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Abstract. Nowadays, the use of intelligent systems in homes and work-
places is a well-established reality. Research efforts are moving towards
increasingly complex Ambient Intelligence (AmI) systems that exploit a
wide variety of sensors, software modules and stand-alone systems. Un-
fortunately, using more data often comes at a cost, both in energy and
computational terms. Finding the right trade-off between energy savings,
information costs and accuracy of results is a major challenge, especially
when trying to integrate many heterogeneous modules. Our approach
fits into this scenario by proposing an ontology-based AmI system with
a cognitive architecture, able to perceive the state of the surrounding
environment, to reason on the current situation and act accordingly to
modify the state of the environment based on the user’s preferences.
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1 Introduction

Many Ambient Intelligence (AmI) systems are characterized by the use of a wide
variety of devices that provide information to them at a cost, in energy and
computational terms, which may or may not be appropriate to the importance
of the information itself. The abundance of information almost always leads to
an increase in the accuracy of reasoning, but also to the creation of systems that
are too complex and inefficient in terms of energy and computational effort.

Today, these systems not only use physical sensors to collect data, but increas-
ingly also use entire autonomous software subsystems that can be considered as
sophisticated virtual sensors. The use of these modules enriches the available
context information, in order to better perceive the heterogeneous and dynamic
environmental conditions of the surrounding environment. For example, an app
installed on a smartphone that recognizes user activities could be considered
as a software sensor by the AmI system. Such high-level information can be
combined with other data collected by hardware and software sensors, and used
to adapt the environmental conditions to those desired by the user [3]. This
will allow the inference system to reason not only with low level information,
but also with higher level concepts, achieving better results with less compu-
tational effort. Moreover, the same input data, processed by different software
modules, can produce completely different results, whose combination generates
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new knowledge. Additionally, the same raw data acquired by the sensors can lead
to information of different quality, based on the maximum cost that the system
is willing to incur and, therefore, the quantity and complexity of the software
modules that can be used.

This raises another problem related to the convenience of obtaining addi-
tional information, while also considering the costs of obtaining it. The level
of dynamism and uncertainty of the surrounding environment could in fact in-
fluence the choices of the system on how to acquire information. Therefore, in
uncertain contexts, where the user interacts continuously with the environment
and the AmI system is not sure about what is happening, it could be encouraged
to acquire further knowledge to decrease its uncertainty and become more self-
confident, even at the expense of incurring higher costs. Conversely, if the system
is reasonably sure of what is happening, it may not be worthwhile to acquire
further data, as this would not significantly change its level of uncertainty but
would still lead it to spend more.

In this work we propose an AmI system which takes inspiration from some
typical characteristics of humans, such as self-awareness, in order to adapt the
environmental conditions to the specific needs of users, by exploiting its dynam-
ically updated knowledge about the external world and its own subsystems.

In recent years, many research efforts in the field of AmI have focused on the
development of autonomous systems, able to reason about their own structure
as well as the external world [1]. Similar to [13], our system will maintain and
constantly update a model of the environment and one of itself, so as to allow its
self-configuration and self-management. One of the main characteristics of our
system is its capability to maintain a cognitive representation of its own perceiv-
ing process, learning how to improve its perception in order to understand the
surrounding environment [19, 8]. Creating autonomous systems has often been
a challenge for researchers, especially as regards the use of cognition to achieve
minimal autonomous behaviour [20]. In this regard, many artificial intelligence
techniques have been exploited over time, such as genetic algorithms [17], rein-
forcement learning techniques (e.g., Q-learning [10]), and Bayesian networks [11].

The remainder of this paper is organized as follows. Section 2 introduces
the multi-layered architecture of the proposed system, providing a high-level
description of its modules. Section 3 describes the self-reasoning capabilities of
our system, which are used for the dynamic reconfiguration of its subsystems.
Finally, Section 4 presents our conclusions.

2 Proposed Architecture

In this paper, we propose an AmI system with a cognitive architecture, able to
perceive the surrounding environment, to reason on the current context and to
act directly to modify the environment in an appropriate way [6]. We aim to
design and develop an AmI system that is self-configuring and self-managing,
taking inspiration from some of the peculiar characteristics of humans, such as
self-awareness, so as to make the architecture more resilient and context-aware.
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Fig. 1. Proposed architecture.

Our system is able to fully exploit the continuously updated information
contained within two ontologies (self-model and world-model), which form its
knowledge base. In this way, the system can monitor the status of all its software
sub-modules [9], dynamically adapting its behavior to the current context, in
order to achieve an optimal trade-off between performance and costs.

The system relies on a distributed sensory infrastructure composed of het-
erogeneous devices to gather raw data. Such data are processed through several
software modules that employ artificial intelligence and machine learning tech-
niques to aggregate them and to infer high-level information. Such knowledge is
then exploited to deeply understand the system status and that of its surround-
ings. Such understanding process is exploited to adapt the system behavior to
the current context, by dynamically choosing the subset of sensors and software
modules to exploit in the inference process. Such a selection allows the system
to activate only the components strictly necessary to achieve its goals, rather
than using all data sources. As demonstrated in [4], exploiting all sensory and
contextual information available can be detrimental, both in terms of costs and
in terms of accuracy of reasoning, since unnecessary information would only add
noise to the data.

This approach aims to reduce the cognitive load of the system, allowing it
to focus only on the most important aspects at any given time. Moreover, this
allows reducing the energy consumption, while maintaining a high degree of
accuracy in its reasoning.

Figure 1 shows the multi-layered architecture of the system. The lowest level
is composed of sensors and actuators, which are the system’s connection points
with the outside world. Such heterogeneous level includes, for example, Wireless
Sensor Networks [12] and motion sensors [2, 15]. Raw data collected by sensors
are sent to dedicated software modules, which use specific data fusion and ma-
chine learning techniques to process them. Several software modules can be used
in parallel, in cascade or in competition with each other, depending on the sit-
uation. If, for example, there are several modules that infer the same concept,
the system selects the best combination of these to ensure the optimal trade-off
between accuracy and cost, as will be shown in Section 3. Each software module,
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however complex, can be considered as a virtual sensor, which infers high-level
concepts. The output of such heterogeneous software sensors is merged by a
probabilistic multisensor data fusion module, which produces a belief of the
system on what is happening in the surrounding environment.

The reasoner evaluates the quality of the inference process perfomed by the
data fusion module, adopting opportune quantitative quality indexes (i.e., the
uncertainty of reasoning and the cost of the inference while using the current
sensors and software modules). Such evaluation takes into account the knowl-
edge contained in the ontologies (e.g., the cost function associated with each
component, as will be described in Section 3). The resulting quality evaluation
is then sent to the self-optimizer. The self-optimizer estimates the contribution
of each sensor and software module to the current inference process and, there-
fore, the importance of each component, as will be described in Section 3. Using
a multi-objective optimization technique, the optimizer identifies the best trade-
off between accuracy and costs, and decides which sensors and software modules
should be used to ensure optimal performance.

Finally, the reasoner uses information coming from the data fusion module,
along with knowledge regarding the state of the surrounding environment con-
tained in the world model ontology, to plan the best sequence of actions to satisfy
the user’s needs, based on his preferences, according to the principles of AmI. As
a result, a series of messages are sent to actuators, which will effectively change
the state of the environment.

3 Cognitive Self-Reasoning

The data fusion system is based on a Dynamic Bayesian Network (DBN), which
is a particular type of Bayesian Network that takes into account past observa-
tions, and it is thus suitable for reasoning on dynamic problems [16].

A DBN is composed of slices: each slice represents the state of a phenomenon
in a particular instant. A slice can be composed of an arbitrary number of hidden
nodes (the objective of the inference, such as the activity performed by the user)
and evidence nodes (e.g., sensory readings) [7].

As mentioned in the previous section, software modules are considered as
sophisticated virtual sensors. Their outputs are treated as evidence nodes of the
DBN, and are used to infer a higher level concept, such as user activity.

At any given moment, the DBN output is a probability distribution that
represents the belief of the system about the phenomenon under observation. In
particular, we can define the belief on a specific system state xt, at time slice t,
as Bel(xt) = P (xt|E1:t), where E1:t is the set of sensory readings collected from
the beginning up to time slice t. Such equation seems to be dependent on all
the observations made from the beginning, and therefore not practical to use.
However, as demonstrated in [5], the same equation can be expressed by the
following recursive formula:

Bel(xt) = η ·
∏
eit

P (eit|xt) ·
∑
xt−1

P (xt|xt−1) ·Bel(xt−1), (1)
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where η is a normalization constant and eit represents the reading of sensor i at
time t. The reasoner extracts two features from the output of the data fusion
module, namely the uncertainty of the reasoning and the cost of the inference.

The uncertainty is calculated using a metric based on Shannon’s entropy [18],
with the following formula:

U = −
∑
xt

Bel(xt) log2(Bel(xt)). (2)

The higher this value, the more uncertain the system is about what is hap-
pening in the outside world. By using the software modules and sensory data
most appropriate for the current situation, it will be possible to decrease it,
thus making the system more self-confident and more aware of the surrounding
environment. Since the sensors and software modules used by the system are
heterogeneous, each will be characterized by a different cost function, specified
within the ontology of the self-model. For example, the cost of a software module
could be the computational effort, while the cost of a sensor may be related to
its energy consumption. The total cost of a configuration is the sum of the costs
of the active components at the current time.

Generally, reducing costs and uncertainty are conflicting goals, because de-
creasing one means raising the other. When cost or uncertainty exceed certain
thresholds, the reasoner relies on the self-optimizer to find the best trade-off
between these two conflicting goals. The self-optimizer selects which software
modules and sensors to use based on their importance for the current inference.
To this end, we propose a metric to estimate the information gain obtained us-
ing a particular component in the current context. This metric is based on the
Kullback-Leibler (KL) divergence [14], also known as relative entropy. The KL
divergence measures the information that is lost when using an approximate
distribution G instead of the true distribution F , according to the following
formula:

DKL(F‖G) =
∑
i

F (xt) log

(
F (xt)

G(xt)

)
. (3)

The information gain of an active component of the AmI system can be
calculated as the KL divergence between the belief that takes into account the
output returned by the component and the belief that ignores it.

Calculating the information gain of a component that is not active at the
current time is more difficult, since its exact evaluation would involve an es-
timate that takes into account all the possible values obtainable as output of
the component itself. To reduce the computational cost of the self-optimizer, we
have therefore decided to approximate this metric using a heuristic, which takes
into account the history of the values of information gain of each component,
updating them only when that component was active. As demonstrated in [5],
this heuristic is a very effective estimate of the proposed metric and can be cal-
culated with a low computational cost. The information gain values calculated
by the self-optimizer are eventually returned to the reasoner, which updates the
self-model ontology appropriately. The self-optimizer will then be able to select
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the physical sensors and software modules best suited to each situation by using
a multi-objective optimization criterion. As an example of high-level inference
that could be carried out by the reasoner, using data from low-level modules
and the self-optimizer, we consider the application scenario of a smart home, in
which the AmI system has to recognize the daily activities carried out by two
users. Recognizing activities in a multi-user scenario is very challenging, and our
system can select the best components to use in different situations.

For example, suppose that the system infer that the two users are in different
rooms, exploiting a software module for presence detection (e.g., one user may
be in the bedroom, while another may be in the kitchen preparing breakfast).
In this case, the only additional difficulty, compared to the single user scenario,
is to figure out which user is in which room. To do this, the system could use
the Bluetooth module on users’ smartphones, and locate them using beacons
pervasively deployed throughout the smart home, which provide an estimate of
the position of users with a room-level granularity.

Instead, if both users are in the same room (e.g., in the living room), exploit-
ing Bluetooth beacons may no longer be sufficient. In this case, the uncertainty
of the system would increase, and the reasoner may decide to use additional
software modules to understand what activity is carried out by each user. For
example, if the two activities were watching TV and exercising with a treadmill,
the software module with the greatest information gain could be one that uses
the accelerometer and gyroscope in users’ smartphones, allowing the system to
easily discriminate between a stationary activity and a physical one.

4 Conclusions

In this paper, we have presented the cognitive architecture of an AmI system,
which is characterized by its self-reasoning and self-optimizing capabilities. These
features allow the system to accurately perceive the state of the surrounding
environment, adapting to the context and actively modifying the state of the
environment based on the users preference. Our system uses the knowledge con-
tained within two ontologies to model the state of the world and to be aware of
its own hardware and software structure.

Moreover, the system is able to reason using concepts at different levels of
abstraction simultaneously, merging information from physical sensors and very
complex software modules, which are considered to all intents and purposes as
virtual sensors. In order to achieve a good trade-off between cost and accuracy,
the self-optimizer module is able to identify the best configuration of components
to use in any situation, based on the system’s goals and current context.
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