
Why Machines Cannot Learn Mathematics, Yet

André Greiner-Petter1, Terry Ruas2, Moritz Schubotz1,
Akiko Aizawa3, William Grosky2, Bela Gipp1

1 University of Wuppertal, Wuppertal, Germany
{last}@uni-wuppertal.de

2 University of Michigan-Dearborn, Dearborn, USA
{truas,wgrosky}@umich.edu

3 National Institute of Informatics, Tokyo, Japan
aizawa@nii.ac.jp

Abstract. Nowadays, Machine Learning (ML) is seen as the universal
solution to improve the e�ectiveness of information retrieval (IR) meth-
ods. However, while mathematics is a precise and accurate science, it is
usually expressed by less accurate and imprecise descriptions. Generally,
mathematical documents communicate their knowledge with an ambigu-
ous, context-dependent, and non-formal language. In this work, we apply
text embedding techniques to the arXiv collection of STEM documents
and explore how these are unable to properly understand mathematics
from that corpus, while proposing alternative to mitigate such situation.
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1 Introduction

Mathematics is capable of explaining complex concepts and relations in a com-
pact, precise, and accurate way. The general applicability of mathematics al-
lows a certain level of ambiguity in its expressions. This ambiguity is regularly
mitigated by short explanations following or preceding these mathematical ex-
pressions, that serve as context to the reader. Along with context dependency,
inherent issues of linguistics (e.g. non-formality) make it even more challeng-
ing for computers to understand mathematical expressions. Said that, a system
capable of capturing the semantics of mathematical expressions automatically
would be suitable for several applications, from improving search engines to
recommender systems. Consider for example the the lower bound for Van der
Waerden numbers

W (2, k) > 2k/kε. (1)

Learning connections, such as between W and the entity `Van der Waerden's
number ' from above, requires a large speci�cally labeled scienti�c database that
contains mathematical objects. Word embedding techniques has received signif-
icant attention over the last years in the Natural Language Processing (NLP)



community, especially after the publication of word2vec [13]. Recently, more and
more projects try to adapt this knowledge for solving Mathematical Information
Retrieval (MIR) tasks [3, 9, 26, 24]. In this paper, we explore some of the main
aspects that we believe are necessary to leverage the learning of mathematics by
computer systems. We explain, with our evaluations of word embedding tech-
niques on the arXMLiv 2018 [4] dataset, why current ML approaches are not
applicable for MIR tasks, yet.

Current MIR approaches [8, 22, 20] try to extract textual descriptors of the
parts that compose mathematical equations. This leads to two main issues: (i)
how to determine the parts which have their own descriptors, and (ii) how to
identify correct descriptors over others. Answers to (i) are more concerned in
choosing the correct de�nitions for which parts of a mathematical expression
should be considered as one mathematical object [7, 25, 21]. Current de�nitions,
such as the content MathML 3.04 speci�cation, are often imprecise. Consider
αi, where α is a vector and αi its i-th element. In this case, αi should be con-
sidered as a composition of three content identi�ers, each one carrying its own
individualized semantic information, namely the vector α, the element αi of the
vector, and the index i. However, with the current speci�cation, the de�nition
of these identi�ers would not be canonical. Because of these problems in current
standards, nowadays work focusing their e�orts on (ii).

Schubotz et al. [22] presented an approach for scoring pairs of identi�ers and
descriptors by the number of words between them. They made the assumption
that correct de�niens appear close to the identi�er and to the complex mathemat-
ical expression that contains this same identi�er. Kristianto et al. [8] introduce
a ML approach, in which they train a Support Vector Machine (SVM) to con-
sider sentence patterns and other characteristics as features (e.g. part-of-speech
(POS) tags, parse trees). Later, [20] combine the aforementioned approaches and
use pattern recognition based on the POS tags of common identi�er-de�niens
pairs, the distance measurements, and SVM, reporting results for precision and
recall of 48.60% and 28.06%, respectively. More recently, some projects try to use
embedding techniques to learn patterns of the correlations between context and
mathematics. In [3], they embed single mathematical symbols, while Krstovski
and Blei [9] represent complex mathematical expressions as single unit tokens for
IR. Recently, M. Yasunaga et al. [24] explore an embedding technique based on
recurrent neural networks to improve topic models by considering mathematical
expressions.

2 Machine Learning on Embeddings

The word2vec [13] technique computes real-valued vectors for words in a docu-
ment using two main approaches: skip-gram and continuous bag-of-words (CBOW).
Both produce a �xed length n-dimensional vector representation for each word
in a corpus. In the skip-gram training model, one tries to predict the context of a

4 https://www.w3.org/TR/MathML3/
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given word, while CBOW predicts a target word given its context. In word2vec,
context is de�ned as the adjacent neighboring words in a de�ned range, called a
sliding window. The main idea is that the numerical vectors representing similar
words should have close values if the words have similar context.

The lack of solid references and applications that provide the semantic struc-
ture of natural language for mathematical identi�ers make their disambiguation
process challenging. In natural texts, one can try to infer the most suitable word
sense for a word based on the lemma5 itself, the adjacent words, dictionaries,
thesaurus and so on. However, in the mathematical arena, the scarcity of re-
sources and the �exibility of rede�ning their identi�ers take this issue to a more
delicate scenario. The text preceding or following the mathematical equation is
essential for its understanding.

More recently, [9] propose a variation of word embeddings for mathematical
expressions. Their main idea relies on the construction of a distributed repre-
sentation of equations, considering the word context vector of an observed word
and its word-equation context window. They treat equations as single-unit words
(EqEmb), which eventually appears in the context of di�erent words. They also
try to explore the e�ects of considering the elements of mathematical expres-
sions separately (EqEmb-U). While they present some interesting �ndings for
retrieving entire equations, little is said about the vectors representing equation
units and how they are described in their model.

Nowadays mathematics in science is mostly either given in LATEX or MathML.
The former is used by humans for writing scienti�c documents. The latter, on
the other hand, is popular in web representations of mathematics due to its
machine readability and XML structure. There has been a major e�ort to au-
tomatically convert LATEX expressions to MathML [21] ones. However, neither
LATEX nor MathML are practical formats for embeddings. Considering the equa-
tion embedding techniques in [9], we devise three main types of mathematical
embeddings.
Mathematical Expressions as Single Tokens: EqEmb [9] uses entire math-
ematical expressions as one token. In this type, the inner structure of the math-
ematical expression is not taken into account. For example, Equation (1) is
represented as one single token t1. Any other expression, such as W (2, k), in
the surrounding text of (1), is an entirely independent token t2, i.e. no relation
between W (2, k) and (1) can be trained.
Stream of Tokens: This approach represents mathematical expressions as a
sequence of its inner tokens. This approach has the advantage of learning all
mathematical tokens. However, complex mathematical expressions may lead to
long chains of elements, which increases noise6. There are several approaches
to reduce the noise, e.g. by only considering identi�ers and operands [3] or by
implementing a long short-term memory (LSTM) architecture that is capable of
handling longer chains [24]. Later in this paper, we present a model based on

5 canonical form, dictionary form, or citation form of a set of words
6 Noise means, the data consists of many uninteresting tokens that a�ect the trained
model negatively.



the stream of tokens approach. We will show that this approach is valuable to
capture relations between mathematical expressions but not between expressions
and their descriptors.
Semantic Groups of Tokens: The third approach of embedding mathemat-
ics is only theoretical, and concerns the aforementioned problems related to
the vague de�nitions of identi�ers and functions in a standardized format (e.g.
MathML). As previously discussed, current MIR and ML approaches would ben-
e�t from a basic structural knowledge of mathematical expressions, such that
variations of function calls (e.g. W (r, k) and W (2, k)) can be recognized as the
same function. Instead of de�ning a uni�ed standard, current techniques use
their own ad-hoc interpretations of structural connections, e.g., αi is one iden-
ti�er rather than three [21, 20]. We assume that an embedding technique would
bene�t from a system that is able to detect the parts of interest in mathemati-
cal expressions prior any training processes. However, such system still does not
exist.

2.1 Performance of Math Embeddings

The examples illustrated in [3, 9, 24] seem to be feasible as a new approach for
distance calculations between complex mathematical expressions. While com-
paring mathematical expressions is essentially practical for search engines or
automatic plagiarism detection systems, these approaches do not seem to cap-
ture the components of complex structure separately, which are necessary for
other applications, such as automated reasoning. Another aspect to be consid-
ered is that in [9] they do not train mathematical identi�ers, preventing their
system from learning connections between identi�ers and de�niens. Addition-
ally, the connection between entire equations and de�niens is, at some level,
questionable. Entire equations are rarely explicitly named. However, in the ex-
tension EqEmb-U [9], they use a Syntax Layout Tree (SLT) [27] representation
to tokenize mathematical equations and to obtain speci�c unit-vectors, which is
similar to our identi�ers as tokens approach.

In order to investigate the discussed approaches, we apply variations of a
word2vec implementation to extract mathematical relations from the arXMLiv
2018 [4] dataset, an HTML collection of the arXiv.org preprint archive7, which
is used as our training corpus. We used the no_problem and warning subsets for
training. There are other approaches that also produce word embeddings given
a training corpus as an input, such as GloVe [15], fastText [1], ELMo [16], and
USE [2]. The choice for word2vec is justi�ed because of its general applicability
and robustness in several NLP tasks [6, 5, 10, 11, 17, 19].

We replace all mathematical expressions by the sequence of the identi�ers
it contains, i.e., W (2, k) is replaced by `W k'. Further, we remove all common
English stopwords from the training corpus. Finally, we train a word2vec model
(skip-gram) using the following hyperparameters con�guration8: vector size of
7 https://arxiv.org/
8 Non mentioned hyperparameters are used with their default values as described in
the Gensim API [18]
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300 dimensions, a window size of 15, minimum word count of 10, and a neg-
ative sampling of 1E − 5. The trained model is able to partially incorporate
semantics of mathematical identi�ers. For instance, the closest 27 vectors, con-
sidering cosine simularity, to the mathematical identi�er f are mathematical
identi�ers themselves and the fourth closest noun vector to f is vfunction. In-
spired by the classic king-queen example, we explore which tokens perform best
to model a known relation. Consider an approximation vvariable − va ≈ v − vf,
where vvariable represents the word variable, va the identi�er a, and vf represents
f . We are looking for v that �ts best for the approximation. We call this measure
the semantic distance to f with respect to a given relation between two vectors.
We perform an extensive evaluation on the �rst 100 entries of the MathML-
Ben benchmark [21]. We evaluate the average of the semantic distances with
respect to the relations between vvariable and vx, vvariable and va, and vfunction

and vf. In addition, we consider only results with a cosine similarity of 0.7 or
above to maintain a minimum quality in our results. The overall results were
poor with a precision of p = .0023 and a recall of r = .052. For the identi�er W
(Equation (1)), the evaluation presents four semantically close results: functions,
variables, form, and the mathematical identi�er q. Even though expected, the
scale of the presented results are astonishing.

Based on the presented results, one can still argue that more settings should
be explored (e.g. di�erent embedding techniques, parameters) and di�erent pre-
processing steps adopted. Nevertheless, the overall results would not be improved
to a point of being comparable to [20] �ndings, which report a precision of
p = 0.48. The main reason for this is that, mathematics as a language is highly
customizable. Many of the de�ned relations between mathematical concepts and
their descriptors are only valid in a local scope. Consider, for example, an author
that notes his algorithm by π. This does not change the general meaning of π,
even though it e�ects the meaning in the scope of the article. Current ML ap-
proaches only learn patterns of most frequently used combinations, e.g., between
f and function. Furthermore, we assume this is a general problem that di�erent
embedding techniques and tweaks of settings.

3 Make Math Machine Learnable

A case study [23] has shown that only 70% of mathematical symbols are explicitly
declared in the context. Four reasons are causing an explicit declaration in the
context: (a) a new mathematical symbol is de�ned, (b) a known notation is
changed, (c) used symbols are present in other contexts and require speci�cations
to be properly interpreted, or (d) authors declarations were redundant (e.g. for
improving readability). We assume (d) is a rare scenario compared to (a-c),
unless in educational literature. On the other hand, (d) is most valuable for
learning algorithms.

In cases (b-c), used notations are ambiguous. To overcome this issue, it re-
quires an extensive database that collects all semantic meanings for mathemati-
cal expressions. In [25], they propose the use of tags, similarly to the POS tags in



linguistics, but for tagging mathematical TEX tokens. As a result, a lexicon con-
taining several meanings for a large set of mathematical symbols is developed.
Such lexicons might enable the disambiguation approaches in linguistics (e.g. via
WordNet [14]) to be used in mathematical embeddings in the near future.

Usually, research documents represent state-of-the-art �ndings containing
new and unusual notations and lack of extensive explanations (e.g. due to page
limitations). In contrast, educational books carefully and extensively explain new
concepts, thus they are rich of cases (a) and (d). Matsuzaki et al. [12] presented
some promising results to automatically pass Japanese university entrance ex-
ams. The system required several manual adjustments. It illustrates the potential
of a well-structured digital mathematical library that distinguishes the di�erent
levels of progress in articles (e.g. introductions vs. state-of-the-art publications)
for ML algorithms.

Another problem in recent publications, is the lack of standards for properly
evaluating MIR algorithms, leading to several publications that present promis-
ing results without an extensive evaluation [3, 9, 24]. While ML algorithms in
NLP bene�t from available extensive training and testing datasets, ongoing dis-
cussions about interpretations of mathematical expressions [21], and imprecise
standards thwarts research progress in MIR. A common standard for interpret-
ing semantic structures of mathematics would help to overcome the issues of
di�erent evaluation techniques. Therefore, we introduce Mathematical Objects
of Interest (MOI). The goal of MOIs is to combine the advantages of concepts
(1-3) and propose a uni�ed solution for interpreting mathematical expressions.
We suggest MOIs as a recursive tree structure in which each node is an MOI
itself. The current workaround of the problematic example of αi as an element of
the vector α in content MathML is vague and inappropriate for content speci�c
tasks. As an MOI, this expression would contain three nodes, with αi as the
parent node of two leaves α and i. While it �rst seems non-intuitive that α, as
the vector, is a child node of its own element, this structure is able to incorporate
all three components of semantic information of the expression. Hence, an MOI
structure should not be misinterpreted as a logical network explaining seman-
tic connections between its elements, but as a highly �exible and lightweight
structure for incorporating semantic information of mathematical expressions.

4 Conclusion and future Work

In this paper, we explored how text embedding techniques are unable to rep-
resent mathematical expressions adequately. After experimenting with popular
mathematical representations in MIR, we expose fundamental problems that
prevent ML algorithms from learning mathematics. We further presented some
concepts for enabling ML algorithms to learn mathematical expressions.
Acknowledgments This work was supported by the German Research Foundation
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