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Abstract 

This article presents a new method for the numerical calculation of the 
density of states in vector models. The method is based on quasi-Markov 
random walks in the state space of vector models and is multi-spin. An 
exhaustive enumeration of all cluster states for each of the 2L states of the 
boundary of length L makes it possible to obtain a local distribution of 
configurations, and such a piecewise method allows one to approximately 
calculate the entire state space. The method is designed to calculate the 
degeneracy rate G, the interaction energy E, and the magnetization M for 
any given lattice geometry, knowing which Gibbs approach can be used 
in order to calculate the partition function and thermodynamic averages. 

1 Introduction 

The models under consideration should be studied from different points of view [3]. 
To study the behavior of spin systems, you need to know magnetic susceptibility, heat capacity and entropy. 
According to the definition, magnetic susceptibility characterizes the connection between the magnetization of the 

magnetic system and the external field: 

𝜒(𝑇)|ℎ→0 =
𝜕〈𝑀〉(𝑇)

𝜕ℎ
        (1) 

In this case, the average magnetization at a given temperature 

〈𝑀〉(𝑇) |ℎ→0 =
1

𝑍
∑ 𝑀𝑖𝑒𝑥𝑝 [−

𝐸𝑖+ℎ𝑀𝑖

𝑘𝐵𝑇
]𝑖        (2) 

a statistical amount 

𝑍 = ∑ 𝑒𝑥𝑝 [−
𝐸𝑖+ℎ𝑀𝑖

𝑘𝐵𝑇
]𝑖        (3) 

Combining equations (2) and (3) we get 

𝜒(𝑇)|ℎ→0 =
𝜕〈𝑀〉
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|

ℎ→0
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𝜕

𝜕ℎ
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𝑘𝐵𝑇
]
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]

|

ℎ→0

       (4) 

For convenience, you can enter an abbreviation: 

𝛽 =
1

𝑘𝐵𝑇
. 

Because 

(
𝓊

𝜐
)

/

=
𝓊/𝜐−𝜐/𝓊

𝜐2              (5) 

Imagine the numerator and denominator as: 

𝓊 = ∑ 𝑀𝑖𝑒𝑥𝑝 [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)]           (6) 

𝜐 = ∑ 𝑒𝑥𝑝 [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)] 

and their derivatives: 
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𝓊/ =
𝜕𝓊

𝜕ℎ
= 𝛽 ∑ 𝑀𝑖

2𝑒𝑥𝑝 [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)]     (7) 

𝜐/ =
𝜕𝜐

𝜕ℎ
= 𝛽 ∑ 𝑀𝑖𝑒𝑥𝑝 [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)], 

this implies 

𝜒(𝑇)|ℎ→0 =
𝛽(𝑀𝑖

2exp ∑ [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])exp ∑ [−𝛽(𝐸𝑖 + ℎ𝑀𝑖)]

(∑ exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])2
−

𝛽(𝑀𝑖 exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])2

(∑ exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])2
= 

𝛽 (
(∑𝑀𝑖

2 exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])

(∑ exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])
− (

(𝑀𝑖 exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])

(∑ exp[−𝛽(𝐸𝑖 + ℎ𝑀𝑖)])
)

2

) 

𝜒(𝑇)|ℎ→0 =
⟨𝑀2⟩−⟨𝑀⟩2

𝑘𝐵𝑇
       (8) 

In turn, the heat capacity 

𝐶(𝑇) =
𝜕⟨𝐸⟩(𝑇)

𝜕𝑇
=

𝜕𝛽

𝜕𝑇

𝜕⟨𝐸⟩(𝑇)

𝜕𝛽
,      (9) 

where the average energy at a given temperature is 

⟨𝐸⟩(𝑇) =
∑𝐸𝑖 exp[−𝛽𝐸𝑖]

∑ exp[−𝛽𝐸𝑖]
               (10) 

Similar to magnetic susceptibility, the abbreviation is introduced: 

𝛽 =
1

𝑘𝐵𝑇
 

𝑢 = ∑𝐸𝑖 exp [−
𝐸𝑖

𝑘𝐵𝑇
] = ∑𝐸𝑖 exp[−𝛽𝐸𝑖]      (11) 

𝑣 = ∑𝐸𝑖 exp [−
𝐸𝑖

𝑘𝐵𝑇
] = ∑ exp[−𝛽𝐸𝑖] 

and their derivatives: 
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−

− 𝐸𝑖exp[−𝛽𝐸𝑖]∑ 𝐸𝑖exp[−𝛽𝐸𝑖]

(∑ exp[−𝛽𝐸𝑖])2
) 

= 𝛽2 (
𝛴𝐸𝑖

2 exp[−𝛽𝐸𝑖]

∑ exp[−𝛽𝐸𝑖]
− (

∑𝐸𝑖 exp[−𝛽𝐸𝑖]

∑ exp[−𝛽𝐸𝑖]
))

2

 

𝐶(𝑇) =
⟨𝐸2⟩−⟨𝐸⟩2

𝑘𝐵𝑇2 .     (12) 

If we represent the multiplicity of degeneracy of states as a function of the energy 𝐺(𝐸), then the entropy for a 
given energy level, according to the Boltzmann definition, is given by 𝑆(𝐸) = 𝑘𝐵 ln 𝐺(𝐸). Entropy can be considered 
as a thermodynamic quantity that determines the measure of energy dissipation in the system and is given by the 
relation 

𝑆(𝑇) =
𝑈−𝐹

𝑘𝐵𝑇
= 𝑙𝑛𝑍 +

〈𝐸〉(𝑇)

𝑘𝐵𝑇
      (13) 

where U is the internal energy of the system, 𝐹 =  𝑈 − 𝑘𝐵 𝑙𝑛𝑍 is the Helmholtz free energy. In equation (10), 〈𝐸〉(𝑇) 
is the Gibbs thermodynamic averaging for the energy level. Similarly, the distribution of the energy level of entropy 
can be obtained: 

〈𝑆〉 =
∑ 𝐺(𝐸𝑖)𝑙𝑛𝐺(𝐸𝑖) exp[

−𝐸𝑖
𝑘𝐵𝑇

]𝑖

∑ 𝐺(𝐸𝑖)exp[
−𝐸𝑖
𝑘𝐵𝑇

]
       (14) 

2 A Brief Presentation of the Method and the Results of the Software Product. 
Visualization of Results 

2.1 Theoretical Component of the Method 

For vector models of Ising spins, the interaction energy is usually given by the Hamiltonian of the form 

Е = − ∑ 𝐽𝑖𝑗𝑆𝑖𝑆𝑗<𝑖,𝑗> ,        (15) 

where 𝑆𝑖  is «spins», or one-component vectors whose components take the values either «+1» or «-1», and 𝐽𝑖𝑗 is a 

constant of exchange interaction, usually takes the value «+1» for ferromagnets, t. e. if the vectors 𝑆𝑖 and 𝑆𝑗 are co-

directed, then this corresponds to a minimum of energy, «-1» is an antiferromagnet, where the antiparallel orientation 

of vectors leads to minimization of energy. The magnetization of the N spin Ising system is calculated by the formula: 

М = ∑ 𝑆𝑖 𝑁
𝑖=1             (16) 

Ising spins are placed in space, for example, in a lattice - a metal model, or randomly for modeling amorphous 
structures. 

To solve the problem of thermodynamics of the system of interacting Ising spins (calculate the heat capacity, 
magnetization, magnetic susceptibility, and other statistical characteristics as a function of temperature), you need to 
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know how many states G (configurations) will have given values of E, M. Thus, we are interested in Any given 
system geometry that has only three global numbers G, E, M. In total there will be 2N states. 

Even in the interaction model of the nearest environment, there are serious computational problems associated 
with an exponentially rapid increase in the number of possible configurations. For example, for a system of Ising 
spins on a three-dimensional pyrochlore lattice with 16 nodes there will be 216 configurations. 

 

Figure 1: Structure of the pyrochlore lattice (left) [1]. The state space of the Ising spin system with the interaction of 
the nearest environment on the pyrochlore lattice obtained by the method of exhaustive enumeration (right) [2] 

histogram G, E, M. 

2.2 Brief Introduction of the Method 

The essence of the proposed method is to get one random configuration from the 2N space; this is quite easy to do; 
we simply set random values of the vector component Si. One configuration corresponds to one point in the histogram 
of fig. 1 (right). Select the nucleus (region) of closely spaced spins. We carry out an exhaustive enumeration for each 
of the 2L states of the boundary, where L is the number of spins on the boundary and each configuration of the 
nucleus from 2N and we obtain local numbers g, e, m taking into account the interaction with the boundaries. 

 

Figure 2: Schematic representation of the Core (cluster) method. 

If the core contains 4x4 spins, then there will be a total of 65,536 kernel configurations for one configuration. 
However, not all of them will have the same values of Ei, Mk, since in systems with the interaction of the nearest 
environment, degeneracy in E and M is essential. It is possible to use any geometry of the kernel. 

We find on the histogram of fig. 1 (on the right), the point with these coordinates corresponding to each value of Е i 
and Mk is added to the value of gi that exists at this point g. Thus, we must go through each point in this projection of 
the histogram, along the horizontal and vertical axes. You may need to make several passes. 

The absence of new points Ei Mk in the process of full coverage of the projection of the histogram can be selected 
as a criterion for stopping the numerical calculation. After stopping, we will need to normalize G. There are several 
ways of normalization. For example: 

The sum of all histogram columns is 2N 

The sum of the histogram columns with the given value Ei, Mk is the binomial coefficient 𝐵 = (𝑁,
(1−𝑀𝑘)

2
). 

If we know the degeneracy of one or several points, for example, when all the spins are «up» or all «down» in an 
antiferromagnet, we can control the normalization of these points. 
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Knowing the numbers G, E, M, we can use the Gibbs approach to calculate the partition function and 
thermodynamic averages. 

To test our method, a software product was implemented, the algorithm of which is presented below. 

2.3 Algorithm for the Implementation of a Software Product 

We fill the double array with all kernel variants (each spin value takes the value -1 or +1), where L is the linear 
size of the core. Then we display an array of a kernel of size LхL, write it into a file. Next, we find and return the 
numbers of configurations with minimal energy and magnetization. We determine the nearest neighbors of all spins 
and return the energy of the system. We define the point for building the kernel and derive it. We define the 
periodicity condition and output the array of the kernel. 

Set the boundaries of the nucleus and determine the boundary conditions. Calculate and return the magnetization 
of the entire system. Find the interaction energy of spins inside the nucleus without taking into account the 
boundaries, where n is the linear size of the system, N is the number of spins in the system, L is the linear size of the 
nucleus, Nbound is the number of spins on the boundary, Ncore is the number of spins in the core, allconfig is the 
number of all configurations - maximum number of neighbors of each particle, Emax - maximum number of system 
energy, Mmax - maximum number of system magnetization, dE and dM - system energy without core energy / 
without core magnetization, Ecore and Mcore - core energy / magnetization, Etot and Mtot - total energy / 
magnetization of the whole system, spins - array in which the values of spins are stored (±1), bound is the array in 
which the boundaries are stored, core is the array in which the core is stored, e is the array in which the core energy is 
stored, m-array in which the core magnetization is stored, b is the double array (allconfig size on Ncore) with all 
kernel variants (± 1), gem is the array in which EM and g are stored (E and M are array indices, and g is the value of 
these indices). 

In the next stage, creating an array with all the configurations and display the indexes of the system spins. We 
prepare the starting configuration, that is, we scatter +1 or -1 values throughout the system. Calculate and derive the 
energy and magnetization of the system. We determine the interaction of the spins with the boundary, then sum up 
with what was calculated without considering the boundary and obtaining the energy. 

The next step is to calculate the energy and magnetization for all configurations by iterating through all 
configurations. Next, fill the core with spins, which correspond to the configuration. We consider the magnetization 
and energy of the system without taking into account the interaction with the boundaries. We consider the energy of 
interaction of spins with the boundary and record the energy of the nucleus. We write in the gem energy and 
magnetization of the nucleus and then we find the configuration with the minimum energy and magnetization and 
write the core with the minimum energy and magnetization into a common system. Output to file: energy and 
magnetization of the nucleus; energy and magnetization of the system with a new core; E M and g. 

2.4. Calculated Density of States 

According to the results of calculations, the following histograms were constructed with a grid size of 4x4 (Fig. 3) 
and 5x5 (Fig. 4) 

 

Figure 3: Two-dimensional representation of DOS for systems of 4x4. a) one of two possible configurations with 
minimum energy (E=-32, M=0), b) configuration with maximum energy (E=32, M=16) 
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Figure 4: DOS 3D view for 5x5 systems 

3 Conclusion 

The obtained approximate solutions by the cluster method of numerical calculation of the density of states of 
vector models exhaustively repeat the exact solution in relation to E and M. The accuracy of the calculations is 
controlled by comparing the values of the multiplicity of degenerations G obtained approximately and the exact 
values. 
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