
Fashion Outfit Generation for E-commerce
Elaine M. Bettaney

ASOS.com
London, UK

elaine.bettaney@asos.com

Stephen R. Hardwick
ASOS.com
London, UK

stephen.hardwick@asos.com

Odysseas Zisimopoulos
ASOS.com
London, UK

odysseas.zisimopoulos@asos.com

Benjamin Paul Chamberlain
ASOS.com
London, UK

ben.chamberlain@asos.com

ABSTRACT
Combining items of clothing into an outfit is a major task in fashion
retail. Recommending sets of items that are compatible with a
particular seed item is useful for providing users with guidance and
inspiration, but is currently a manual process that requires expert
stylists and is therefore not scalable or easy to personalise. We use a
multilayer neural network fed by visual and textual features to learn
embeddings of items in a latent style space such that compatible
items of different types are embedded close to one another. We
train our model using the ASOS outfits dataset, which consists
of a large number of outfits created by professional stylists and
which we release to the research community. Our model shows
strong performance in an offline outfit compatibility prediction
task. We use our model to generate outfits and for the first time
in this field perform an AB test, comparing our generated outfits
to those produced by a baseline model which matches appropriate
product types but uses no information on style. Users approved
of outfits generated by our model 21% and 34% more frequently
than those generated by the baseline model for womenswear and
menswear respectively.

KEYWORDS
Representation learning, fashion, multi-modal deep learning

1 INTRODUCTION
User needs based around outfits include answering questions such
as "What trousers will go with this shirt?", "What can I wear to a
party?" or "Which items should I add to my wardrobe for summer?".
The key to answering these questions requires an understanding
of style. Style encompasses a broad range of properties including
but not limited to, colour, shape, pattern and fabric. It may also
incorporate current fashion trends, user’s style preferences and an
awareness of the context in which the outfits will be worn. In the
growing world of fashion e-commerce it is becoming increasingly
important to be able to fulfill these needs in a way that is scalable,
automated and ultimately personalised.

Copyright © 2019 by the paper’s authors. Copying permitted for private and academic
purposes.
In: J. Degenhardt, S. Kallumadi, U. Porwal, A. Trotman (eds.):
Proceedings of the SIGIR 2019 eCom workshop, July 2019, Paris, France, published at
http://ceur-ws.org

Figure 1: An ASOS fashion product together with associated
product data and styling products in a Buy the Look (BTL)
carousel as shown on a Product Description Page (PDP).

This paper describes a system for Generating Outfit Recom-
mendations from Deep Networks (GORDN) under development
at ASOS.com. ASOS is a global e-commerce company focusing on
fashion and beauty. With approximately 87,000 products on site at
any one time, it is difficult for customers to perform an exhaustive
search to find products that can be worn together. Each fashion
product added to our catalogue is photographed on a model as part
of an individually curated outfit of compatible products chosen
by our stylists to create images for its Product Description Page
(PDP). The products comprising the outfit are then displayed to the
customer in a Buy the Look (BTL) carousel (Figure 1). This offering
however is not scalable as it requires manual input for every outfit.
We aim to learn from the information encoded in these outfits to
automatically generate an unlimited number of outfits.

SIGIR 2019 eCom, July 2019, Paris, France E. M. Bettaney et al.

A common way for people to compose outfits is to first pick
a seed item, such as a patterned shirt, and then find other com-
patible items. We focus on this task: completing an outfit based
on a seed item. This is useful in an e-commerce setting as outfit
suggestions can be seeded with a particular product page or a user’s
past purchases. Our ASOS outfits dataset comprises a set of outfits
originating from BTL carousels on PDPs. These contain a seed, or
‘hero product’, which can be bought from the PDP. All other items
in the outfit we refer to as ‘styling products’.

There is an asymmetry between hero and styling products.Whilst
all items are used as hero products (in an e-commerce setting),
styling products are selected as the best matches for the hero prod-
uct and this matching is directional. For example when the hero
product is a pair of Wellington boots it may create an engaging
outfit to style them with a dress. However if the hero product is a
dress then it is unlikely a pair of Wellington boots would be the best
choice of styling product to recommend. Hence in general styling
products tend to be more conservative than hero products. Our
approach takes this difference into account by explicitly including
this information as a feature.

We formulate our training task as binary classification, where
GORDN learns to tell the difference between BTL and randomly
generated negative outfits. We consider an outfit to be a set of
fashion items and train a model that projects items into a single
style space. Compatible items will appear close in style space en-
abling good outfits to be constructed from nearby items. GORDN
is a neural network which combines embeddings of multi-modal
features for all items in an outfit and outputs a single score. When
generating outfits, GORDN is used as a scorer to assess the validity
of different combinations of items.

In summary, our contributions are:

(1) A novel model that uses multi-modal data to generate outfits
that can be trained on images in the wild i.e. dressed people
rather than individual item flat shots. Outfits generated by
our model outperform a challenging baseline by 21% for
womenswear and 34% for menswear.

(2) A new research dataset consisting of 586,320 fashion outfits
(images and textual descriptions) composed by ASOS stylists.
This is the world’s largest annotated outfit dataset and is the
first to contain Menswear items.

2 RELATEDWORK
Our work follows an emerging body of related work on learning
clothing style [11, 24], clothing compatibility [18, 20, 24] and outfit
composition [4, 7, 10, 23]. Successful outfit composition encom-
passes an understanding of both style and compatibility.

A popular approach is to embed items in a latent style or com-
patibility space often using multi-modal features [10, 20, 21, 24].
A challenge with this approach is how to use item embeddings to
measure the overall outfit compatibility. This challenge is increased
when considering outfits of multiple sizes. Song et al. [20] only
consider outfits of size 2 made of top-bottom pairs. Veit et al. [24]
use a Siamese CNN, a technique which allows only consideration
of pairwise compatibilities. Li et al. [10] combine text and image
embeddings to create multi-modal item embeddings which are then
combined using pooling to create an overall outfit representation.

100 101 102 103 104

Rank

100

101

102

103

104

Fr
eq

ue
nc

y
of

 o
cc

ur
re

nc
e

 in
 B

uy
 th

e
Lo

ok
 o

ut
fit

s

As hero product
As styling product

Figure 2: Frequency of occurrence of eachwomenswear item
in our ASOS outfits dataset. Items are ranked by how fre-
quently they occur as styling products. Each item appears
once at most as a hero product (red), while there is a heav-
ily skewed distribution in the frequency with which items
appear as styling products (blue).

Pooling allows them to consider outfits of variable size. Tangseng
et al. [21] create item embeddings solely from images. They are able
to use outfits of variable size by padding their set of item images to
a fixed length with a ‘mean image’. Our method is similar to these
as we combine multi-modal item embeddings, however we aim not
to lose information by pooling or padding.

Vasileva et al. [23] extend this concept by noting that compat-
ibility is dependent on context - in this case the pair of clothing
types being matched. They create learned type-aware projections
from their style space to calculate compatibility between different
types of clothing.

3 OUTFIT DATASETS
The ASOS outfits dataset consists of 586,520 outfits, each containing
between 2 and 5 items (see Table 1). In total these outfits contain
591,725 unique items representing 18 different womenswear (WW)
product types and 22 different menswear (MW) product types. As
all of our outfits have been created by ASOS stylists, they are rep-
resentative of a particular fashion style.

Most previous outfit generators have used either co-purchase
data from Amazon [12, 24] or user created outfits taken from
Polyvore [4, 5, 10, 14, 20, 21, 23], both of which represent a di-
verse range of styles and tastes. Co-purchase is not a strong signal
of compatibility as co-purchased items are typically not bought
with the intention of being worn together. Instead it is more likely
to reflect a user’s style preference. Data collected from Polyvore
gives a stronger signal of compatibility and furthermore provide
complete outfits.

The largest previously available outfits dataset was collected
from Polyvore and contained 68,306 outfits and 365,054 items en-
tirely from WW [23]. Our dataset is the first to contain MW as
well. Our WW dataset contains an order of magnitude more outfits
than the Polyvore set, but has slightly fewer fashion items. This is
a consequence of ASOS stylists choosing styling products from a
subset of items held in our studios meaning that styling products
can appear in many outfits.

Fashion Outfit Generation for E-commerce SIGIR 2019 eCom, July 2019, Paris, France

Table 1: Statistics of the ASOS outfits dataset

Department Number of Outfits Number of Items Outfits of size 2 Outfits of size 3 Outfits of size 4 Outfits of size 5

Womenswear 314,200 321,672 155,083 109,308 42,028 7,781
Menswear 272,120 270,053 100,395 102,666 58,544 10,515

For each item we have four images, a text title and descrip-
tion, a high-level product type and a product category. We process
both the images and the text title and description to obtain lower-
dimensional embeddings, which are included in this dataset along-
side the raw images and text to allow full reproducibility of our
work. The methods used to extract these embeddings are described
in Sections 4.3 and 4.4, respectively. Although we have four images
for each item, in these experiments we only use the first image as
it consistently shows the entire item, from the front, within the
context of an outfit, whilst the other images can focus on close
ups or different angles, and do not follow consistent rules between
product types.

4 METHODOLOGY
Our approach uses a deep neural network. We acknowledge some
recent approaches that use LSTM neural networks [4, 14]. We have
not adopted this approach because fundamentally an outfit is a set of
fashion items and treating it as a sequence is an artificial construct.
LSTMs are also designed to progressively forget past items when
moving through a sequence which in this context would mean that
compatibility is not enforced between all outfit items.

We consider an outfit to be a set of fashion items of arbitrary
length which match stylistically and can be worn together. In order
for the outfit to work, each item must be compatible with all other
items. Our aim is to model this by embedding each item into a
latent space such that for two items (Ii , Ij) the dot product of their
embeddings (zi , zj) reflects their compatibility. We aim for the
embeddings of compatible items to have large dot products and
the embeddings of items which are incompatible to have small dot
products. We map input data for each item Ii to its embedding zi via
a multi-layer neural network. As we are treating hero products and
styling products differently, we learn two embeddings in the same
space for each item; one for when the item is the hero product,
z(h)i and one for when the item is a styling product, z(s)i ; which
is reminiscent of the context specific representations in language
modelling [13, 15].

4.1 Network Architecture
For each item, the inputs to our network are a textual title and
description embedding (1024 dimensions), a visual embedding (512
dimensions), a pre-trained GloVe embedding [15] for each product
category (50 dimensions) and a binary flag indicating the hero
product. First, each of the three input feature vectors is passed
through their own fully connected ReLU layer. The outputs from
these layers, as well as the hero product flag, are then concatenated
and passed through two further fully connected ReLU layers to
produce an item embedding with 256 dimensions (Figure 3). We use
batch normalization after each fully connected layer and a dropout
rate of 0.5 during training.

Figure 3: Network architecture of GORDN’s item embedder.
For each item the embedder takes visual features, a textual
embedding of the item’s title and description, a pre-trained
GloVe embedding of the item’s product category and a bi-
nary flag indicating if the item is the outfit’s hero product.
Each set of features is passed through a dense layer and the
outputs of these layers are concatenated alongwith the hero
product flag before being passed through two further dense
layers. The output is an embedding for the item in our style
space. We train separate item embedders for womenswear
and menswear items.

4.2 Outfit Scoring
We use the dot product of item embeddings to quantify pairwise
compatibility. Outfit compatibility is then calculated as the sum
over pairwise dot products for all pairs of items in the outfit (Figure
4).

For an outfitS = {I1, I2, ..., IN } consisting ofN items, the overall
outfit score is defined by

y(S) = σ
©­­­«

1
N (N − 1)

N∑
i, j=1
i<j

zi · zj
ª®®®¬ , (1)

SIGIR 2019 eCom, July 2019, Paris, France E. M. Bettaney et al.

Figure 4: GORDN’s outfit scorer takes the learnt embeddings
of each item in an outfit and produces a score in the range
[0,1], with a high value representing a compatible outfit. The
scorer takes the sum of the compatibility scores (dot prod-
uct) for each pair of items within the outfit, normalised by
the number of pairs of items. This is then passed through a
sigmoid function.

where σ is the sigmoid function. The normalisation factor of N (N −

1), proportional to the number of pairs of items in the outfit is
required to deal with outfits containing varying numbers of items.
The sigmoid function is used to ensure the output is in the range
[0,1].

4.3 Visual Feature Extraction
As described in Section 1 and illustrated in Figure 1, items are
photographed as part of an outfit and therefore our item images
frequently contain the other items from the BTL outfit. Feeding
the whole image to the network would result in features capturing
information for the entire input leaking information to GORDN. It
was therefore necessary to localise the target item within the image.
To extract visual features from the images in our dataset we use
VGG [19]. Feeding the whole image to the network would result in
features capturing information for the entire input, that is both the
hero and the styling products. To extract features focused on the
most relevant areas of the image, we adopt an approach based on
Class Activation Mapping (CAM) [25]. Weakly-supervised object
localisation is performed by calculating a heatmap (CAM) from
the feature maps of the last convolutional layer of a CNN, which
highlights the discriminative regions in the input used for image

classification. The CAM is calculated as a linear combination of the
feature maps weighted by the corresponding class weights.

Before using the CAM model to extract image features, we fine-
tune it on our dataset. Similar to [25] our model architecture com-
bines VGGwith a Global Average Pooling (GAP) layer and an output
classification layer. We initialize VGG with weights pre-trained on
ImageNet and fine-tune it towards product type classification (e.g.
Jeans, Dresses, etc.). After training we pass each image to the VGG
and obtain the feature maps.

To produce localised image embeddings, we use the CAM to
spatially re-weight the feature maps. Similar to Jimenez et al. [8],
we perform the re-weighting by a simple spatial element-wise mul-
tiplication of the feature maps with the CAM. Our pipeline is shown
in Figure 5. This re-weighting can be seen as a form of attention
mechanism on the area of interest in the image. The final image
embedding is a 512-dimensional vector. The same figure illustrates
the effect of the re-weighting mechanism on the feature maps.

4.4 Title and Description Embeddings
Product titles typically contain important information, such as the
brand and colour. Similarly, our text descriptions contain details
such as the item’s fit, design and material. We use pre-trained text
embeddings of our item’s title and description. These embeddings
are learned as part of an existing ASOS production system that
predicts product attributes [3]. Vector representations for each
word are passed through a simple 1D convolutional layer, followed
by a max-over-time pooling layer and finally a dense layer, resulting
in 1024 dimensional embeddings.

4.5 Training
We train GORDN in a supervised manner using a binary cross-
entropy loss. Our training data consists of positive outfit samples
taken from the ASOS outfits dataset and randomly generated nega-
tive outfit samples. We generate negative samples for our training
and test sets by randomly replacing the styling products in each
outfit with another item of the same type. For example, for an out-
fit with a top as the hero product and jeans and shoes as styling
products, we would create a negative sample by replacing the jeans
and shoes with randomly sampled jeans and shoes. We ensure that
styling products appear with the same frequency in the positive
and negative samples by sampling styling products from their dis-
tribution in the positive samples. This is important as the frequency
distribution of styling products is heavily skewed (Figure 2) and
without preserving this GORDN could memorise frequently occur-
ring items and predict outfit compatibility based on their presence.
By matching the distribution GORDNmust instead learn the charac-
teristics of items which lead to compatibility. Although some of the
negative outfits generated in this way may be good quality outfits,
we assume that the majority of these randomly generated outfits
will contain incompatible item combinations. Randomly selecting
negative samples in this way is common practice in metric learning
and ranking problems (e.g. [6, 16]). In both training and testing, we
generate one negative outfit sample for each positive outfit sample.

To assess the relative importance of each set of input features,
we conduct an ablation study. We separately train five different
versions of GORDN using only the textual title and description

Fashion Outfit Generation for E-commerce SIGIR 2019 eCom, July 2019, Paris, France

. .
 .

. . .

CAM

. . .

. . .

. . .

. . .

VGG GAP

Figure 5: Pipeline for extracting image embeddings. An image is passed to VGG and the final convolutional feature maps are
used to calculate the class activation map (CAM). The CAM is then used to spatially re-weight the feature maps by element-
wise multiplication. Finally, a global average pooling (GAP) layer averages each re-weighted feature map to calculate a single
value (shown in same colours) and outputs a 512-dimensional image embedding. During training, re-weighting is ignored
and the output of the model is passed into a fully-connected layer for product type classification. We can see the effect of
feature map re-weighting in the brackets for the case of an itemwith trousers as the hero product and top and shoes as styling
products. Activations in the feature maps that correspond to the relevant region of interest in the input image (trousers) are
refined by re-weighting (i.e. second and third row) whereas irrelevant activations are ignored (first row).

embeddings as input (text), only the visual embeddings (vis), both
text and visual embeddings (text + vis), text, visual and category
embeddings (text + vis + cat), and finally the full set of inputs (text
+ vis + cat + hero). For each of these configurations we trained 20
models from scratch using Adam [9] for 30 epochs.

4.6 Outfit Generation Method
Once trained, GORDN can generate novel outfits of any length by
sequentially adding items and re-scoring the new outfit. Each outfit
starts with a hero product from our catalogue. We then define an
outfit template P = {T (h),T1, ...,TN−1} as a set of product types
including the hero product type T (h) and N − 1 other compatible
styling product types. Our aim is to find the set of items of the
appropriate product types that maximises the outfit score y.

An exhaustive search over every possible combination of styling
products cannot be computed within a reasonable e-commerce la-
tency budget. Instead, we map the maximum inner product search
in Equation 1 to a Euclidean nearest neighbour problem that is
solved approximately and combine this with a beam search (illus-
trated in Figure 6). The approximate nearest neighbours algorithm
uses a PCA-tree that has been adapted for recommendations prob-
lems [1]. We use a beam width of three because it returned the
optimal outfit 77.5% of the time. The beam search algorithm is re-
peated for all (N − 1)! permutations of the styling product types in
the template as different outfits may be generated depending on the
order in which product types are added. The outfit returned is the
one that has the maximal score across all template permutations.
For each step of the beam search, we calculate the resultant vector
of the partial outfit and find thew approximate nearest neighbours
from the product catalogue (wherew is the beam width). With each
step searching through 2000-5000 products we achieved a ten times

Table 2: The number of outfits and items in our training and
test partitions after applying the Louvain community detec-
tion method to the full ASOS outfits dataset. There are no
items which appear in both the training and test set.

Department Dataset Number of Outfits Number of Items

Womenswear Train 237,478 239,818
Test 76,722 81,854

Menswear Train 201,844 198,947
Test 70,276 71,106

speed up in outfit generation whilst still maintaining a precision@5
of over 80%.

The choice of template P depends on the use case. Templates for
each hero product type can be found from our ASOS outfits dataset.
The distribution of templates can be used to introduce variety into
the generated outfits. For the purposes of our AB test, we picked
the most frequently occurring template for each hero product type.

5 EVALUATION
We evaluate the performance of GORDN on two tasks. The first task
is binary classification of genuine and randomly generated outfits,
using a held out test set. The second task is user evaluation of outfits
generated by GORDN in comparison to randomly generated outfits
from a simple baseline model.

5.1 Train/test split
We split the ASOS outfits dataset first into WW and MW and each
of these into a training and test set ensuring that no items appeared

SIGIR 2019 eCom, July 2019, Paris, France E. M. Bettaney et al.

Skirts WW Tops WW Shoes WW Bags WW

0.96

0.95

0.93

0.98

0.98

0.95

0.99

0.97

0.92

0.99

0.97

0.96

0.97

0.94

0.93

0.99

0.96

0.92

0.98

0.95

0.91

Figure 6: Beam search in the context of outfit generation.
Starting with an outfit template of product types and a hero
product (highlighted in yellow) each product type in the
template is filled sequentially by finding the products from
the catalogue which when added to the outfit give the high-
est outfit score. After each step the number of outfits re-
tained is reduced to the beam width (set to 3). The retained
outfits after each step are highlighted in greenwith the high-
est scoring outfit in dark green.

in both sets. To achieve this we first represented the ASOS outfits
dataset as a graph where the nodes are items and edge weights are
defined by the number of outfits pairs of items are found together
in. We then used the Louvain community detection method [2] to
split the graph into communities which maximise the modularity.
This resulted in many small communities which could then be com-
bined together to create the train and test sets. When re-combining
communities care was taken firstly to respect the desired train-test

Table 3: Comparison of GORDN when using different fea-
tures on the binary classification task. Scores are the mean
over 20 runs of the test set AUC after 30 epochs of training.

Features AUC
WW MW

vis 0.66 0.55
text 0.80 0.66
text + vis 0.82 0.66
text + vis + cat 0.82 0.67
text + vis + cat + hero 0.83 0.67

split ratio as far as possible and secondly to ensure items from
each season are proportionally split between the train and test sets.
This resulted in 76:24 and 74:26 train-test splits in terms of outfits
for WW and MW respectively. The use of disjoint train and test
sets provides a sterner test for GORDN as it is unable to simply
memorise which items frequently co-occur in outfits in the training
set. Instead, the embeddings GORDN learns must represent product
attributes that contribute to fashion compatibility.

5.2 Outfit Classification Results
The test set contains BTL outfits and an equal number of negative
samples. We use GORDN to predict compatibility scores for the
test set outfits and then calculate the AUC of the ROC curve. We
found that training separate versions of GORDN for WW and MW
produced better results and so we report the performance of these
here.

Table 3 shows the AUC scores achieved for different combina-
tions of features. As we add features to GORDN we increase its
performance, with the best performing model including text, visual,
category and hero item features. The majority of the performance
benefit came from the text embeddings with visual embeddings
adding a small improvement. We expected our visual embeddings
to be of poorer quality than those for Polyvore datasets as our
images show whole outfits on people as opposed to a photograph
of the fashion item in isolation. In contrast the success of our text
embeddings could be due to the attribution task on which they
were trained [3]. A total of 34 attributes were predicted, including
many attributes that are directly applicable for outfit composition
e.g. ‘pattern’, ‘neckline’, ‘dress type’ and ‘shirt style’.

For all feature combinations the WWmodel greatly outperforms
the MW one. This could be due to fashion items being more in-
terchangeable in MW than in WW hence having more similar
embeddings making the training task harder. For example the mean
correlations between the text embeddings for the most prevalent
product type in the WW and MW training sets are 0.041 (dresses)
and 0.077 (T-shirts) respectively. More simply, there are many com-
binations of MW T-shirts and jeans that make equally acceptable
outfits whereas there are far fewer for WW dresses and shoes.

Using GORDN to predict compatibility scores for our test set
is equivalent to the outfit compatibility task used by [4] and [23].
As noted by Vasileva et al., Han’s negative samples contain outfits
that are incompatible due to multiple occurrences of product types
e.g. multiple pairs of shoes in the same outfit. Since our negative

Fashion Outfit Generation for E-commerce SIGIR 2019 eCom, July 2019, Paris, France

ASOS Outfit Generator Feedback

Does this outfit work?

Tops Jeans Shoes

New Look stripe button through top in yellow Levi's 501 High Rise Skinny Jean New Look Patent Heeled Ankle Boot

YES NO

Figure 7: Screenshot of Outfit Evaluation App

samples were generated using templates respecting product type
our data does not have this characteristic and hence we compare
only to results in [23]. Our WW model achieves an AUC score
just slightly less than Vasileva et al.’s compatibility AUC on their
disjoint Polyvore outfits dataset.

5.3 Generated Outfit Evaluation
We perform an AB test to evaluate the quality of outfits generated
by GORDN. We select six popular outfit templates to test, three
each for WW and MW (shown in Table 4), and generate 100 WW
and 100 MW outfits split evenly across the templates. We use a
large pool of in stock products from which we randomly select hero
products of the required product types. The remaining items in the
outfits were generated using the beam search method described
in Section 4.6 and illustrated in Figure 6. These outfits constitute
our test group. For a control group we take the same hero products
and templates and generate outfits by randomly selecting items of
the correct type from the same pool of products. By using outfit
templates we ensure that none of the outfits contain incompatible
product type combinations, such as by pairing a dress and a skirt,
or by placing two pairs of shoes in one outfit. Instead, the quality
of the outfits depends solely on style compatibility between items.

To run the AB test we developed an internal app which we
exposed to ASOS employees. A screenshot of the app is shown
in Figure 7. The app displayed an outfit to the user asking them
to decide if the items in the outfit work stylistically. The outfits
were shown one at a time to each user with the order of outfits
randomised for each user. WW and MW outfits were only shown
to female and male users respectively and each user rated all 200
outfits from their corresponding gender.

The data collected from the app comprised a binary score for
each user-outfit pair. The data exhibit two way correlation — all
scores from the same user are correlated due to the inherent user
preferences and all scores on the same outfit are also correlated. We
therefore used a two-way random effects model as described in [17]
to calculate the variance of the sample mean. We could then use a
t-test for the difference between means to calculate if the difference
between the test and control groups was significant.

PS Paul Smith
Kirk dino print
canvas hi-tops

in white

COLLUSION
skater fit check
trousers with
side stripe

ASOS DESIGN
wedding regular

fit shirt in super fine
cotton in off white

Moss London
Skinny Smart

Trouser In
Check

ASOS Loafers
In Black Suede

With Metal Snaffle

Reclaimed Vintage
inspired oversized
t-shirt with rainbow

face illustration

Carhartt WIP
Smith jean in

navy rigid

Vans x Mickey
Mouse SK8-Hi
trainers in navy

Bershka Skinny
Jeans In Washed

Black

ASOS DESIGN
trainers in
navy block

AX Paris ruched
velvet mini dress

AX Paris ruched
velvet mini dress

Public Desire Winona
Embellished Block

Heeled Sandals

Nike Running Epic
React Trainers In Black

Reclaimed Vintage
inspired oversized
t-shirt with rainbow

face illustration

ASOS DESIGN
wedding regular

fit shirt in super fine
cotton in off white

Mads Norgaard
Gingham Skater

Skirt

Esprit Bardot
Stripe Tie
Sleeve Top

ALDO T Bar
Sandal with

Diamante Gems

Truffle Collection
Spike Stud
Heel Boot

ASOS DESIGN
blouse with
frill shoulder

Rolla's Logo
T-Shirt

Vans Authentic
Classic Black

Mono Lace Up
Trainers

Lee Scarlett
Skinny Jeans

Faith Fringe
Chain Loafer

ASOS DESIGN
Rivington high

waisted jeggings
in smokey grey

wash

Rolla's Logo
T-Shirt

ASOS Skinny
Short With
Camo Print

ASOS Skinny
Short With
Camo Print

Mads Norgaard
Gingham Skater

Skirt

Gym King Muscle
T-Shirt In Navy
With Contrast

Sleeves

Puma Trimm
Quick MU

Trainers In Green

ASOS DESIGN
muscle fit t-shirt
with dictionary

slogan print

Red Tape Tassel
Loafers In Brown

Leather

GORDN Randomly Generated

Figure 8: Example outfits generated byGORDN (left column)
and by random selection of items (right column) that were
used in our AB test. In each row the same hero product is
used (red box) and eachmodel is given the same template of
product types.

The results are shown in Figure 4. We analyse the results for
WW and MW separately as the WW and MW models were trained
separately. We collected 1,200 observations per group for WW and
900 for MW. We found the relative difference between the test and
control groups to be 21.28% and 34.16% for WW and MW respec-
tively. Testing at the 1% level these differences were significant. We
were able to further break down our results to find that GORDN
outperformed the control significantly for all templates.

Examples of outfits generated for our AB test are shown in
Figure 8. For each hero product we show the outfit produced by
GORDN alongside the randomly generated outfit. Many of the

SIGIR 2019 eCom, July 2019, Paris, France E. M. Bettaney et al.

Table 4: Relative differences between the test and control group user scores. All results are significant at the 1% level.

Ctrl score Test score Rel. diff. (%) p-value

WW all 0.49 0.60 21.28 < 0.01
Dress | Shoes 0.54 0.78 46.12 < 0.01
Tops | Jeans | Shoes 0.61 0.64 4.53 < 0.01
Skirts | Tops | Shoes 0.33 0.36 10.77 < 0.01

MW all 0.49 0.66 34.16 < 0.01
T-Shirts | Jeans | Shoes, Boots & Trainers 0.63 0.76 19.07 < 0.01
Shirts | Trousers & Chinos | Shoes, Boots & Trainers 0.42 0.60 44.35 < 0.01
Shorts | T-Shirts | Shoes, Boots & Trainers 0.43 0.63 47.24 < 0.01

random examples appear to be reasonable outfits. Although the
random model is simple, the use of outfit templates, combined with
selecting only products that were in stock in the ASOS catalogue
on the same day makes this a challenging baseline.

5.4 Style space
We visualise our style space using a t-Distributed Stochastic Neigh-
bour Embedding (t-SNE) [22] plot in two dimensions (Figure 9a).
While similar items have similar embeddings, we can also see that
compatible items of different product types have similar embed-
dings. Rather than dresses and shoes being completely separate
in style space, these product types overlap, with casual dresses
having similar embeddings to casual shoes and occasion dresses
having similar embeddings to occasion shoes. We built an app for
internal use that uses t-SNE to visualise our style space and allows
us to easily explore compatible item combinations, as predicted by
GORDN (Figure 9b).

6 CONCLUSION
We have described GORDN, a multi-modal neural network for
generating outfits of fashion items, currently under development at
ASOS. GORDN learns to represent items in a latent style space, such
that compatible items of different types have similar embeddings.
GORDN is trained on the ASOS outfits dataset, a new resource
for the research community which contains over 500,000 outfits
curated by professional stylists. The results of an AB test show that
users approve of outfits generated by GORDN 21% and 34% more
frequently than those generated by a simple baseline model for
womenswear and menswear, respectively.

REFERENCES
[1] Yoram Bachrach, Yehuda Finkelstein, Ran Gilad-Bachrach, Liran Katzir, Noam

Koenigstein, Nir Nice, and Ulrich Paquet. 2014. Speeding up the xbox recom-
mender system using a euclidean transformation for inner-product spaces. In
Proceedings of the 8th ACM Conference on Recommender systems. ACM, 257–264.

[2] Vincent D. Blondel, Jean-Loup Guillaume, Renaud Lambiotte, and Etienne Lefeb-
vre. 2008. Fast unfolding of communities in large networks. J. Stat. Mech (2008),
1–12.

[3] Ângelo Cardoso, Fabio Daolio, and Saúl Vargas. 2018. Product Characterisation
towards Personalisation. In Proceedings of the 24th ACM SIGKDD International
Conference on Knowledge Discovery & Data Mining - KDD ’18. 80–89.

[4] Xintong Han, Zuxuan Wu, Yu-Gang Jiang, and Larry S. Davis. 2017. Learning
Fashion Compatibility with Bidirectional LSTMs. Proceedings of the 2017 ACM on
Multimedia Conference - MM ’17 1 (2017), 1078–1086.

[5] Tong He and Yang Hu. 2018. FashionNet: Personalized Outfit Recommendation
with Deep Neural Network. (2018), 1–9.

[6] Elad Hoffer and Nir Ailon. 2015. Deep metric learning using triplet network. In
Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics).

[7] Yang Hu, Xi Yi, and Larry S. Davis. 2015. Collaborative Fashion Recommendation:
A Functional Tensor Factorization Approach. In Proceedings of the 23rd ACM
international conference on Multimedia. Brisbane, Australia, 129–138.

[8] Albert Jimenez, Jose M. Alvarez, and Xavier Giro-i Nieto. 2017. Class-Weighted
Convolutional Features for Visual Instance Search. In 28th British Machine Vision
Conference (BMVC).

[9] Diederik P. Kingma and Jimmy Ba. 2015. Adam: A Method for Stochastic Opti-
mization. In Internationl Aconference for Learning Representations. San Diego.

[10] Yuncheng Li, Liangliang Cao, Jiang Zhu, and Jiebo Luo. 2017. Mining fashion
outfit composition using an end-to-end deep learning approach on set data. IEEE
Transactions on Multimedia 19, 8 (2017), 1946–1955.

[11] Yihui Ma, Jia Jia, Suping Zhou, Jingtian Fu, Yejun Liu, and Zijian Tong. 2017.
Towards better understanding the clothing fashion styles: A multimodal deep
learning approach. AAAI Conference on Artificial Intelligence (2017), 38–44.

[12] Julian McAuley, Christopher Targett, Qinfeng Shi, and Anton van den Hen-
gel. 2015. Image-based Recommendations on Styles and Substitutes. In SIGIR
Converence on Research and Development in Information Retrieval. 43–52.

[13] Tomas Mikolov, Kai Chen, Greg Corrado, and Jeffrey Dean. 2013. Distributed
Representations of Words and Phrases and their Compositionality. In Neural
Information Processing Systems. 3111–3119.

[14] Takuma Nakamura and Ryosuke Goto. 2018. Outfit Generation and Style Extrac-
tion via Bidirectional LSTM and Autoencoder. In The third international workshop
on fashion and KDD.

[15] Jeffrey Pennington, Richard Socher, and Christopher Manning. 2014. Glove:
Global Vectors for Word Representation. In Proceedings of the 2014 Conference on
Empirical Methods in Natural Language Processing (EMNLP).

[16] Steffen Rendle, Christoph Freudenthaler, Zeno Gantner, and Lars Schmidt-Thieme.
2009. BPR: Bayesian Personalized Ranking from Implicit Feedback. In Conference
on Uncertainty in Artificial Intelligence, Vol. 1120. 452–461.

[17] Flâvio Ribeiro, Dinei Florêncio, Cha Zhang, and Michael Seltzer. 2011. CROWD-
MOS: An approach for crowdsourcing mean opinion score studies. In ICASSP,
IEEE International Conference on Acoustics, Speech and Signal Processing - Proceed-
ings. 2416–2419.

[18] Yong-Siang Shih, Kai-Yueh Chang, Hsuan-Tien Lin, and Min Sun. 2018. Com-
patibility Family Learning for Item Recommendation and Generation. In AAAI
Conference on Artificial Intelligence. 2403–2410.

[19] K. Simonyan and A. Zisserman. 2014. Very Deep Convolutional Networks for
Large-Scale Image Recognition. CoRR abs/1409.1556 (2014).

[20] Xuemeng Song, Fuli Feng, Xianjing Han, Xin Yang, Wei Liu, and Liqiang Nie.
2018. Neural Compatibility Modeling with Attentive Knowledge Distillation. In
SIGIR Conference on Research & Development in Information Retrieval. 5–14.

[21] Pongsate Tangseng, Kota Yamaguchi, and Takayuki Okatani. 2018. Recom-
mending Outfits from Personal Closet. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition. 269–277.

[22] Laurens van der Maaten and Geoffrey Hinton. 2008. Visualizing Data using
t-SNE. Journal of Machine Learning Research 9 (2008), 2579–2605.

[23] Mariya I. Vasileva, Bryan A. Plummer, Krishna Dusad, Shreya Rajpal, Ranjitha
Kumar, and David Forsyth. 2018. Learning Type-Aware Embeddings for Fashion
Compatibility. In European Conference on Cumputer Vision. 405–421.

[24] Andreas Veit, Balazs Kovacs, Sean Bell, Julian Mcauley, Kavita Bala, and Serge
Belongie. 2015. Learning Visual Clothing Style with Heterogeneous Dyadic
Co-occurrences. In IEEE International Conference on Computer Vision. 4642–4650.

[25] Bolei Zhou, Aditya Khosla, Agata Lapedriza, Aude Oliva, and Antonio Torralba.
2016. Learning Deep Features for Discriminative Localization. In Computer Vision
and Pattern Recognition.

Fashion Outfit Generation for E-commerce SIGIR 2019 eCom, July 2019, Paris, France

(a)

Select product types to include:

AX Paris Scuba
Pephem Midi

Dress With Lace
Top

Most similar products in style
space

Filter results by product type:

ASOS Style Space Explorer

(b)

Figure 9: a) A section of a t-Distributed Stochastic Neighbour Embedding (t-SNE) visualisation of the embeddings learnt by
GORDN for womenswear dresses and shoes. Similar items have similar embeddings, but so do compatible items of different
types. The two highlighted areas illustrate that casual dresses are embedded close to casual shoes (red), while occasion dresses
are embedded close to occasion shoes (blue). b) Screenshot of an internal app, developed to allow exploration of the learnt style
space. Users can create t-SNE plots using different product types and then select individual items to view themost similar items
in style space of different types.

	Abstract
	1 Introduction
	2 Related work
	3 Outfit Datasets
	4 Methodology
	4.1 Network Architecture
	4.2 Outfit Scoring
	4.3 Visual Feature Extraction
	4.4 Title and Description Embeddings
	4.5 Training
	4.6 Outfit Generation Method

	5 Evaluation
	5.1 Train/test split
	5.2 Outfit Classification Results
	5.3 Generated Outfit Evaluation
	5.4 Style space

	6 Conclusion
	References

