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Abstract

Deep learning systems are increasingly being
adopted for safety critical tasks such as autonomous
driving. These systems can be exposed to adverse
weather conditions such as fog, rain and snow. Vul-
nerability of deep learning systems to synthetic ad-
versarial attacks has been extensively studied and
demonstrated, but the impact of natural weather
conditions on these systems has not been studied
in detail. In this paper, we study the effects of fog
on classification accuracy of the popular Inception
deep learning model. We use stereo images from
the Cityscapes dataset and computer graphics tech-
niques to mimic realistic naturally occurring fog.
We show that the Inception deep learning model is
vulnerable to the addition of fog in images.

1 Introduction
Deep learning models demonstrate great success in vari-
ous pattern recognition applications and image classification
problems. With recent advancements in high-performance
graphical processing units and the availability of a large num-
ber of labelled images, deep learning networks have become
even better at image recognition tasks than an average person.

Despite these outstanding success stories, it has been re-
peatedly shown that deep learning networks produce incor-
rect responses when the input is perturbed by small but in-
telligently crafted “adversarial” changes. For example, such
adversarial images can easily cause even state-of-the-art deep
learning networks to erroneously classify the images [1–4].
In many cases, the modifications to the input images are so
small that the original images are nearly indistinguishable
from the adversarial images to an average human eye. Ad-
versarial inputs pose a real challenge to the successful adop-
tion of deep learning in safety-critical applications. Adver-
sarial attacks on deep learning networks can affect fingerprint
and face recognition tasks, as well as cause errors in speech
recognition systems, and other applications.

Adversarial images can be used to generate targeted attacks
or non-targeted attacks. Targeted attacks misguide the deep
learning networks to produce responses from a specific a pri-
ori determined class. In non-targeted attacks, all images in

(a) Original image is correctly classified as a minivan by
the Inception model.

(b) Image with fog is incorrectly classified as a fountain by
the Inception model.

Figure 1: The addition of fog to an image causes the Inception
model to incorrectly classify images that would be correctly

classified by a human user.

the dataset are not assigned to a specific class; instead, the
output of the deep neural network is arbitrarily wrong.

Adversarial attacks can also be classified based on the
number of times an input is analyzed during the crafting of
the adversarial input. One-time attacks utilize only a single
access to the inputs to create the adversarial images. Iterative
attacks require multiple accesses to the input image as they
create and refine the adversarial images. Perturbations used to
generate adversarial images can be broadly classified as dig-
ital and physical. Digital attacks are based on modification
of the input image in the memory of a computer that may or
may not correspond to an image in the real world, while phys-
ical attacks are based on images that can be acquired from the



physical world. In this paper, we create non-targeted, itera-
tive, and physical attacks.

Our results show that the addition of synthetically gener-
ated fog to real-world images causes deep learning networks
to incorrectly classify images. Unlike adversarial images, our
inputs are not crafted maliciously by choosing careful ran-
dom perturbations. Instead, our inputs are merely generated
using the synthetic addition of fog; hence, such images can
be expected to occur in the real world. Our results are a small
but essential step towards demonstrating the need to design
more robust machine learning systems for safety-critical ap-
plications.

2 Related Work
Digital perturbations can be classified as individually-tailored
or universal. Individually-tailored perturbations generate
different perturbations for each of the input images in a
dataset [1–10]. Szegedy et al. [11] was the first to intro-
duce individually-tailored perturbations against deep learn-
ing networks in 2014. The adversarial images were gener-
ated using the L-BFGS method which uses binary search to
obtain an optimal input. The L-BFGS attack was an expen-
sive and time-consuming approach to find an adversarial in-
put. Goodfellow et al. [12] proposed the fast gradient sign
method (FGSM). This method performed only a one-step up-
date of the gradient. Rozsa et al. [2] analyzed FGSM and then
proposed a new approach, called fast gradient value method.
It was obtained by replacing the sign of the gradients with the
raw value of the gradients.

Many recent attacks employ individually-tailored pertur-
bations. However, universal perturbations are easier to de-
ploy. They are image-agnostic as they generate a single per-
turbation for all the images in the dataset [13–17]. Moosavi-
Dezfooli et al. [13] showed that universal perturbations can
be generalized across different image classification models.
This results in image-agnostic and network-agnostic pertur-
bations. The existence of such general perturbations has
been explained by considering the correlation between dif-
ferent image regions of the decision boundary. Mopuri et
al. [14] proposed universal perturbations which are quasi-
imperceptible to humans but capable of attacking convolu-
tional neural networks. This approach is able to attack multi-
ple images from the same target dataset across multiple deep
learning networks.

Physical perturbations are generated using real-world ob-
jects such as eye glasses or printed stickers that cause an in-
correct classification in deep learning models [18–20]. Ku-
rakin et al. [18] attacked neural networks by applying adver-
sarial images to the physical world by extending FGSM. They
made small changes for multiple iterations and for each iter-
ation, the pixel values were clipped to avoid a large change
on each pixel. Sharif et al. [19] presented the method of gen-
erating eyeglass frames, which when worn and printed can
attack a state-of-the-art deep learning system for face recog-
nition. The perturbations generated are inconspicuous to a
human and can be physically acquired via photography in the
real world. Lu et al. [20] empirically showed that adversar-
ial perturbations can cause a deep learning network to incor-

(a) Image with fog incorrectly classified as aircraft by
Inception model with tFactor=0.15, atmLight=0.6 and

PSNR=9.44.

(b) Image with fog incorrectly classified as scooter by
Inception model with tFactor=0.07, atmLight=0.6 and

PSNR=10.77.

(c) Image with fog incorrectly classified as submarine by
Inception model with tFactor=0.12, atmLight=0.8 and

PSNR=6.74.

(d) Image with fog incorrectly classified as submarine by
Inception model with tFactor=0.12, atmLight=1 and

PSNR=4.36.

Figure 2: Images from Cityscapes dataset are incorrectly classified
upon the synthetic addition of fog.



rectly detect a stop sign using physical perturbations when the
captured image is taken from a specified range. However, the
physical perturbations presented in [18–20] are not naturally-
occurring perturbations, and require the participation of a
malicious agent. In addition, the latest state-of-the-art ap-
proach for fog simulation on real scenes was proposed re-
cently by Dai et al. [21]. They used scene semantic annotation
as an additional input to their dual-reference cross-bilateral
filter on the Cityscapes dataset to obtain Foggy Cityscapes-
DBF (Dual-reference cross-Bilateral Filter). They also used
a CNN-based approach to estimate fog density.

In this paper, we propose natural attacks using visibly
foggy images to generate input that causes incorrect classi-
fication by the Inception deep learning model [22]. Apart
from an earlier preliminary work on attacking computer vi-
sion algorithms using fog generated via the Perlin noise on
two-dimensional images [23], this is the first attempt to at-
tack deep learning classifiers using natural perturbations on
stereo images that include depth information and can hence
be used to model realistic naturally-occurring fog. As shown
in Figure 1 and Figure 2, our approach of adding fog to im-
ages can cause deep neural networks to incorrectly classify
input images.

3 Our Approach
We use images obtained from the Cityscapes [24] dataset and
added fog to attack the Inception deep learning model. The
Cityscapes dataset contains 25,000 stereo images with 30 var-
ied visual theme categories, such as road, sidewalk, person,
rider, car, bus, building, bridge, traffic sign, and traffic light.
Each stereo image is a pair of images captured from two dif-
ferent cameras. These pairs of images are denoted as left and
right images. We use these pairs of images to create a depth
mapping of objects in the image. Then, we use the depth in-
formation of the objects in the images to synthetically add fog
to these images; the presence of depth information allows the
synthetically-generated fog to resemble naturally occurring
fog in the image.

The typical aim of an adversarial attack test is to add some
natural perturbation (e.g. fog, sunlight, visual environmental
changes and aberrations, etc.) over an input image in order
for the deep learning model to misclassify the image. How-
ever, it is still correctly recognized and identified by a reg-
ular human visual-eye observer. To corroborate our claims,
in this paper we proceed to generate a conventional, outside
fog environment as a naturally-occurring, subtle climate per-
turbation, in order to provide this foggy image as a qualified
difficult adversarial attack against the most advanced, novel
deep learning models to date including Inception.

First, we run the Inception model for an autonomous driv-
ing potential application using the clear weather images in
our dataset. Here, we seek to obtain accurate image recog-
nition decision results. Then we apply generated visual fog
conditions onto said baseline images from this dataset, us-
ing specific stereo-pair images and disparity mapping tech-
niques. Once this counterintuitive, adversarial image is pro-
duced, Peak Signal-to-Noise Ratio (PSNR) value disparities
between our initial clear weather images and their corre-

(a) Original left image classified as traffic light by Inception
model.

(b) Original right image that forms a stereo pair along with left
image.

(c) Disparity image showing the distance of objects from the
observer. Objects closer to the observer appear to be brighter

and objects further away from the observer appear to be darker.

(d) Image with fog incorrectly classified as scooter by
Inception model with tFactor=0.07 and atmLight=0.6.

Figure 3: Illustration of our approach for synthetically adding fog
to stereo images from the Cityscapes dataset.



Data: Left Image L, Right Image R, Thickness factor
tFactor, Atmospheric Light atmLight.

Result: Image F with synthetically added fog.
begin

F = L /* Initialize to left image */
DN = stereoSGBM (R, L) /* Calculate
noisy disparity image using stereo
semi-global matching and mutual
information */

D = filter (DN, R, L) /* Filter noisy
disparity image to generate smooth
disparity image */

for each pixel index i in F do
t = e

−tFactor
D[i] /* Compute transmission

intensity */
F [i] = tF [i] + (1− t)atmLight

end
return F /* Return foggy image */

end
Algorithm 1: Algorithm to add fog to a stereo image pair.

sponding foggy images are observed.

3.1 Fog Generation
We used a variant of stereo processing by semi-global block
matching and mutual information (Stereo SGBM) imple-
mented in the popular OpenCV toolkit to calculate the depth
of every pixel in the image. This depth information is called
the disparity of the image. Additional depth mapping infor-
mation is available in the Cityscapes dataset [24] but was not
precise enough to generate smooth natural fog. We use the
depth value of each pixel to mimic realistic fog. A higher
depth value indicates that the object is further away from the
observer and is less visible. An object that has a lower depth
value is closer to the observer and is not affected adversely by
fog.

Besides the depth of a pixel, our synthetically-generated
fog includes two additional parameters: the fog thickness
(tFactor) and the ambient atmospheric light (atmLight). The
thickness parameter tFactor determines the intensity of fog;
a thicker fog can occlude objects that are closer to the ob-
server. The atmospheric light atmLight parameter determines
the color and intensity of ambient light; we used white light
of varying intensity for our fog. A lower value of atmLight
leads to fog that is darker in color and a higher value of atm-
Light leads to a fog that is brighter.

Steps to generate foggy images are presented in Algo-
rithm 1. This algorithm takes as input a stereo image pair: left
image (L) and right image (R), thickness factor (tFactor) and
atmospheric light (atmLight). Fog density and other parame-
ters for disparity computation are all combined into a single
parameter (tFactor) referring to the fog thickness. An exam-
ple of right, left, disparity and final foggy images is shown
in Figure 3. Disparity images are stored in such a way that
objects closer to the observer are brighter and objects fur-
ther away from the observer are darker. Examples of fog for
various values of tFactor and atmLight values are shown in
Figure 2.

Original Image tF & atmL Perturbed Class PSNR
berlin000 0.12 & 1.00 park bench 10.30
berlin009 0.10 & 1.00 parking meter 12.26
berlin012 0.10 & 1.00 fountain 9.63
berlin015 0.10 & 0.80 bubble 15.44
berlin027 0.07 & 0.80 fountain 17.22
berlin070 0.07 & 0.80 stage 17.93
berlin072 0.10 & 0.80 bubble 17.20
berlin090 0.10 & 1.00 washbasin 10.19
berlin144 0.10 & 1.00 parking meter 11.44
berlin151 0.10 & 1.00 parking meter 11.92
berlin154 0.10 & 0.60 spotlight 21.35
berlin155 0.12 & 0.60 bullet 20.97
berlin160 0.12 & 0.60 spotlight 19.81
berlin164 0.15 & 1.00 fountain 8.59
berlin172 0.10 & 1.00 mailbox 9.92
berlin180 0.15 & 1.00 ship 8.73
berlin182 0.12 & 0.80 stage 14.51
berlin183 0.15 & 1.00 locomotive 9.12
berlin352 0.10 & 1.00 spotlight 12.16
berlin437 0.15 & 1.00 parking meter 9.31

Table 1: Images from Cityscapes dataset that are classified as car by
the Inception model and their corresponding foggy image we found
as adversarial. We add fog on the original left image with the param-
eters tF (tFactor) and atmL (atmLight) to obtain an incorrect class
using the Inception model.

3.2 Impact on Deep Learning System
We test the robustness of the Inception deep learning model
on the synthetic images with fog generated by our method.
We use left images from the stereo image pair for classifica-
tion purposes. We run Inception classification on the origi-
nal left image and note the classification label. We then gen-
erate a foggy image and run Inception classification on the
foggy image and note the new classification label. If the origi-
nal classification is different from the classification generated
from the foggy image, we have exposed a potential safety er-
ror in the deep learning classifier.

An ideal test of the robustness of the deep learning sys-
tem will have foggy images that look similar to the original
image. We measure the similarity between the original and
the foggy image using the peak signal to noise ratio (PSNR)
value. PSNR value can be calculated using Equation 1, where
D is the maximum possible pixel value of the image and
RMSE is the root mean squared error calculated between the
original and the foggy image.

PSNR = 20 log10

(
D

RMSE

)
(1)

High PSNR values indicate a greater similarity between the
original and foggy image. In Figure 2, we show images with
varying PSNR values. We observe that images with more vis-
ible fog have a lower PSNR value indicating lower similarity
between the original and foggy images. In general, fog gen-
erated with higher tFactor and atmLight values have lower
PSNR values. We generate multiple foggy images by varying



Original Image tF & atmL Perturbed Class PSNR
berlin014 0.10 & 0.80 spotlight 15.41
berlin016 0.10 & 0.80 fountain 15.29
berlin032 0.10 & 1.00 parking meter 19.69
berlin039 0.10 & 1.00 wing 10.30
berlin048 0.15 & 1.00 minivan 12.46
berlin063 0.15 & 1.00 spotlight 17.93
berlin094 0.10 & 1.00 groom 12.58
berlin123 0.10 & 1.00 wing 9.66
berlin147 0.10 & 1.00 spotlight 11.10
berlin153 0.10 & 1.00 vault 9.64
berlin156 0.10 & 1.00 umbrella 11.92
berlin159 0.10 & 1.00 stage 11.22
berlin161 0.12 & 0.80 spotlight 14.31
berlin162 0.12 & 0.80 aircraft carrier 14.13
berlin226 0.10 & 1.00 parking meter 11.80
berlin268 0.10 & 1.00 locomotive 11.79
berlin298 0.10 & 1.00 wing 10.54
berlin327 0.10 & 0.80 stage 16.06
berlin358 0.12 & 1.00 fountain 10.34
berlin430 0.12 & 1.00 parking meter 9.42
berlin483 0.10 & 1.00 tow truck 11.01
berlin484 0.10 & 1.00 locomotive 11.51

Table 2: Images from Cityscapes dataset that are classified as traffic
light by Inception model and their corresponding foggy image we
found as adversary. We add fog on the original left image with the
parameters tF (tFactor) and atmL (atmLight) to obtain incorrect class
using Inception model.

Original Image tF & atmL Perturbed Class PSNR
berlin079 0.15 & 1.00 lakeshore 8.60
berlin100 0.15 & 1.00 scuba diver 9.59
berlin176 0.10 & 0.80 submarine 15.53
berlin202 0.10 & 1.00 chair 11.12
berlin206 0.10 & 0.60 aircraft carrier 18.04
berlin216 0.10 & 1.00 scuba diver 9.94
berlin300 0.10 & 1.00 bubble 10.26
berlin302 0.15 & 1.00 spark bench 9.80
berlin303 0.15 & 1.00 wing 9.53
berlin306 0.10 & 1.00 bubble 11.16
berlin316 0.15 & 1.00 aircraft carrier 9.85
berlin326 0.10 & 0.80 fountain 15.41
berlin336 0.12 & 1.00 maze 11.08
berlin359 0.10 & 1.00 parking meter 11.43
berlin367 0.10 & 0.80 fountain 16.55
berlin384 0.12 & 0.80 spotlight 15.59
berlin404 0.15 & 1.00 parking meter 9.24
berlin408 0.12 & 0.60 aircraft carrier 20.76
berlin412 0.12 & 0.60 bubble 20.73
berlin417 0.15 & 1.00 washbasin 9.85

Table 3: Images from Cityscapes dataset that are classified as bike
by Inception model and their corresponding foggy image we found
as adversary. We add fog on the original left image with the parame-
ters tF (tFactor) and atmL (atmLight) to obtain incorrect class using
Inception model.

the values for tFactor and atmLight. Then, we run classifi-
cation on these images and select the image with the highest
PSNR value that is able to fool the deep learning system. In
Figure 2, Image b has the highest PSNR among all generated
foggy images that is incorrectly classified by the Inception
deep learning model.

In our experiments, we aim to attack a deep learning
model, Inception, by adding fog using our fog generator (Al-
gorithm 1) on the Cityscapes dataset. Table 1, Table 2, and
Table 3 demonstrate the PSNR value between an original left
image and its corresponding foggy image that we find as ad-
versarial. First, we run the Inception model on the Cityscapes
images and we classify them based on their labels (e.g., car,
traffic light, bike). Second, we find the largest PSNR value
between the original left image and foggy image that has a
different label from the original one classified by Inception.
Lastly, the model returns the label of the adversarial image
with the corresponding tFactor and atmLight values.

From our experiments, one may conclude that:

• The bounded PSNR value for the car images is found
to be from 8.59 to 21.35. The adversarial foggy images
of cars are observed to be classified as different labels
(e.g., park bench, parking meter, fountain, stage, bubble,
washbasin).

• The bounded PSNR value is also observed to be from
9.42 to 19.69 for the traffic light images. The generated
adversarial foggy images on traffic light have different
labels, such as spotlight, wing, fountain, umbrella, loco-
motive and parking meter.

• The bounded PSNR value varies from 8.60 to 20.76 for
the bike images. The adversarial images on bike are la-
beled as lakeshore, scuba diver, aircraft carrier, bubble,
fountain, maze, spotlight, washbasin, wing, and subma-
rine.

• Overall, we see that the decision boundary between the
clear weather images and their corresponding foggy ad-
versarial images to vary from 8.59 to 21.35 PSNR.

• It may also be observed that the minimum tFactor and
atmLight values that result in an adversarial foggy image
are 0.07 and 0.60, respectively.

• It may also be seen that the maximum PSNR values that
are found are considerably close to each other for the
same labels of adversarial images. For example, the
maximum PSNR values for almost all the adversarial im-
ages that are labeled as parking meter vary from 9.24 to
12.26.

• These perturbed classes crucially affect the decision
mechanism of any system that works with deep learn-
ing classifiers.

4 Conclusion and Future Work
We used computer graphics techniques to generate natural
fog effects in Cityscapes stereo images, and observe that
these images with synthetically-generated fog are able to fool
the current state-of-the-art deep learning system, Inception.
Hence, existing deep learning systems are vulnerable not only



to digital and physical adversarial attacks, but they produce
incorrect answers even when faced with benign naturally oc-
curring perturbations. Several interesting directions for fu-
ture work remain open. First, we want to explore the ef-
fects of other naturally occurring conditions such as rain, hail
and snow on deep learning image classification systems. Sec-
ond, we will test the robustness of systems designed specif-
ically for outdoor functionality, such as autonomous driving
systems. Third, we will explore the design of defense algo-
rithms that can permit deep neural networks to reason cor-
rectly about images with fog and other natural perturbations.
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