing explicit customer
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(a) Accuracy of tPSE as a function of the number of items in
the purchase history.

(b) Distribution of the length of the purchase history Hu .
The dataset is dominated by customers with only one pur-
chased item.

Figure 6: Relation between accuracy and the number of purchases in the purchase history Hu for menswear shoes. Similar
trends have been observed for the other product categories.

Figure 7: 3D t-SNE projection of the latent space of
menswear shoes centred around redtape_UK8 . Purple points
are closer to redtape_UK8 and represent UK8 or UK8.5 sizes,
while orange points are more distant and represent UK7,
UK7.5 or UK9 sizes.

feedback on the returned items (i.e the item was too big or too
small). Our offline evaluation on a large-scale e-commerce dataset
shows that mapping product sizes into a single latent space leads
to more accurate size predictions over a range of different base-
lines. In addition, we have demonstrated the advantages of transfer
learning and how knowledge learned at a brand level boosts the

Figure 8: 3D t-SNE projection of the latent space of wom-
enswear tops. The size representations are sorted in ascend-
ing order, starting with XS sizes in the upper-right corner
and ending in XL sizes in the bottom-right corner. Similar
sizes of different sizing schemes are clustered together.

performance of the model at a product level. Finally, we have pro-
posed a technique to identify multiple personas in the purchase
history and applied it to reduce the noise in our data.
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