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Abstract. This paper describes the construction of the short-term forecasting 
model of cryptocurrencies’ prices using machine learning approach. The 
modified model of Binary Auto Regressive Tree (BART) is adapted from the 
standard models of regression trees and the data of the time series. BART 
combines the classic algorithm classification and regression trees (C&RT) and 
autoregressive models ARIMA. Using the BART model, we made a short-term 
forecast (from 5 to 30 days) for the 3 most capitalized cryptocurrencies: Bitcoin, 
Ethereum and Ripple. We found that the proposed approach was more accurate 
than the ARIMA-ARFIMA models in forecasting cryptocurrencies time series 
both in the periods of slow rising (falling) and in the periods of transition 
dynamics (change of trend). 

Keywords: cryptocurrency market, short-term forecasting model, machine 
learning approach. 

1 Introduction 

The rapid development of digital currencies during the last decade is one of the most 
controversial and ambiguous innovations in the modern global economy. 

Significant fluctuations in the exchange rate of cryptocurrencies and their high 
volatility, as well as the lack of legal regulation of their transactions in most countries 
resulted in significant risks associated with investment into crypto assets. This has led 
to heated discussions about their place and role in the modern economy (see, for 
example [1-5]). 

Therefore, the issue of developing appropriate methods and models for predicting 
prices for cryptographic products is relevant both for the scientific community and for 
financial analysts, investors and traders. 

Methodological approaches to forecasting prices for financial assets depend on an 
analyst’s understanding of the causal relationships in the pricing process. 

For example, the forecasting model can be specified as a price formation model: 
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─ Based on the interaction of market players (demand-supply models) that make 
economic decisions based on some indicators or regularities, taking into account 
objective economic laws or laws of behavioral finance (econometric and balance 
models); 

─ Given the past dynamics (time series models and autoregressive models), 
─ Taking into account production-technological possibilities of creating the 

corresponding asset (in particular, for commodity markets, fundamental valuation of 
shares, technological opportunities for mining cryptocurrency, etc.); 

─ Based on the consideration of random factors and events, for example, external 
shocks, which complicate the formal description of cause and effect relationships 
(stochastic models). 

It should be noted that forecasting cryptocurrencies’ prices is fundamentally different 
from forecasting other financial assets, in particular, ordinary (fiat) currencies, which 
have a large number of theoretical and empirical studies focused on studying their 
dynamics model. 

There are two fundamentally different approaches to forecasting the exchange rate 
dynamics of currencies. The first approach is to build a cause and effect casual model 
that describes the relationship between exchange rates and other macroeconomic 
variables (in particular, the rates of economic growth, trade and balance of payments, 
purchasing power parity, public debt, inflation rates, etc.) within a certain theoretical 
economic concept. 

The other approach is to study only the time series and make a prediction based on 
the processing and analysis of past observations. The most common models are the 
Box-Jenkins ARIMA time series models and their modifications, GARCH models, or 
artificial neural networks. 

It should be noted that there is no consensus on the fundamental value of 
cryptocurrencies among scholars. The prevailing thesis is that the exchange rate of the 
majority of cryptocurrencies is determined only by the ratio of demand and supply [3, 
4, 6-10]. 

Liu and Tsyvinski’s [11] empirical analysis of the three most capitalized crypto 
currencies (Bitcoin, Ripple, and Ethereum) did not reveal a static relationship between 
the yield of cryptocurrencies and the complexity of their extraction.  

At the same time, macroeconomic factors, which usually determine the dynamics of 
currency, stock and commodity markets have no significant effect on the dynamics of 
the cryptocurrencies market.  

Conrad, et al. [12], also found that influence of the US stock market (SP500 index) 
and the global stock market index (Nikkei 225 index) on bitcoin's volatility was not 
significant. 

In addition, the studies reported in [1, 8, 9] show that the price dynamics of 
cryptocurrencies is described by classical log-periodic models of price bubbles of 
Sornette [13] and their modifications. 

A number of recent cryptocurrency market studies show that, unlike other financial 
assets, cryptocurrency prices are influenced by a number of specific factors that shape 
their demand, such as the number of Google trends searches, the number of posts in 
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social networks and other mass media [6, 14-16]. These studies substantiated the 
feasibility of using non-typical factors as predictors. 

All of these factors complicate the development of casual econometric models of 
cryptocurrency price dynamics.  

Recently, non-parametric methods based on Machine Learning and Deep Learning 
have gained popularity for the analysis and forecasting of financial and economic time 
series. 

Models of Machine Learning are based on special artificial networks that allow to 
solve the problem of prediction and classification by utilizing learning sequences in the 
data. The effectiveness of such models depends on the training speed and the degree of 
universality of approximating functions. 

These models combine an arsenal of powerful methods, such as Artificial Neural 
Network (ANN), Support Vector Machines (SVM), Decision and Classification Tree 
(DT, CT), Fuzzy Logic, Genetic Algorithms (GA), linear and nonlinear statistical 
models, etc. 

Examples of their effective use in forecasting exchange rates and stock indices are 
given, in particular, by Peng et al. [17]. 

Several studies [18-20] reported the results of the Bitcoin exchange rate forecasting 
using classical ARIMA models and using different methods of machine learning, such 
as Random Forest (RF), Logistic Regression (LR) and Linear Discriminant Analysis 
(LDA), and Long Short-Term Memory (LSTM). The results from these analyses 
showed that the models that relied on training proved to be better suited for forecasting 
both the prices of cryptocurrencies and their volatility. 

Rebane and Karlsson [21] conducted a comparative analysis of the ARIMA 
forecasting properties with recurrent neural networks (RNNs) for such cryptocurrencies 
as DASH, Ethereum (ETH), Litecoin (LTC), Siacoin (SC), Stellar (STR), NEM 
(XEM), Monero (XMR) and Ripple (XRP). The results showed that neural networks 
had better forecasting properties than ARIMA models. 

Thus, in our view, the second approach, which is based on the application of the time 
series analysis using the CRISP-DM methodology [22], is more appropriate for 
predicting price trends in cryptocurrency. 

The purpose of our work is to construct a short-term price forecasting model for the 
3 cryptocurrencies with the highest market capitalization using binary autoregressive 
models and machine learning technology. 

2 Methodology 

2.1 CRISP-DM Approach 

To solve the problem of forecasting the dynamics of cryptocurrencies, we used the 
CRISP-DM (Cross-industry standard process for data mining) methodology (Fig. 1-2).  



323 

 
Fig. 1. The conceptual diagram of cryptocurrency forecasting based on the standard CRISP-

DM. 

 
Fig. 2. An excerpt from the cryptocurrencies functional dynamics diagram in the Microsoft 

Azure Machine Learning Studio environment based on the CRISP-DM standard. 
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According to CRISP-DM, intelligent analysis is a continuous process with many cycles 
and feedback loops, and has six phases (I-VI). 

The main advantage of the CRISP-DM is that it is platform- and application neutral 
and that it can be adapted to various applied problems.  

Fig. 2 shows some of the CRISP-DM phases of the cryptocurrency forecasting 
functional dynamics diagram: Phase II: Data understanding, Phase III: Data 
preparation, Phase IV: Modeling, Phase V: Evaluation. 

Methodology CRISP-DM is the most widespread publicly available standard 
process model that describes major phases and common data mining methods. 

2.2 Regression Tree 

The regression tree is a class of regression models that allows separating the input space 
of factor variables into segments. Subsequently, a separate piecewise regression model 
can be constructed for each of them representing a regression function in an intuitive 
and visual form [23-24]. 

In such a tree, internal nodes contain rules for splitting the space of explanatory 
variables; branches indicate the conditions and the transition between the nodes; and 
tree leaves are local regression models. 

The essence of this method is in sequential division of the data set into non-
intersecting classes, which, in turn, are also subject to a breakdown by a partition 
efficiency criterion.  

The decision tree consists of the following elements: “nodes”, “leaves” and 
“branches”. “Branches” contain records of attributes which define the target function 
(result variable), the “leaves” are the values of the target function, and “nodes” are the 
remaining attributes under which the classification takes place.  

There are two types of trees: (i) for classification, in this case, the result of the 
prediction is the data ownership class; and (ii) for regression, the result in this case is 
the predicted value of the target function. 

2.3 BART Algorithm  

Let us consider the proposed approach we call BART (Binary Auto Regressive Tree). 
It is a generalization of standard models of regression trees and is adapted to time series 
data. BART combines the classic classification and regression trees (C&RT) [24-25] 
algorithm and the standard autoregressive integrated moving average (ARIMA) models 
and their components (AR, MA). Models of ART (Auto Regressive Tree) are closely 
related to the models of the TAR (threshold autoregressive model) threshold auto-
regression models of the class and their modifications SETAR and ASTAR [24]. The 
SETAR and ASTAR models are linear models that construct multiple adaptive 
regression splines (MARS) based on time series [26-27]. BART models differ from the 
SETAR and ASTAR models in two ways: 

(1) Error estimates for models based on BART differ from one another; 
(2) BART models allow for the gap between built-in auto regression models. 
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To convert a time series, the “window” data conversion method is used. The result 
variable Yt in this algorithm corresponds to the previous value (Yt–1) and the value with 
the lag p (Yt–p). This separation of the input space into segments (Fig. 3) allows to 
construct a separate (local) model for each of them and to represent a piecewise function 
as an autoregressive tree (Fig. 4) in an intuitive visual form. 
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Fig. 3. Separation of the input space into segments. 
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Fig. 4. Autoregressive tree building diagram.  
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Most such algorithms apply a recursive separation of training data. In BART, unlike 
other algorithms, a step-by-step (staged and iterative) method of constructing a tree is 
used: 

Step 1. The construction of a regression tree begins from a single value (root node), 
which is defined as the Median (Me, second quartile Q50%) of the entire time series Yt 
and is calculated the equation 

 ME=Q50%=0.5(Yi
min+Yi

max) (1) 

The median of the time series is defined as the median of the distribution of realization 
of a random variable at time t, that is, a real number with probability of exceeding an 
arbitrary dimension equal to 0.5. For a stationary series and a series with a symmetric 
distribution, this value does not depend on the time of observation tMe Y  and 
coincides with the mean value of the series. Sometimes in the literature, the median is 
considered to be a prototype of a simple stable output. 

Step 2. The best split is found for each unprocessed node, and it is selected according 
to a predefined rule. 

These procedures are performed similarly to the C&RT algorithm. The difference 
lies in the accepted rules, criteria for evaluation and termination of splitting. We have 
used an alternative selection criterion (or informational criterion) for better splitting 
based on the entropy indicator, because it gives preference to options with less tree 
complexity. This algorithm will determine an entropy information gain. 

In constructing BART, the number of branches (branching) is 2, that is, each node 
has two child nodes. The final tree  is chosen from these nodes, and we have to evaluate 
informativeness of not only the predictor nodes that divide the time series into subsets, 
but also of those that separate a certain group of subsets from the set, that is, the subtree 
from the rest of the tree. 

Entropy criterion. Initially, the probability is estimated as the frequency of assigning 
a particular observation to a certain subset (subtree) and the entropy Ĥ  sampling lY  
is calculated using the following equation: 

  ˆ , P NH P N H
P N P N

     
. (2) 

After all the information in the node is obtained for a certain predecessor, entropy is 
calculated using the following equation: 

      ( )ˆ ˆ ˆ, , , , , ,p n P N p nH P N p n H p n H P p N n
P N P N
   

   
 

 (3) 

where Р – is the number of objects that correspond to a subset С, and р – is the number 
of objects that correspond to the membership conditions of a subset, p P , similarly 
n and N are such that CNN,n  .  
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Then the entropy of the sample   1lx Y x   will be  ˆ ,H p n , and the 

probability of obtaining an element from this sample will be calculated as p n
P N



. 

Similarly, for the sample   0lx Y x   entropy  ˆ ,H P p N n   can be 

calculated with probability 
   P p N n

P N
  


. Thus, the entropy of the whole sample 

after obtaining information φ is calculated using equation (3). 
Then the decrease of entropy can be calculated as: 

      C
ˆ ˆIGain , , , , ,lY H P N H P N p n    (4) 

which is called entropy information gain, which is the amount of information about the 
current division of the tree into two classes «с» and «not с».  

In addition, in the BART algorithm for the early termination criterion Q, we used an 
extended Bayesian information criterion [28], which minimizes the statistic: 

    SSEEBIC ln ln 2lnn J n p
n

       , (5) 

where SSE – is the sum of squares of the residuals of the model; J – is the number of 
model parameters; n – is the number of examples of training sample; p – is the quantity 
that characterizes the complexity of the model space (it is the product of the tree size  
and the number of explanatory variables).  

In equation (5), the first term is the maximum value of the plausibility logarithmic 
function, and the second is a penalty for the model complexity. 

Splitting of the nodes continues until the EBIC value is reduced. Note that the 
application of this criterion in the recursive approach of the algorithm of the regression 
tree is not possible. This is due to the fact that in the recursive method during tree 
construction only part of the model is considered at a time without considering the 
complete model as a whole. 

For BART, the simplification procedure (i.e., early termination of the tree branching) 
is more important than, for example, for classification trees. This is due to the fact that 
regression trees tend to be more complex, because the variety of the investigated metric 
values (for example, the price of regression) is much more diverse than for qualitative 
data. 

Step 3. If the selected split improves the model and it is valid with an entropy 
information gain, then this split is performed and step 2 is repeated. Otherwise, the final 
tree is selected and the BART algorithm execution procedure is considered complete. 

The rejection of recursion in the BART algorithm and the transition to the iterative 
version allows for a complete control of the tree construction process, that is, it provides 
a “softer” control of the tree construction process at the expense of the following: 

(1) Determining the arbitrary order of split nodes; 
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(2) Introducing early termination rules / algorithms that analyze both separate 
nodes and the whole regression tree as a whole; 

(3) Termination of the construction of the regression tree at any time. 

Because the ultimate goal of the proposed algorithm is forecasting, the standard 
regression model of the ARIMA class, which is a traditional tool for forecasting 
financial series, needs to be built on the nodes-leaves: 

     1 d
t tL L X L     , t ~  20,N   (6) 

where Yt – is the time series, L – is the lag operator,  L  – is the polynomial degree 

р from L, μ – is the average process value,  L  – is the polynomial degree q from L, 

t  – is white noise, d – is the order of process integration Yt. If d=0, then process Xt 
can be described by ARMA (p, q) or ARIMA (p, 0, q).  

This process is stationary and has a short memory. If d=1, then the series has infinite 
memory, that is, each perturbation has an impact on the behavior of the process 
indefinitely. 

Thus the result variable Yt in this algorithm corresponds to the previous value (Yt–1) 
and the lag p ( ptY  ). Also, the separation of the input space into segments allows to 
construct an own (local) model for each of them and to represent a piecewise function 
as an autoregressive tree in an intuitive visual form. 

3 Empirical Results 

For performing empirical analysis, we selected three cryptocurrencies which are the 
market capitalization leaders: Bitcoin (BTC), Ethereum (ETH) and Ripple (XRP). We 
have taken daily closing prices for the period from 01/01/2017 to 01/03/2019, according 
to Yahoo Finance [29] and calculated their time series in log-return. 

To compare the predictive properties of the BART algorithm, we also made a 
forecast using the classical ARIMA (1, 0, 1) and ARFIMA (1, d, 1) models.  

As a parameter d in ARFIMA we can use appropriate Hurst exponents (see, for 
example E. Peters [30]). So we selected as the difference parameter d for ARFIMA 
models for each currency such values [31]: 

  ,75.0BTCH    ,83.0ETCH   66.0XRPH . 
The sample size for training for all sub-periods for the BART algorithm was 80% of 

the total sample size, and 20% was used as out-of-sample dataset. 
To implement the models, we chose the Microsoft Azure Machine Learning Studio 

Cloud Application. A fragment of the implementation of machine experiments is shown 
in Fig. 5. 

For each model the target variable is the log-return for the next time period. The 
forecast was carried out on five different time horizons: 5, 10, 14, 21, and 30 days using 
three models for each cryptocurrency. 
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Fig. 5. A diagram of the forecasting cryptocurrencies times series experiments in MS Azure 

Machine Learning environment. 
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To check the effectiveness of the BART algorithm and that of the classical models, we 
conducted tests for periods with different types of dynamics of cryptocurrencies time 
series (two subperiods for each type), namely (Fig. 6): 

(1) Stable period; 
(2) Falling trend; 
(3) Transition dynamics (change of trend); 
(4) Rising trend. 
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Fig. 6. Selected periods with different types of dynamics of cryptocurrencies time series: (a) 
BTC, (b) ETH, (c) XRP. 



331 

As we can see, BTC is a driver and other cryptocurrencies repeat its dynamics. 
Fig. 7-8 illustrate the forecast accuracy for 3 models for ETH in the period of slow 

rising (falling) (Fig. 7) and rapid trend change period (Fig. 8). Forecasting accuracy for 
BTC and XRP have the same properties as ETH. 

 
Fig. 7. 10-step (days) forecast performance for ETH in the period of slow rising (falling). 

 
Fig. 8. 30-step (days) forecast performance for ETH in transition dymamics period. 

To estimate the prognostic properties of the models we used the Root Mean Square 
Error metric (RMSE). 

Results (averaged over three cryptocurrencies) of forecasting performance for all 
sub-periods are shown in Table 1.  

The obtained results indicate that for the investigated time series of cryptocurrencies, 
the proposed approach gives RMSE over the range 4% for the 14 days forecast horizon 
without reference to the type of dynamic behavior, over the range 6% for the 21 days 
and 8% for the 30 days forecast horizon, respectively. 
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Table 1. Summary (average in three cryptocurrencies) of the forecast accuracy RMSE, % 

Model Step forecast, days 
5 10 14 21 30 

Stable period * 
ARIMA 4.27 6.54 6.80 12.20 15.08 

ARFIMA 3.93 4.87 5.30 6.00 8.60 
BART 2.76 3.11 3.45 3.73 4.83 

Falling trend ** 
ARIMA 7.13 10.12 11.10 12.47 16.40 

ARFIMA 4.98 5.34 7.70 8.73 9.26 
BART 2.97 3.64 3.30 4.15 5.60 

Transition dynamics (change of trend) *** 
ARIMA 6.76 7.03 7.30 13.61 18.51 

ARFIMA 3.34 3.67 4.00 6.44 8.76 
BART 2.82 3.16 3.50 5.59 7.61 

Rising trend **** 
ARIMA 6.82 11.99 13.15 14.07 15.34 

ARFIMA 4.63 4.42 7.20 7.81 8.93 
BART 2.25 2.98 3.70 3.34 5.64 

*     sub-periods: 11/09/2018-09/11/2018, 27/12/2018-25/02/2019 
**   sub-periods: 06/01/2018-09/02/2018, 12/03/2018-10/04/2018 
***  sub-periods: 04/12/2017-02/01/2018, 22/04/2018-21/05/2018, 02/03/2018-04/05/2018 
**** sub-periods: 09/10/2017-19/12/2017, 10/02/2018-11/03/2018 
 
The results show that for selected time series for the short-term forecast, the error of 

BART algorithm is half the size of the error of ARIMA model, on average, and it is 15-
20% lower than the error of ARFIMA model for slowly changing periods (both falling 
and rising). 

Note that all of our models show worse forecast accuracy for the periods of complex 
dynamic modes (rapid trend change periods). 

In addition, the proposed algorithm is more accurate in the periods of transition 
dynamics (change of trend) compared to ARIMA-ARFIMA models. 

4 Concluding Remarks 

The modified model of Binary Auto Regressive Tree (BART) is adapted from the 
standard models of regression trees to the data of time series. BART combines the 
classic algorithm C&RT and autoregressive models ARIMA. 

One of the advantages of the proposed method is the use of the “window” data 
transformation method for the time series. 

The obtained results proved that the BART algorithm is more accurate for all 
investigated time series of cryptocurrencies and subperiods. In particular, RMSE for 
this algorithm for the horizon of 14, 21, and 30 days was within the range of 4%, 6%, 
and 8%, respectively. 

The proposed BART method for analyzing and forecasting cryptocurrecies time 
series demonstrated higher efficiency for building forecast estimates in comparison 
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with traditional time series technique, regardless of whether the target data is collected 
before, during or after a recession. 
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