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Abstract

The emergence of deep learning networks raises a
need for explainable AI so that users and domain
experts can be confident applying them to high-risk
decisions. In this paper, we leverage data from
the latent space induced by deep learning mod-
els to learn stereotypical representations or “pro-
totypes” during training to elucidate the algorith-
mic decision-making process. We study how lever-
aging prototypes effect classification decisions of
two dimensional time-series data in a few differ-
ent settings: (1) electrocardiogram (ECG) wave-
forms to detect clinical bradycardia, a slowing of
heart rate, in preterm infants, (2) respiration wave-
forms to detect apnea of prematurity, and (3) audio
waveforms to classify spoken digits. We improve
upon existing models by optimizing for increased
prototype diversity and robustness, visualize how
these prototypes in the latent space are used by the
model to distinguish classes, and show that proto-
types are capable of learning features on two di-
mensional time-series data to produce explainable
insights during classification tasks. We show that
the prototypes are capable of learning real-world
features - bradycardia in ECG, apnea in respira-
tion, and articulation in speech - as well as fea-
tures within sub-classes. Our novel work lever-
ages learned prototypical framework on two dimen-
sional time-series data to produce explainable in-
sights during classification tasks.

1 Introduction
Despite the recent surge of machine learning, adoption of
deep learning models in decision critical domains, such as
healthcare, has been slow because of limited transparency
and explanations in black-box algorithms. This observation
points to the critical need for black-box models to offer inter-
pretable, faithful explanations of their decisions so that prac-
titioners in high-risk domains can trust model outputs and
leverage their results. One such high-risk domain is treating
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preterm infants (∼10% of births worldwide) in the neonatal
intensive care unit (NICU).

A common disorder observed in majority of preterm in-
fants is recurrent episodes of apnea (cessation of breathing)
and bradycardia (slowing of heart rate). Both of these spon-
taneous events may cause end organ damage related to hy-
poxemia (low oxygenation of blood) and ischemia (reduced
blood flow) [Martin and Wilson, 2012]. Early detection of
apnea and bradycardia can help prevent hypoxic-ischemic in-
jury in tissue with high-metabolic demands [Schmid et al.,
2015; Pichler et al., 2003] and prevent the cascade into inter-
mittent hypoxia, which leads to complications of retinopa-
thy, developmental delays, and neuropsychiatric disorders
[Williamson et al., 2013; Poets et al., 2015; Di Fiore et al.,
2015]. Leveraging explainability in deep neural network clas-
sification of these time series can reveal complex morpholog-
ical and physiological features that clinicians may not readily
see. Thus, machine learning algorithms need transparency
in their decision-making process to highlight subtle patterns.
One such technique in deep explainability is prototypes, a
case-based reasoning technique.

Prototypes are representative examples, learned in-process
during model training, that describe influential data regions
in latent representations and provide insight into aggregated
features across training data that are utilized by the model for
classification. In contrast to post-hoc explainability, which
trains a secondary model to infer decision reasoning from
a primary model by only leveraging inputs and outputs, in-
process explainable methods offer faithful explanations of a
primary model’s decisions [Rudin, 2018]. So, users who em-
ploy prototypes can confidently gain direct insight into the
decisions algorithms are making for classification tasks.

On data with unclear class boundaries, in-process methods
can misbehave. For example when the model in [Li et al.,
2017] is applied to the MNIST dataset, the prototypes eas-
ily separate in the latent space because the latent data repre-
sentation is separable and well-structured (Fig 1). However,
when class boundaries and features do not form distinguish-
able clusters, learned prototypes become archetypes (extreme
corner cases) that exist near the convex hull of the data in the
latent space (Fig. 4). This phenomenon yields prototypes that
represent extreme class types (i.e. archetypes) and can under-
perform on classifying data in overlapping class regions.

In this work, we provide a deep classification method with
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Figure 1: Learned prototypes of handwritten digits (MNIST) using
the architecture from [Li et al., 2017]. While colors represent the
handwritten digits 0-9, the labels represent the learned prototypes.
Because the latent representation of MNIST cluster distinctly, the
prototypes are diverse. This may not be true when classes overlap

explainable insights for health time-series data. We introduce
a prototype diversity penalty that explicitly accounts for pro-
totype clustering and encourages the model to learn more di-
verse prototypes. These diverse prototypes will help focus
on areas of the latent space where class separation is most
difficult and least defined to improve classification accura-
cies. We show the utility of this approach on three tasks in
two-dimensional time-series classification: (1) bradycardia
from ECG; (2) apnea from respiration; and (3) spoken digits
from audio waveforms. The two-dimensional representation
of time-series provides an interpretable method for domain
experts (e.g. clinicians) to understand the evolution of clin-
ically relevant features based on visible phenotypes in time-
series data. Our work enables a closed-loop collaboration be-
tween experts and machine learning algorithms to accelerate
the efficacy of outcome predictions. The learning algorithms
can find nuance features through development of explainable
prototypes, and the experts can fine-tune the algorithms by
providing feedback through the regularization of the diversity
penalty. This is especially important for clinician experts who
need explainability in black-box models to understand and di-
agnose different pathological mechanisms. To the best of our
knowledge this is the first application of prototypes and la-
tent space analysis for health time-series data that could help
reveal clinically relevant and explainable phenotypes to im-
prove the baseline for standard of care with automatic moni-
toring and detection.

1.1 Relevant Work
Explainable methods [Ribeiro et al., 2016; Caruana et al.,
2015; Zhou et al., 2015] have largely focused on labeled im-
age and tabular data sets where classes are clearly separable
and less so on time-series data in general. Recent work has
focused on using prototypes to provide in-process explain-
ability of classification models, either by learning meaning-
ful pixels in the entire image [Li et al., 2017] or by applying
attention through the use of sub-regions or patches over an
image [Chen et al., 2018]. Class attention maps (CAMs) pro-

Figure 2: Prototype Architecture from [Li et al., 2017]

vide probability maps to highlight areas of images that lead
to a certain prediction [Zhou et al., 2015], but do not give ex-
amples of prototypical examples of the data or explanations
of how the training data relates to the end result. We focus
on the former work [Li et al., 2017] for example-based ex-
plainability where the generation of prototypes are intended
to look like global representations of the training data.

Time-series classification on 1-D data with deep neural
networks is a rapidly growing field, with almost 9,000 deep
learning models [Fawaz et al., 2018; Pons et al., 2017;
Faust et al., 2018; Goodfellow et al., 2018]. One such ex-
ample leverages global average pooling to produce CAMs to
provide explainability for a deep CNN to classify atrial fib-
rillation in ECG data [Goodfellow et al., 2018]. However,
the number of available healthcare datasets, specifically ECG
waveforms, is limited [Fawaz et al., 2018]. Within this con-
text, time-series classification on ECG waveforms has been
done on a small scale, typically with single beat or short-
duration (10 s) arrhythmia classification [Faust et al., 2018;
Yildirim et al., 2018].

2 Methods
2.1 Time-Series Explanation via Prototypes
We adopt the autoencoder-prototype architecture from [Li
et al., 2017]. Let X = (xi, yi)

n
i be the training set with

xi ∈ Rp and class labels yi ∈ {1, ...,K} for each train-
ing point i ∈ {1, ..., n}. The front-end autoencoder net-
work learns a lower-dimension latent representation of the
data with an encoder network, f : Rp → Rq . The latent
space is then projected back to the original dimension using
a decoder function, g : Rq → Rp. The latent representa-
tion, f(x) is also passed to a feed-forward prototype network,
h : Rq → RK , for classification. The prototype network
learns m prototype vectors, p1, p2, ..., pm ∈ Rq using a four-
layer fully-connected network over the latent space that learns
a probability distribution over the class labels yi (Fig 2). The
learned prototypes can then be decoded using g and exam-
ined to infer what the network has learned. The choice of m
is determined a priori, with larger values allowing for higher
throughput and model capacity.

We improve prior work by adding a penalty for learned
prototypes in the objective function of the above network to

Sadiq Sani
16



increase prototype diversity and coverage of the data in latent
representations. To align with the minimization of the objec-
tive function, this new prototype diversity penalty needs to
be (1) small when distances between prototypes are far apart,
and (2) large when distances between prototypes are close in
distance. We can evaluate the feasibility of a set of proto-
types by considering the distance of the two closest proto-
types across all prototype combinations. So, we consider the
average minimum squared L2 distance between any two pro-
totypes, pi, pj for our loss function. To achieve the desired
property above, we take the inverse of this average distance:

PDL(p1,..., pm) =

1

log
(

1
m

∑m
j=1mini>j∈[1,m] ‖pi − pj‖

2
2

)
+ ε

(1)

The logarithm function tapers large distances so that the
penalty does not quickly vanish, and the ε term is for numeric
stability. By taking the inverse of the log of the prototype
distances, we penalize prototypes that are close in distance
while making sure the minimum distance between prototypes
does not get too large. This prototype diversity loss (PDL)
promotes coverage over the latent space. We update the ob-
jective function to:

L((f, g, h), X) =E(h ◦ f,X) + λRR(g ◦ f,X)

+ λ1R1(p1, ..., pm, X)

+ λ2R2(p1, ..., pm, X)

+ λpd PDL(p1, ..., pm)

(2)

where E is the classification (cross entropy) loss, R is the
reconstruction loss of the autoencoder (i.e. L2 norm), and
R1 and R2 are the loss terms that relate the distances of the
feature vectors to the prototype vectors in latent space [Li et
al., 2017]:

R1(p1, ..., pm, X) =
1

m

m∑
j=1

mini∈[1,n] ‖pj − f(xi)‖22 , (3)

R2(p1, ..., pm, X) =
1

n

n∑
i=1

minj∈[1,m] ‖f(xi)− pj‖22 (4)

The minimization of the R1 loss term promotes each proto-
type vector to learn one of the encoded training examples,
while the minimization of R2 loss promotes encoded training
examples to be close to one of the prototypes. This balance
gives meaningful pixel-to-pixel representations between the
prototypes and training data.

We train our models with a randomly shuffled batch size of
100 (ECG, Speech) and 125 (Respiration). We parameterize
the number of prototypes (see supplement) and the regular-
ization term λpd for the classification tasks while keeping the
other hyperparameters as in [Li et al., 2017].

2.2 Prototype Diversity Score
We adopt a version of the group fairness metric presented in
[Mehrotra et al., 2018] and refer to it as the prototype diver-

sity score, Ψ:

Ψ =
1

Z

t∑
i=1

√
|φi| (5)

where φi, i ∈ {1, ..., t} is defined for a specific metric and Z
is the normalization constant. For the neighbor diversity met-
ric ΨN , φi is the set of prototypes that have nearest neighbor
i and Z is the number of prototypes m. For the class di-
versity metric ΨC , φi is the set of prototypes that are from
class i and Z is the number of classes K. Higher scores will
occur when prototypes have more unique elements. Thus,
max(ΨD) = 1.

2.3 Datasets
The neonatal intensive care unit (NICU) dataset is composed
of two sources: (1) ECG and Respiration waveforms from
PhysioNet’s PICS database [Gee et al., 2017; Goldberger
et al., 2000]; and (2) ECG waveforms (500 Hz, Intellivue
MP450) collected from a preterm infant over their entire stay
(∼10 weeks) at Seton Medical Center Austin. The inclusion
of (2) helps supplement the ECG events from (1). The image
data used in this study are made publicly available1.

The inter-breath intervals (IBIs) from the respiration were
extracted using a standard peak finder. The respiration sig-
nals were clipped into 60 second segments that were nor-
malized to zero-mean, unit variance. The R-R intervals for
the ECG of the NICU dataset were extracted using a Morlet
wavelet transformation of the ECG signal. An open-source
peak finder was applied to the wavelet scale range (0.01 to
.04 scales) related to QRS complex formation in the spec-
trogram. The ECG waveforms were clipped at 15 seconds
with the event in the middle. All ECG segments were band-
passed filtered from 3 to 45 GHz, scaled to zero-mean, unit-
variance, and scaled to the median QRS complex amplitude.
Images were then captured to mimic what a clinician would
see upon investigation of an ECG signal. Waveforms with no

1https://physionet.org/physiobank/database/picsdb

Figure 3: Examples of waveforms for each task: (A) Electro-
cardiogram (ECG) waveforms related to bradycardia classification,
(B) Respiration waveforms related to apnea classification, and (C)
Speech waveforms for a particular a speaker (Jackson). For (A) and
(B) we classify the segments based on severity (i.e. time difference
between peaks), and for (C) we classify based on digit class.

Sadiq Sani
17



Figure 4: Effect of loss regularization on the latent space and spread of prototypes for the NICU classification task using 10 prototypes with
λpd = 0 (baseline) and λpd = 103. The second and third dimensions of a t-SNE projection on each space shows prototypes with more
coverage and diversity in the latter case.

visibly distinguishable QRS complexes or respiratory peaks
were discarded because these waveforms are too obscure for
even a clinician expert to evaluate.

Class breakdowns for bradycardia in the ECG signal follow
clinical thresholds [Perlman and Volpe, 1985]: XECG = {
normal (>100 beats per minute (bpm)): 1039, mild (100-80
bpm): 634, moderate (80-60 bpm): 306, severe (<60 bpm):
132 }. Moderate and severe events were combined into a
single class. The class breakdown for apneas in respiration
are: XRESP = { normal (1-3 s): 1939, mild (4-6 s): 1921,
moderate/severe (> 6 s): 1487 }.

The Free Spoken Digit Dataset [Jackson et al., 2018] con-
sists of 2000 audio clips (8 kHz) of four speakers repeat-
ing the digits 0 through 9, 50 times each. Each segment
was normalized to zero-mean, unit-variance and clipped for
white space (Fig. 3). This data can be thought of as “spoken
MNIST”. We perform speaker classification and digit classi-
fication within a speaker.

2.4 Visualization of Latent Space
We use PCA to reduce the latent space vectors to a di-
mension of 500, which retains 98% of the variability. We
then calculate the cosine similarity between these 500 di-
mensional vectors to produce a similarity matrix and use
t-distributed stochastic neighbor embedding (t-SNE) from
[Van der Maaten and Hinton, 2008] to reduce the 500 x 500
similarity matrix down to three dimensions for visualization

purposes. This technique calculates the KL-Divergence be-
tween the higher-order dimensional latent space and the lower
dimensional space used to represent the former visually. This
approach is non-deterministic so the global position in the
lower space is uninformative and instead proximity to neigh-
bors is the key insight to gain. Additionally while the first
two dimensions of the projection show the general spread of
information, the second and third dimensions maybe useful
for visualizing within group information. Thus, we use the
second and third dimensions for our visualizations.

3 Results
3.1 Classification of ECG with 2-D Prototypes
We test our prototype implementation on ECG waveforms re-
lated to bradycardia using the NICU data for a 3-class classifi-
cation task using 10 prototypes. We treat the input waveforms
as 2-D images and use a four-layer autoencoder to learn com-
plex representations over the data.

We observe more diverse prototypes and comparable or
better test accuracy with our model 93.1±0.4% compared
with 92.1±0.1% from the baseline model in [Li et al., 2017]
(Table 1). Both models perform well on the classification of
the normal class, as expected since normal waveforms have
near-constant phase. Both models additionally have difficulty
separating between the mild and moderate/severe classes, of-
ten confusing the classification between these two (see sup-
plement). This behavior is expected since data near these
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ECG: Bradycardia
λpd Accu. ΨN ΨC

0 92.1 ± 0.1% 0.83 ± 0.04 0.78 ± 0.19

500 92.7 ± 1.0 % 0.86 ± 0.07 0.89 ± 0.19
1e3 92.4 ± 1.3% 0.87 ± 0.11 0.89 ± 0.19
2e3 93.1 ± 0.4% 0.90 ± 0.04 1.00 ± 0.00

Respiration: Apnea
λpd Acc. ΨN ΨC

0 81.4 ± 3.6% 0.96 ± 0.07 1.00 ± 0.00

500 82.3 ± 3.8% 0.94 ± 0.09 1.00 ± 0.00
1e3 77.1 ± 0.6 % 1.00 ± 0.00 1.00 ± 0.00
2e3 80.2 ± 2.5 % 0.97 ± 0.04 0.84 ± 0.23

Table 1: Diversity score for neighbors ΨN and class ΨC . We report Ψ’s related to the epoch with the highest test accuracy. Our model,
λpd > 0, returns better accuracies and diversity scores (bold) than the baseline model, which is row λpd = 0, across ECG and Respiration
waveforms. (Model details: 3-class, 10-prototypes, learning rate = 0.002).

two class boundaries are difficult to discern, even for domain
experts, due to events existing in both classes with possible
subtle time differences in cardiac firing. Our model also im-
proves prototype diversity (Table 1) over the baseline model.
This result suggests that the prototype diversity loss encour-
ages exploration, through learning diverse prototypes, within
the data represented in the latent space. As a result, our model
finds more helpful features and prototypes and thus, improves
classification results.

Because prototypes are generated during training, we in-
fer features that the algorithm utilized to classify waveforms
at different points during training (Fig 5). For example, by
epoch 100, we see that some of the prototypes exhibit global
morphological features of the normal waveform class after
random initialization at epoch 0. As training progresses, we
observe other complex phenotypes emerging: one prototype
learns that large gaps in cardiac firings are important for iden-
tifying severe cases and another prototype learns the consis-
tent pattern of spikes are important for mild cases. Since the
mild class shares mixed features of both normal and positive
events, it is not surprising that more prototypes are needed in
this class to learn subtleties of the class features (see supple-
ment). Thus, prototypes highlight waveform structures that
the algorithm deemed as important when trying to learn the
classification of bradycardia. This finding aligns with the idea
of clinicians using visible features present in a bradycardia
(i.e. the increasing distance between QRS complexes) to de-
cide whether or not a bradycardia exists in an image.

We compare the latent space of [Li et al., 2017] to the
latent space of our model with prototype diversity loss via t-
SNE projections, where proximity in 2-D space suggests that
points are “close” in distance in the original latent space. We
represent the learned prototypes by mapping each prototype
to its nearest neighbor (Fig 4). We find that by increasing
our loss term, PDL, our model increases the local cover-
age of the prototypes compared with the baseline model (i.e.
λpd = 0). However, if we regularize our loss term too much
(i.e. λpd > 104), we begin to introduce clustering of proto-
types and diversity suffers. Thus with the additional proto-
type distance penalty, we achieve higher diversity scores and
classification accuracies for various hyperparameters (Fig 9).

3.2 Case Study with Prototypes: Exploring ECG
Morphology and Bradycardia Classification.

We observe that ECG events in a local neighborhood share
similar QRS complex morphology, despite having different

Figure 5: Prototype evolution with in-process explainability over
training time. High level features are easily learned in early epochs
of training, while more complex features are developed over time.
The final nearest neighbors are depicted on the right. The prototypes
correspond to a subset of the λpd = 103 latent space cloud in Figure
4. Model details: 3-class, 10-prototypes.

class labels and cardiac firing periods (Fig. 6, bottom). Even
though we did not impose a class constraint, we observe that
the algorithm found two separate features within the moder-
ate/severe class that were important in the classification task
(i.e. prototypes 2 and 10 shown at the top of the (Fig 6).
These two prototypes explore two different cardiac timings
as prototype 2 exhibits a progressive delay in cardiac firing,
while prototype 10 exhibits a large spontaneous delay. The
incorporation of the prototype diversity loss encouraged this
exploration of the latent space. These results suggest that
there are physiologic dependencies (i.e. clustering based on
cardiac morphology and function) that can be learned using
our model to investigate physiological phenomena, and possi-
bly applied to other clinical areas, like cardiac ischemia or ap-
nea of prematurity in respiration - both exhibit visible, abnor-
mal waveform behavior. This work provides a visualization
tool for clinician experts to evaluate different morphological
of physiological time-series data2.

3.3 Classification of Apnea in Respiration
Apnea of prematurity is common among preterm infants, and
is visually apparent as a pause of inhalation and exhalation
(i.e. absence of sinusoidal behavior) in the respiratory sig-
nal. We next test our prototype implementation on respiration

2https://github.com/alangee/ijcai19-ts-prototypes
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Figure 6: Learned prototypes showcase the diversity of features that are important for understanding ECG morphology while classifying
bradycardia events. ( 10-prototypes, λpd = 104 ).

Figure 7: Learned prototypes showcase the diversity of features
across classes that are important for understanding respiration mor-
phology while classifying apnea events. For this classification task,
we observe a variety of prototypes (at epoch 500) that learn vari-
ous cases with cessation of breathing (6 and 9 second gaps) and the
global features within the segment that are important for the model’s
classification. (8-prototypes, λpd = 500).

waveforms that are related to apnea in a 3-class classifica-
tion task. We treat the input waveforms as 2-D images again,
since clinicians evaluate apneas through visual inspection of
the respiration signal.

We observe more diverse prototypes and comparable or
better test accuracy with our model 82.3±3.8% compared
with 81.4±3.6% from the baseline model, and with overall
unique nearest neighbors (ΨN = 1) and class diversity (ΨC =
1) (Table 1). Both models have difficulty separating between
the event classes because data near these two class boundaries
are difficult to visually discern (i.e. 6 second gap versus 7 sec-
ond gap) and have common behavior with regular respiratory
function that is found in the normal class. We find that the
addition of a prototype diversity loss maintains or improves
performance and yields more diverse prototypes (Table 1).

We also note that the algorithm is able to discern physi-

Figure 8: Learned prototypes from audio waveforms of spoken dig-
its by Nicolas from the FSDD (λpd = 500).

ological examples and generate learned prototypes that dis-
tinctly relate to physiological behavior. For example, in Fig.
7, we see that algorithm finds segments that are related to
periodic breathing of 9 second duration (moderate/severe).
These segments are physiologically different from normal ap-
neas of 6 seconds (mild), and clearly different from normal
breathing with periodicity of 1 second (Fig 7). In the set of
eight learned prototypes, the algorithm finds three different
classes easily, each with different respiratory phenomena, that
are critical in the classifying various types of apneas.

3.4 Spoken Digits Classification and Analysis
Speech abnormalities can be suggestive of underlying patho-
logical dysfunction, and common features that clinicians vis-
ibly discern in waveforms to assess speech include cadence,
prosody, and syllable articulation. To aid in speech fea-
ture detection, we assess our model on high-frequency audio
waveforms of spoken digits (FSDD) from medically-normal
individuals. These digits are treated as 2-D images for 4 class
speaker and 10 digit classification tasks with 4 and 10 proto-
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Figure 9: Accuracy and diversity metrics for the spoken digits ex-
periments using the FSDD. We divide this dataset into two tasks: (1)
classifying the person speaking and (2) classifying the digit spoken
within each person.

types, respectively. The waveform envelope and syllables of
these spoken digits are discernible to the eye (see “six” and
“se-ven” in Fig 2) and, as such, make good candidates for
our image-based explainability model. We demonstrate some
of the learned prototypes in Fig. 8, which show representa-
tions the model finds useful in classifying digits for a given
speaker. Experiments show that by varying regularization of
the prototype diversity penalty, we observe slightly better or
similar accuracies when compared to the baseline model (Fig.
9). With a fine-tuned λpd we can increase diversity of the
prototypes and correspondingly see improved accuracy and
data coverage (see supplement). For example, λpd = 500
gives a higher diversity score across all tasks, indicating pro-
totypes with more unique nearest neighbors as compared with
the baseline model (Fig 9).

Experiments show that increasing the depth of the network
and fine-tuning the learning rate lead to both increased accu-
racy and diversity over all tasks. Similarly, recent data aug-
mentation techniques in medical [Bahadori and Lipton, 2019]
and speech recognition [Park et al., 2019] domains could help
further improve performance. The purpose of this work, how-
ever, is not to obtain the best performance on these tasks, but
rather to show the utility of learned prototypes as faithful ex-
planations of decisions made by a model.

4 Discussion
We presented a new autoencoder-prototype model that pro-
motes diversity in learned prototypes by penalizing proto-
types that are too close in squared L2 distance in the la-
tent space. The new term, λpd PDL(p1, ..., pm), in the loss
function (Eq. 2) promotes prototype diversity while improv-
ing classification accuracy and prototype coverage of data
represented in the latent space. These prototypes help ex-
plain which global features and representative segments in
the training data are most useful for deep time-series classi-
fication. This in-process generation of prototypes offers ex-
plainable insights into deep classifiers.

Our model and results provide an important significance
that previous works lack. Depending on the clinical context
of the case, experts may want to either trivialize big differ-

ences in the time series features, or conversely accentuate
nuanced differences in learned prototypes as clinically impor-
tant signs of impending adverse outcomes. Therefore, our im-
plementation offers a collaborative method for clinician ex-
perts to use their insight interactively with machine learning
algorithms: increasing λpd promotes large observable differ-
ences in the prototypes, while decreasing λpd promotes di-
verse features and prototypes. In turn, our model enables a
closed-loop feedback framework to accelerate phenotype dis-
covery to lead clinicians to better-informed decision.

We evaluate the performance of our model on increas-
ingly difficult physiological datasets to demonstrate the ef-
fect of λpd. The ECG signal is more robust against move-
ment artifact and produces a cleaner signal for the 2-D vi-
sualization task, whereas the respiration signal, which is
the resultant voltage change across diaphragm movement, is
highly susceptible to signal artifact. Additionally, speech
waveforms are compressed, high-frequency waveforms (kHz)
which make it difficult to visibly extract high-resolution fea-
tures. We find that our model allocates more prototypes to
learn the intricacies of the more indistinguishable classes (i.e.
mild and moderate/severe) that are hard for a human to dis-
cern, especially the mild cases because this class is a mixture
and intermediary of the two extreme classes.

We observe, however, that the high number of loss terms
creates a trade-off between prototype interpretability and
model accuracy. For example, we observe that for a small
number of prototypes, we achieve near-perfect prototype re-
construction but at the cost of classification accuracy. When
the number of prototypes was large, we achieve higher ac-
curacy but received noisy prototypes. In future implementa-
tions, we can replace the front-end autoencoder with a model
that operates well on 1-D time series, like an recurrent neural
network, to balance accuracy and prototype interpretability.

There has also been work on computing prototypical
patches over 2-D images to generate explainable sub-features
[Chen et al., 2018]. Extending the idea of patches to 1-D
time-series signals would allow for parsing the signal for sub-
frequencies and features that could better explain how events
are triggered. Nonetheless, the work presented in this paper
provides a more robust prototype model to help explain al-
gorithmic behavior and decision-making in deep time-series
classification tasks with promising results in clinically rele-
vant datasets.
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