
Towards Extensible Structural Analysis of

Petri Net Product Lines

Elena Gómez-Martínez, Juan de Lara, and Esther Guerra

Universidad Autónoma de Madrid,
Escuela Politécnica Superior, Departamento de Ingeniería Informática, Spain
{mariaelena.gomez,Juan.deLara,esther.guerra}@uam.es

Abstract. In order to represent the behaviour of a (potentially large) set of con-
current systems, we propose a notion of product line of Petri nets, where presence
conditions can be flexibly attached to places, transitions and arcs. To enable an
efficient analysis of the whole set of nets, we have lifted several structural anal-
ysis methods for Petri nets, to the product line level. This avoids analysing each
particular net in isolation. Finally, we propose an extensible tool infrastructure,
based on Eclipse and on top of FeatureIDE, which supports the approach and
permits adding new analysis methods in a non-intrusive way.

Keywords: Petri nets, Product lines, Model-driven engineering

1 Introduction

Petri nets is a popular formalism to model concurrent systems [13]. It is widely used due
to its rich body of theoretical results enabling analysis, and the plethora of existing sup-
porting tools. However, in scenarios that require modelling families of similar systems
(e.g., variants of machine controllers with different characteristics, or design variants of
flexible assembly lines), one needs to build many variations of a base Petri net. If the
set of nets is large, then it becomes challenging to build, maintain and analyse.

To facilitate this task, we combine Petri nets with software product lines (SPLs) [17]
to define a notion of Petri net product line (PNPL). This allows modelling the variabil-
ity space using a feature model, and automatically producing specific Petri nets from
given feature configurations. As the main contribution of this paper, we propose lifting
structural analysis of Petri nets to the product line level. This means that we do not
need to analyse each Petri net that can be produced from a PNPL separately, but our
analysis works on the whole set of Petri nets directly. In this paper, we explain how to
lift the analysis of the marked graph property to the PNPL, but other structural analysis
techniques [13] can be lifted in a similar way. As a second contribution, we present
extensible prototype tool support to model and analyse PNPLs. Our tool is based on
Eclipse, and has an extension point to enable contributing further analysis.

In the following, Section 2 introduces PNPLs, Section 3 proposes lifting the analysis
of structural properties to the PNPLs and lifts the marked graph property analysis as an
example, Section 4 presents tool support, Section 5 compares with related research, and
Section 6 concludes the paper and presents lines of future work.

genA
PartA

FlexibleAssemblyLine

InParts Process OutProducts

PartA PartB QualityControl Parallel Prod1 Prod2

Parallel

QualityControl

Prod1

Prod2

Prod1�Prod2

cnvA
proc

cnv1

cnv2
assmbly

ctrlin

out1

out2

inc1

inc2

fix

prod pack

(a)

(c)
genB cnvB

PartB

FM=¢{FlexibleAssemblyLine, InParts, Process, OutProducts, PartA, PartB, QualityControl, …},
FlexibleAssemblyLine�InParts�Process�OutProducts�(PartA�PartB)�(Prod1�Prod2)²

(b)

mandatory optional

alternative
(exactly one)

or
(at least one)

Legend

prod1

prod2

Fig. 1. PNPL modelling a flexible assembly line.

2 Petri Net Product Lines

This section defines PNPLs, and derivation of concrete Petri nets via feature config-
urations. We consider a simple notion of Petri net, but the approach can be easily
adapted to other more complex versions. In particular, we assume that a Petri net is
a tuple PN = (P, T,A) where P and T are disjoint sets of places and transitions, and
A ✓ (P ⇥T)[(T ⇥P) is the set of arcs connecting either places to transitions or vice
versa. Given an arc a 2 A, we use a0 to refer to its source, and a1 to refer to its target.

PNPLs build on the notion of a feature model that defines the variability space of
possible configurations.

Definition 1 (Feature model). A feature model FM = (F,�) consists of a set of
features F = {f1, ..., fn} and a propositional formula � fixing the allowed feature
configurations.

Example. As an illustration, we will be using a family of Petri nets describing the
behaviour of a flexible assembly line. Figure 1(a) shows the feature model using a
diagrammatic notation [8], and Figure 1(b) using Def. 1. Our assembly line can be
configured to accept one or two kinds of input parts (PartA, PartB), can optionally have
a quality control process (QualityControl) and a parallel conveyor (Parallel), and can
produce one or two kinds of products (Prod1, Prod2).

A PNPL is a Petri net whose elements can be annotated with boolean formulae over
the features of the feature model.

Definition 2 (Petri net product line). A PNPL PNL = (FM,PN,�) is made of
a feature model FM , a Petri net PN (called the 150% Petri net), and a tuple � =
(�

P

,�

T

,�

A

) of mappings. Each mapping �

X

(for X 2 {P, T,A}) consists of pairs
hx,�

x

i mapping an element (a place, a transition, an arc) x 2 X to a propositional
formula �

x

(called the presence condition (PC) of x) over the features in FM .
PNL is well-formed if 8a 2 A • �

a

) �

a0 ^ �

a

) �

a1 .

38 PNSE’19 – Petri Nets and Software Engineering

As noticed, we use an annotative approach to facilitate the analysis. The approach
relies on the definition of a 150% Petri net that contains all variants of the PNPL, and
the assignment of PCs to its elements, so that a particular Petri net can be obtained
by removing the elements with false PC (so-called negative variability). Instead, other
approaches to SPLs use positive variability [18]. Our method can also be applied to
them as long as they permit building a 150% Petri net.

In Def. 2, the well-formedness condition requires the PC of an arc to be stronger
than the PC of its source and target elements. This ensures that, if the arc is present in a
product Petri net, its source and target elements will be present as well.
Example. Figure 1 shows the PNPL of the flexible assembly line. The 150% Petri net
in Figure 1(c) uses dashed regions as a shortcut to assign the same formula to all the
elements in the region. For example, formula PartB is attached to transition genB , to
place cnvB , and to the arcs from/to place cnvB .

The way to obtain a particular Petri net from a PNPL is by selecting a subset of the
features in its feature model. This is called a feature configuration.

Definition 3 (Feature configuration). A valid feature configuration ⇢ of a PNPL PNL

with feature model FM = (F,�) is a subset of its features satisfying �, i.e., � evaluates
to true when each variable f 2 � is substituted by true when f 2 ⇢, and by false
otherwise. We use P (FM) = {⇢

i

}
i2I

for the set of all valid configurations of PNL.

Given a feature configuration, we obtain the corresponding Petri net by removing
from the 150% Petri net those elements whose PC is false.

Definition 4 (Petri net derivation). A Petri net PN

⇢

is derived from a PNPL PNL

with feature model FM using configuration ⇢ 2 P (FM) if PN

⇢

contains exactly those
elements (places, transitions, arcs) from the 150% Petri net whose PCs are satisfied for
the features in ⇢.

We write Prod(PNL) for the set of all derivable Petri nets from the PNPL PNL.

Example. Figure 1 admits 36 configurations, each one producing a different Petri net.
Analysing each derivable Petri net of a PNPL one by one can be time-consuming, as

the number of Petri nets can be exponential in the number of features in the worst case.
Hence, the next section proposes a method to lift the analysis of structural properties to
the product line level.

3 Structural Analysis of Petri Net Product Lines

In this paper, we focus on the analysis of structural properties of the set of nets that can
be derived from a PNPL PNL. Structural properties depend only on the net topology
and are independent of the initial marking [13]. These properties include connectedness,
state machine, marked graph, free-choice and place invariants, among others.

As an example, next we provide the definition of the marked graph (MG) property.
In a MG Petri net, each place has exactly one input transition and one output transition,
whereas each transition may have multiple input and output places. Therefore, a MG
allows concurrent and synchronization structures with no conflict.

Gómez-Martínez et.al.: Extensible structural analysis of PN product lines 39

Definition 5 (Marked graph, from [13]). A Petri net PN = (P, T,A) is a marked
graph iff 8p

i

2 P • |•p| = |p•| = 1, being •
p and p

• the sets of input and output
transitions of the place p, respectively.

This definition permits analysing a Petri net, but we have a product line of them.
To improve the efficiency of their analysis, we do not examine each derivable Petri net
in Prod(PNL) separately. Instead, we work at the product line level by analysing the
PCs in the 150% Petri net to determine if a particular element (place, transition or arc)
is in Prod(PNL). For this purpose, first we lift the definition of the MG property to
the product line level. A PNPL is a MG if all its derivable nets are MGs.

Definition 6 (MG product line). A Petri net product line PNL is a marked graph iff
8PN

⇢

2 Prod(PNL) • PN

⇢

is a marked graph.

In other words, if we can derive from the product line PNL a net that is not a MG,
then PNL is not a MG product line. In particular, given a feature configuration ⇢, a Petri
net derivation PN

⇢

is not a MG if it has a place p with more than one input transition
or more than one output transition. To analyse this without explicitly generating PN

⇢

,
we extend the elements of the pre- and post-sets of each place p with the PCs of its
incoming and outgoing arcs.

Definition 7 (Lifted pre-/post-sets of a place). Given a PNPL PNL = (FM,PN =
(P, T,A),�), and a place p 2 P , the lifted pre-set of p is �

p = {(t,�(t,p)) | (t, p) 2 A},
while its lifted post-set is p� = {(t,�(p,t)) | (p, t) 2 A}.

Remark. In the previous definition, we can use the PC of the arc �

a

instead of the
PC of the transition �

a1 because, according to Def. 2, in a well-formed PNPL, �
a

)
�

a0 ^ �

a

) �

a1 , and so, �
a

^ �

a0 ⌘ �

a

⌘ �

a

^ �

a1 .
The size of the lifted pre-set �

p = {(t0,�(t0,p)), ..., (tn,�(tn,p))} of a place p will
depend on the feature configuration ⇢. To analyse the MG product line property, we re-
quire that its size is one for every possible configuration. This is the case if the following
formula is true:

�

�
p

, (�(t0,p) ^ ¬�(t1,p) ^ ... ^ ¬�(tn,p)) _
(¬�(t0,p) ^ �(t1,p) ^ ... ^ ¬�(tn,p)) _
...

(¬�(t0,p) ^ ¬�(t1,p) ^ ... ^ �(tn,p))

(1)

The formula is made of a disjunction of conjunctions, where only one term in each
conjunction can be true. This ensures that, regardless of the configuration, the pre-set
of the place will have size one. The lifted post-set of a place �

p

� is defined similarly.
This way, a PNPL includes some Petri net that is a MG if there is a feature configu-

ration ⇢ such that for every place p in the PNPL PNL:

– p is not in PN

⇢

, therefore �

p

is false; or
– p is in PN

⇢

, and therefore �

�
p

and �

p

� need to be true.

40 PNSE’19 – Petri Nets and Software Engineering

 FEATUREIDE
Composer

 PETRINETS VAR

Property
Analysis

 STATEMACHINE

 MARKEDGRAPH
…

 TEXTUAL
EDITOR

 PETRINETS
EDITOR

Feature
model

Petri nets
model

Variability
mapping

model

Analysis
result

Feature
configuration

 SAT4J

«uses»

Fig. 2. Tool architecture.

We can express these conditions as the logical formula � = (^
p2P

[¬�
p

_ (�
p

^
�

�
p

^�

p

�)]. This way, if SAT (�^�) (with SAT a predicate that holds if the formula
is satisfiable, and � the formula of the feature model), then some Petri net in the PNPL
is a MG. We can use a constraint solver to obtain a feature configuration that satis-
fies the formula, if such a configuration exists. The Petri net derived using this feature
configuration is ensured to be a MG.

Conversely, the feature configurations that yield nets which are not MGs are those
making the formula � = (^

p2P

[¬�
p

_ (�
p

^ (¬��
p

_ ¬�
p

�))] true.
Example. In the PNPL of Figure 1, the interesting cases are those for places in and ctrl.
In the latter case, any Petri net that contains either both transitions inc1 and inc2, or both
transitions prod and fix, is not a MG because place ctrl would have either two incoming
or two outgoing arcs. This is the case for the Petri nets derived from configurations that
select the features Parallel or QualityControl. Similarly, place in will have two incoming
arcs for configurations that select the feature QualityControl, and two outgoing arcs for
configurations that select the feature Parallel, resulting in nets that are not MGs.

The analysis of other structural properties, like state-machine, free-choice or asym-
metric choice, can be lifted in a very similar way.

4 Tool Support and Assessment

In this section we present a prototype realization of our approach (Section 4.1), and
assess the efficiency gain of our analysis w.r.t. an enumerative approach (Section 4.2).

4.1 Architecture and tool support

We have implemented an Eclipse plugin, called Petrinets var, which supports the pre-
sented approach. Figure 2 shows its architecture. Our tool provides two dedicated edi-
tors: one to specify the 150% Petri net, and another to assign PCs to its elements in a so-
called variability mapping model. We use the Eclipse Modeling Framework (EMF) [20]
as the underlying modelling technology, and therefore, both models are EMF-based and
conform to their respective Ecore meta-models.

Gómez-Martínez et.al.: Extensible structural analysis of PN product lines 41

1 2

3

Fig. 3. Screenshot of our tool.

We rely on FeatureIDE [12] to specify the feature model and feature configura-
tions. FeatureIDE provides an extension point Composer that our tool instantiates to
automate the derivation of specific Petri nets from the 150% Petri net given a feature
configuration. In its turn, our tool defines an extension point, called Property Analy-

sis, that allows extending the tool with new analysis methods. Our framework provides
facilities to transform the conjunction of the analysis formula and the formula of the
feature model into Conjunctive Normal Form (CNF) as the Sat4J solver requires. These
facilities can be used by any analysis. We currently provide two instances of this ex-
tension point to analyse whether some/all Petri nets in a PNPL are state machines or
marked graphs.

Figure 3 shows a screenshot of our tool. The Eclipse project explorer (label 1) con-
tains the FeatureIDE project with the definition of the PNPL used as a running exam-
ple. This project is configured with our composer and declares the 150% Petri net (file
150mm.petrinets), the feature model (file model.xml that is being edited in the window
labelled 2), and the variability model (file annotation.vrb that is being edited in the win-
dow labelled 3). As the figure shows, there are dedicated editors for each kind of file. A
popup menu on the variability model allows selecting the lifted analysis to perform.

Note that, as a proof of concept, our current implementation uses its own EMF
meta-model to represent 150% Petri nets. This meta-model supports a simple notion
of net like the one we have used in the paper. However, we are planning to use the
standard Petri Net Markup Language (PNML) [16] instead, for which there is an EMF
implementation available.

4.2 Efficiency assessment

Next, we report on a small-scale experiment to assess the efficiency gain of our lifted
analyses, compared to generating all derivable nets in a PNPL and analysing each net

42 PNSE’19 – Petri Nets and Software Engineering

separately. In particular, we measure the time for analysing the MG and state-machine
(SM) properties.

Structural Lifted analysis Analysis of

analysis of PNPL all products

Marked graph 38 3356
State machine 41 4603

Table 1. Analysis time (ms) for MG and SM.

The experiment uses the example of
Figure 1, for which the analyses report
that some Petri nets in the PNPL are nei-
ther MGs nor SMs. Table 1 shows the
average analysis time in milliseconds of
running 10 times each analysis, where we
discarded the first execution to avoid warmup effects. As it can be observed, both lifted
analyses are two orders of magnitude faster than the time to generate and analyse each
net in isolation. We expect further efficiency gains with bigger PNPLs (with more fea-
tures), but performing more experiments is up to future work.

5 Related Work

The main analysis techniques for Petri nets can be classified into three groups [5]: i)
enumeration, ii) transformation (mainly reduction), and iii) structural. Enumeration
methods are based on the construction of a reachability/coverability graph, but they
suffer the state explosion problem. Transformation methods obtain a slice of a Petri net
that is easier to analyse but preserves the properties under study [3]. Structural analysis
techniques are based on the net structure and its initial marking, and can be divided
into two subgroups: linear programming techniques based on the state equation, and
graph-based techniques based on “ad hoc” reasoning frequently derived from the firing
rule. A survey on Petri nets models and their analysis techniques can be found at [19].

There are several mechanisms to model variability for SPL. Most of them can be
classified into annotation-based and composition-based techniques [1]. In annotation-
based approaches, parts of a model are annotated with information about their mapping
to products of the product line. They are widely used since they are easy to implement.
Nevertheless, they work under the closed world assumption, i.e., the set of features is
fixed. In composition-based modelling, the product line is decomposed into separate
modules representing features that can be composed to derive products. They support
positive variability, that is, composition units are added on demand. Surveys on SPL
modelling techniques can be found in [2, 4, 21].

Just like us, some works have added variability to Petri nets using SPL techniques.
Feature Petri nets(FN) [14] extend Petri nets to allow modelling the behaviour of an
entire SPL. A FN transition is activated if its input places are marked and its applica-
tion condition (a logical constraint over features) is true under the current configuration
state. Dynamic feature Petri nets (DFPN) [15] extend FN to control feature bindings at
runtime, and allow the evaluation of some dynamic properties using model checking.
These works lift the analysis based on the reachability graph to the product line level, by
adding presence conditions to this graph. They follow an annotative approach to model
variability. Similarly, some works have used variability in Petri nets with the purpose
of expressing variability in higher-level languages – like activity diagrams – and use a
variable reachability graph for analysis [7]. This work is also an annotative approach
for SPL. With respect to these works, our variability model is more general: [7] only

Gómez-Martínez et.al.: Extensible structural analysis of PN product lines 43

supports variability in edges, [15] supports variability just in arcs and transitions, while
our approach supports presence conditions in arcs, places and transitions. With respect
to analysis, while they focus on the reachability graph, we lift structural analysis tech-
niques.

In addition to SPL methods, other techniques to handle variability in Petri nets have
been proposed. Conditional Petri nets [22] associate to each transition a condition de-
fined with the family of L languages. Therefore, a transition is conditioned by the transi-
tion sequence previously applied. Likewise, logical Petri nets [10] limit transition firing
by means of constraints on first-order logic. Reconfigurable nets [11] can change the
net topology at runtime by means of rewriting rules. Instead, PNPLs are static: a con-
figuration needs to be provided to derive a Petri net. Regarding analysis of model-based
product lines, Czarnecki and Pietroszek [6] proposed an approach to check whether all
possible derivable models satisfy the OCL constraints of their meta-model. We may
have encoded the MG property in OCL and used that technique. However, our solution
permits generating specific constraints for the analysed PNML (instead of relying on
one generic OCL constraint), which therefore can be solved using simpler and poten-
tially more efficient standard SAT-solving techniques. Instead, Czarnecki’s approach
requires extending an existing OCL-based checker to consider presence conditions.

Concerning SPL analysis of temporal properties, Legay et al. [9] represent the be-
haviour of variability-intensive systems by means of an extension of transition systems,
called Feature Transition System. These authors also propose in [4] model checking
algorithms to verify of all products of a SPL. Unlike this approach, we only focus on
static properties, but we would plan to explore behavioural properties in further works.

Altogether, to the best of our knowledge, there are no previous works on the analysis
of structural properties of PNPLs. Our work is a first step in this direction, which we
have realized in practice through extensible tooling.

6 Conclusions and Future Work

In this paper, we propose the notion of Petri net product line, show how to analyse
structural properties (specifically the marked graph property) at the product line level,
and presented an extensible prototype on top of FeatureIDE.

In the future, we plan to support more types of static analysis techniques, exploit
compositionality of Petri nets in these analyses, and perform more thorough experi-
ments. Moreover, our idea is to develop a domain-specific language to express such
analyses, which then can be compiled into standard SAT solving procedures. At the
technical level, we will use the PNML meta-model, to ease the connection of our ap-
proach with Petri net tools like CPN Tools [23]. Finally, we are also planning to explore
the lifting of dynamic analyses, and also the consideration of variability of the Petri net
language itself.

44 PNSE’19 – Petri Nets and Software Engineering

Acknowledgments

Work funded by the Spanish Ministry of Science (project MASSIVE, RTI2018-095255-
B-I00) and the R&D programme of Madrid (project FORTE, P2018/TCS-4314). We
thank the anonymous referees for their useful comments.

References

1. Sven Apel, Don S. Batory, Christian Kästner, and Gunter Saake. Feature-Oriented Software
Product Lines - Concepts and Implementation. Springer, 2013.

2. Fabian Benduhn, Thomas Thüm, Malte Lochau, Thomas Leich, and Gunter Saake. A Sur-
vey on Modeling Techniques for Formal Behavioral Verification of Software Product Lines.
In Proceedings of the 9th International Workshop on Variability Modelling of Software-
intensive Systems, VaMoS ’15, pages 80:80–80:87, New York, NY, USA, 2015. ACM.

3. Gérard Berthelot. Transformations and decompositions of nets. In Advances in Petri nets,
volume 254 of LNCS, pages 359–376. Springer, 1987.

4. Andreas Classen, Maxime Cordy, Pierre-Yves Schobbens, Patrick Heymans, Axel Legay,
and Jean-François Raskin. Featured Transition Systems: Foundations for Verifying
Variability-Intensive Systems and Their Application to LTL Model Checking. IEEE Trans.
Software Eng., 39(8):1069–1089, 2013.

5. José Manuel Colom, Enrique Teruel, and Manuel Silva. Performance models for discrete
event systems with synchronisations: Formalisms and analysis techniques. Editorial KRO-
NOS, 1998.

6. Krzysztof Czarnecki and Krzysztof Pietroszek. Verifying feature-based model templates
against well-formedness OCL constraints. In Proc. GPCE, pages 211–220. ACM, 2006.

7. André Heuer, Vanessa Stricker, Christof J. Budnik, Sascha Konrad, Kim Lauenroth, and
Klaus Pohl. Defining variability in activity diagrams and petri nets. Sci. Comput. Program.,
78(12):2414–2432, 2013.

8. Kyo Kang, Sholom Cohen, James Hess, William Novak, and A. Peterson. Feature-oriented
domain analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-021, Software
Engineering Institute, Carnegie Mellon University, Pittsburgh, PA, 1990.

9. Axel Legay, Gilles Perrouin, Xavier Devroey, Maxime Cordy, Pierre-Yves Schobbens, and
Patrick Heymans. On Featured Transition Systems. In Proceedings of Theory and Practice of
Computer Science - 43rd International Conference on Current Trends in Theory and Practice
of Computer Science (SOFSEM 2017), volume 10139 of Lecture Notes in Computer Science,
pages 453–463. Springer, 2017.

10. Wei Liu, Pin Wang, Yuyue Du, Mengchu Zhou, and Chun Yan. Extended logical Petri nets-
based modeling and analysis of business processes. IEEE Access, 5:16829–16839, 2017.

11. Marisa Llorens and Javier Oliver. Structural and dynamic changes in concurrent systems:
Reconfigurable Petri nets. IEEE Trans. Computers, 53(9):1147–1158, 2004.

12. Jens Meinicke, Thomas Thüm, Reimar Schröter, Fabian Benduhn, Thomas Leich, and
Gunter Saake. Mastering software variability with FeatureIDE. Springer, 2017. See also
https://featureide.github.io/.

13. Tadao Murata. Petri Nets: Properties, Analysis and Applications. Proc. IEEE, 77(4):541–
580, 1989.

14. Radu Muschevici, Dave Clarke, and José Proença. Feature Petri nets. In SPLC Workshops,
pages 99–106. Lancaster University, 2010.

15. Radu Muschevici, José Proença, and Dave Clarke. Feature nets: behavioural modelling of
software product lines. Software & Systems Modeling, 15(4):1181–1206, 2016.

Gómez-Martínez et.al.: Extensible structural analysis of PN product lines 45

16. Petri Net Markup Language. www.pnml.org.
17. Klaus Pohl, Günter Böckle, and Frank J. van der Linden. Software Product Line Engineering.

Foundations, Principles and Techniques. Springer-Verlag Berlin Heidelberg, 2005.
18. Christoph Seidl, Ina Schaefer, and Uwe Aßmann. DeltaEcore – A Model-Based Delta Lan-

guage Generation Framework. In Modellierung, volume 225 of LNI, pages 81–96, Bonn,
2014. GI.

19. Manuel Silva. Half a century after Carl Adam Petri’s Ph.D. thesis: A perspective on the field.
Annual Reviews in Control, 37(2):191 – 219, 2013.

20. David Steinberg, Frank Budinsky, Marcelo Paternostro, and Ed Merks. EMF: Eclipse Mod-
eling Framework 2.0. Addison-Wesley Professional, 2nd edition, 2009.

21. Thomas Thüm, Sven Apel, Christian Kästner, Ina Schaefer, and Gunter Saake. A Classifi-
cation and Survey of Analysis Strategies for Software Product Lines. ACM Comput. Surv.,
47(1):6:1–6:45, June 2014.

22. Ferucio Laurentiu Tiplea, Toader Jucan, and Cristian Masalagiu. Conditional Petri net lan-
guages. Elektronische Informationsverarbeitung und Kybernetik, 27(1):55–66, 1991.

23. Michael Westergaard and Lars Michael Kristensen. The Access/CPN framework: A tool for
interacting with the CPN tools simulator. In Proc. PETRI NETS, volume 5606 of Lecture
Notes in Computer Science, pages 313–322. Springer, 2009.

46 PNSE’19 – Petri Nets and Software Engineering

