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Abstract
Excessive alcohol consumption is a significant cause
of death worldwide and an especially severe risk on
college campuses. Recent work aimed at promoting
healthier drinking habits has shown promise for the
effectiveness of just-in-time adaptive interventions
(JITAIs) delivered on mobile platforms just before the
onset of heavy drinking episodes. However, delivering
well-timed JITAIs is difficult for alcohol-related inter-
ventions because accurately detecting the onset of such
episodes is challenging. Recent work has explored how
smartphone data can be used to classify user drinking
behavior, but current methods lack generalizability or
make liberal use of private user information. We ad-
dress these shortcomings to develop a reliable mobile
classifier that uses only non-sensitive accelerometer
data to detect periods of heavy drinking. Additionally,
we examine multiple models and discern a new feature
set that increases prediction power by as much as
14%. To build our data set, we collected and analyzed
smartphone accelerometer readings and transdermal
alcohol content (TAC) for 13 subjects participating in
an alcohol consumption field study. The TAC readings
served as the ground-truth when training the system to
make classifications, unlike previous literature which
used potentially biased self-reports. Our best classifier
detected heavy drinking events with 77.5% accuracy.

1 Introduction
Excessive alcohol consumption is an avoidable health risk, yet
in 2016 it accounted for 5.3% of deaths worldwide [WHO,
2018]. On college campuses, alcohol-related risk is especially
dramatic due to higher rates of heavy alcohol use [SAMHSA,
2015]. Thus, social workers have studied how to reduce heavy
drinking habits in college students through interventions such
as education programs [Brown-Rice et al., 2015], motivational
feedback [Borsari and Carey, 2000], and social media campaigns
[Thompson et al., 2013] to name a few. With the advent of mobile
technologies, researchers have recently begun to investigate the
effectiveness of mobile interventions. One study showed that
weekly mobile-based interventions can be effective in reducing
alcohol consumption in students [Suffoletto et al., 2015], suggest-
ing that students are receptive to mobile communication about

drinking. However, a recent study which delivered hourly mobile
interventions to participants during drinking events showed
no significant reduction in the amount of alcohol consumed
[Wright et al., 2018], suggesting that overly frequent messaging
can reduce the effectiveness of interventions. This highlights
the need for accurate, targeted messages to participants during
drinking episodes. In fact, such just-in-time adaptive interventions
(JITAIs) are an active and promising area of research for health
domains such as physical inactivity [Consolvo et al., 2008],
smoking [Riley et al., 2008], obesity [Patrick et al., 2009], and
alcoholism [Nahum-Shani et al., 2017]. One study of recovering
alcoholics showed that JITAIs delivered while approaching a bar
significantly reduced risky drinking behavior [Gustafson et al.,
2014], showcasing how well-timed messages delivered just before
risky episodes could promote healthier behavior. While promising,
work is needed to design JITAIs that apply to college students
in general, since their drinking episodes can begin in a variety of
complex scenarios from bars, to house parties, to private settings.

The most reliable method for detecting a drinking event is by
directly measuring blood alcohol content (BAC) or a proxy such
as transdermal alcohol content (TAC). To deliver alcohol-related
JITAIs, researchers must passively measure BAC or TAC in real
time, but this can be challenging. Some smartphone applications
allow users to enter their height, weight, and number of drinks
consumed over a period of time to calculate their estimated BAC,
but these require active user input that could lead to selection
bias and hinder large-scale adoption [Myrecek, 2019]. Some
smartwatches can measure TAC but these devices are expensive
[BACtrack, 2019] among other roadblocks [Adapa et al., 2018].
In this work we develop a smartphone-based system to passively
track a user’s level of intoxication via accelerometer signals to
support the delivery of mobile just-in-time adaptive interventions
during heavy drinking events. Smartphone-based solutions are
readily scalable since they require no new technological adoption
by the user. Further, we ensure that our system minimizes the
chance that users will become annoyed or uncomfortable such
that they disengage with the system entirely for the following two
reasons. First, our system’s passive nature requires no user action
beyond their normal behavior to generate measurements. Second,
our system uses only raw accelerometer readings rather than
highly sensitive user data such as keystrokes, calls, or location.
Minimizing the use of sensitive data is of paramount importance
for the system’s adoption as digital privacy concerns grow. In
this work, we make three key contributions as follows.
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Sensor-based Field Study: We collected smartphone ac-
celerometer data for 13 students participating in a one-day “bar
crawl” event where students, as a group, visited all the bars in
a certain region on campus. Further, each student wore an ankle
bracelet that measured TAC. To the best of our knowledge, this
was the first study to both 1) collect data in a field setting and 2)
use sensors to measure intoxication rather than self-reports. Thus
our findings are 1) applicable to real-world drinking scenarios
and 2) our classifications are free from user bias.

Predictive New Features: We adapt Mel frequency cepstral
coefficients (MFCC)—traditionally used for sound classification—
and apply them to classifying accelerometer data. We show
that MFCC covariance features improve results up to 14%,
suggesting these features should be included in future studies
classifying accelerometer data.

Heavy Drinking Classifier: We develop a model that makes
classifications on 10-second windows of accelerometer data to
support the delivery of interventions in real-time. We train several
machine learning classifiers including a convolutional neural
network, shallow neural network, random forest, and support
vector machine to make classifications of sober (TAC < 0.08)
vs. intoxicated (TAC ≥ 0.08). The random forest performs the
best, achieving an accuracy of 77.5%.

2 Prior Work

Applying machine learning to classify levels of intoxication us-
ing mobile data has recently gained popularity. An early three-
participant lab test used smartphone accelerometer readings of
users walking on a treadmill to classify intoxication [Kao et al.,
2012]. Though they identify useful predictive features, their re-
sults are limited by the controlled nature of the lab experiment.
Later studies built on this by conducting field tests that could cap-
ture the various orientations and manipulations of a mobile phone
throughout normal use [Arnold et al., 2015; Gharani et al., 2017];
both trained models on accelerometer data from smartphones in
field studies to classify intoxication. However, both used self-
reports to measure ground-truth intoxication levels which limits
the reliability of their models. Our work stands apart from the
previous accelerometer-only classifiers because we collect data
from a field test and use sensors to establish the ground truth
labels ensuring that our model is both generalizeable and reliable.

One related field study used a multitude of mobile data, such
as keystroke speed, sent/received calls, location and more to
classify sobriety [Bae et al., 2017]. Encouragingly, their model
achieved a very high classification accuracy and allowed for
theoretical intervention within a half-hour. However, the accuracy
of their model came at the cost of constantly sensing and storing
sensitive personal information. As data privacy concerns grow
globally, use of such sensitive information could deter users from
using the platform when implemented for campuses at scale.
Thus, learning to make accurate classifications with less sensitive
data is of paramount importance. Additionally, their ground truth
intoxication was established using potentially-biased self-reports.
Our work stands apart from this study because we focus on
maximizing the predictive power of only non-sensitive data and
we utilize sensors for ground truth measurements.

Table 1: Alcohol Consumption Statistics. TAC values are in g/dl where
0.08 is the legal limit for intoxication while driving. Inner quartiles are
the 25th, 50th, and 75th quartiles respectively. Time-to-last-drink is
calculated as time between TAC sensor initialization and the time of the
final local TAC maximum > 0.02. Note that many subjects continued
drinking after the conclusion of the event.

Statistic Value

Mean TAC 0.065 +/- 0.182
Max TAC 0.443
TAC Inner Quartiles 0.002, 0.029, 0.092
Mean Time-to-last-drink 16.1 +/- 6.9 hrs

3 Data
We gathered data via a field study in which students participated
in an annual “Bar Crawl” event. The study design is as follows.

Participant Eligibility. Participants were required to be an
active consumer of alcohol (they have consumed alcohol at least
once in the past week). Potential participants must have been
planning to attend the Senior Bar Crawl on May 2nd, 2017. They
were also required to be a current Ohio State student, 21 years of
age or older (legal minimum drinking age), single (not married),
and own a smart phone (an Android or Apple device). We
restricted the study to single (not married) students since that is by
far the most common status of all college undergraduate students.

Recruitment. Undergraduate students were recruited through
flyers and announcements in campus newspapers and health-
related undergraduate newsletters or courses. Those with an inter-
est in participating were instructed to call our office. Participants
were screened during these phone calls to determine eligibility. We
recorded only the first name and the last initial of participants and
scheduled their baseline appointment the morning of the crawl.

Data Collection. We recruited 20 undergraduate students
according to the above protocol. The recruited population was
made up of 10 men and 10 women, each in their senior year,
aged 21-23 (average age of 22.) 17 identified as white, 1 as
Latino/Hispanic, 1 as Asian, and 1 as African American. The
participants were offered moderate financial compensation to
share mobile accelerometer data and wear a sensor for measuring
TAC throughout the event. We developed a simple application
for iPhone and Android to sample triaxial accelerometer readings
at 40Hz, which were periodically sent to an InfluxDB server
[InfluxData, 2019]. The TAC data was sampled every 30 minutes
using a SCRAM ankle bracelet sensor [Zettl, 2002]. Each partic-
ipant was verified to have 0.0 TAC when fitted with the SCRAM
bracelet on the morning of the event, ensuring that sober data was
collected for each participant. After being fit with the bracelets,
students then voluntarily engaged in drinking activities throughout
the 18-hour event “as normal,” i.e. they were given no behavioral
instructions from our team. Statistics on the final collected
TAC are shown in Table 1. Over 30M accelerometer samples
were collected and used in final processing. All data was fully
anonymized after collection. This study was approved by The
Ohio State University Institutional Review Board (2016B0092).

Data Cleaning. Our custom application for collecting
accelerometer data installed successfully on all but 1 participant’s
mobile device. Of the remaining 19 participants, SCRAM
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reported that 6 of the ankle bracelets produced data that was
indicative of a malfunction (power failure, interference from
clothing, etc.) The rest of this work, including Table 1, uses only
the data from the remaining 13 participants.

Both the TAC ankle sensors and smartphone accelerometers
were prone to noisy readings due to splashes of alcohol and
low sensor-quality respectively. Thus, to smooth each set of
time-series data we used MATLAB’s signal processing toolbox to
implement low-pass filters for removing noise above a given fre-
quency, fstop. Namely, we used a Chebyshev Type II filter, which
has a steep roll-off at higher orders [MathWorks, 2019]. For the
TAC data, we used a 10th order Chebyshev Type II filter and fstop
= 1e-4Hz. The order and fstop were determined empirically to
work well. We applied the filter in the forward and reverse direc-
tion in order to maintain phase, so that the cleaned TAC could still
be matched to corresponding accelerometer readings through their
time stamps. This is important since the sampling frequency of the
TAC data is over a much larger time scale than that of the motion
data, so small phase changes could result in the TAC readings
being shifted by several minutes. Then, to account for the time it
takes for alcohol to exit the bloodstream and evaporate through the
skin, we subtracted 45 minutes from each TAC reading to obtain
readings indicative of real-time intoxication [Clapp et al., 2017].
For each axis of accelerometer data we found empirically that a
15th order Chebyshev type II filter worked well and we set fstop
= 2.7Hz since 1) the average human walking frequency is about
2Hz [Ji and Pachi, 2005] and 2) we found that the large majority
of signal was less than 3Hz. Note that for the accelerometer data
the filter was only applied in the forward direction since phase
changes in that data were on the order of one second and did not
affect downstream analysis. Examples of the accelerometer and
TAC readings before/after filtering are shown in Fig. 1.

Segmentation. Next we segmented each user’s stream of 18
hour time-series accelerometer data into windows of a predefined
length. Our procedure involved two steps. Over the course of
the bar-crawl event, participants’ mobile devices experienced oc-
casional periods in which they lost internet connection or battery
power. These cases resulted in either zero-readings or a lack of
data collection altogether for the duration of the outage. So we
first split each participant’s stream of data into segments separated
by at least two minutes of zero-data or a lack of readings.

Then we tried two approaches. For the first, we intended
to isolate segments of accelerometer data collected when
a participant was walking. To accomplish this, we used a
4-second-wide sliding window over each segment in which we
analyzed the frequency content of the data, keeping windows
which were rich in frequency content near 2Hz. Consecutively
accepted windows were concatenated up to a maximum length
of 60 seconds, resulting in windows of data between 4 and 60
seconds. For our second approach, we simply split each segment
into windows of length x, where x ranged from 4 seconds to 2
minutes. Further, each window was required to have at least 90%
of the expected data points for a sampling rate of 40Hz.

4 Methods
Formulation. The prediction task is as follows: given a sample
of accelerometer data, classify the sample as corresponding
to TAC above or below some preset threshold. We chose this

(a) Accelerometer data

(b) TAC data

Figure 1: A 4-second window of accelerometer data (a) and one student’s
TAC data (b). Each plot shows the data before (solid) and after (dashed)
applying a low-pass filter.

binary prediction formulation rather than a regression formulation
despite having continuous readings for TAC because the accuracy
of readings from the SCRAM sensors in our study varied with
TAC level. Specifically, readings from SCRAM sensors are
known to be relatively inaccurate for low levels of alcohol
consumption, but far better during binge drinking episodes
[Barnett et al., 2014]. Preliminary analysis confirmed that
classifiers outperformed regression techniques on our data.

Features. In preparing time-series data for classification by
machine learning algorithms, it is common to extract features
from both the time domain and frequency domain. In both cases,
it is also common for each calculated feature to use a two-tiered
windowed approach to characterize the data as it changes with
time. That is for a given metric of some, say, 4-second segment,
we further segment the window down to 1-second segments. We
then calculate the metric for each small segment, then compute
the mean, variance, max, and min of the metric over the 4
smaller segments to characterize how it changes over time. We
additionally compute the mean of the lower third and upper third
of sorted values, creating a total of 6 summary statistics per metric.
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Table 2: Features calculated for each sample of accelerometer data. The number in brackets denotes the number of features generated by that measure.
The top section describes features calculated per short-term window. Each short-term feature becomes the basis for 6 summarizing statistics for
each of the 3 axes over the full window. Each of the features described in the first 10 rows are calculated per window, then used again to find the
difference between the current and previous window resulting in double the features. Features in the bottom section were calculated separately from
the two-level window summary technique.

Feature(s) Definition

Mean [36] Average of raw signal
Standard Deviation [36] Standard deviation of raw signal
Median [36] Median of raw signal
Zero Crossing Rate [36] Number of times signal changed signs
Max/Min, Raw/Abs [144] Max/Min of raw/absolute signal (4 total metrics)
Spectral Entropy [72] Entropy of energy in both the frequency and time domain (2 total metrics)
Spectral Centroid [36] Weighted mean of frequencies
Spectral Spread [36] Measure of variance about the centroid
Spectral Flux [36] Measure of speed of change between two consecutive FFTs
Spectral Roll-off [36] Frequency under which 90% of energy is contained
Max Frequency [18] Max frequency from FFT
Gait Stretch [18] Difference between max and min of one stride
Number of Steps [18] Total steps taken during a window
Step Time [18] Average time between two steps
Cadence [18] Total steps over total time
Skewness [18] Measure of asymmetry of time-series signal
Kurtosis [18] Heaviness of tail/Fourth moment of time-series signal
Average Power [18] Average power over a Welch’s power spectrum distribution
Spectral Peak Ratio [18] Ratio of largest peak to second-largest peak

RMS [3] Root-mean-square of accelerations for each axis
MFCC Covariance [546] MFCC covariance entries for each of 6 axis combinations

Kao et al. [Kao et al., 2012] found that the length of a step
and the time between steps changed as participants became
intoxicated. Arnold et al. [Arnold et al., 2015] also explored gait
cadence, signal skewness, and signal kurtosis in the time domain,
as well as average power and ratio of spectral peaks in the
frequency domain. We calculate these and many other features
using the two-tiered window approach with PyAudioAnalysis
[Tyiannak, 2019] and SciPy [Jones et al., 2001]; the full list is de-
scribed in the top section of Table 2. Next, [Lamoth et al., 2010]
showed that the root-mean-square (RMS) of lateral accelerations
was significantly different in a study of transfemoral amputees
between control and amputee populations. We posited that this
quantified a lack of control of one’s center of mass which would
also be true of our intoxicated subjects. Thus for each sample
we calculated the RMS of the signal over each axis. Finally, we
drew from a technique used in speech recognition tasks which
summarizes the energies of a signal in the frequency domain into
13 bins, known as MFCCs. We calculated MFCCs for given small
windows of a segment (i.e. 1 second windows) then calculated the
covariance of the resulting matrix of coefficients. For example,
for a 4-second segment, we split into 1 second windows then
calculated the 13 MFCCs over the 4 window resulting in a matrix
M of dimension 13×4. We then calculated the covariance matrix
as MMT . In this way, the covariance matrix of the MFCCs
captured the change in frequency content of the signal over time.
In our experiments, we flattened the covariance matrix and kept
only the entries above the diagonal since the resulting 13×13
matrix was symmetric. We calculated these 91 coefficients for

each axis of accelerometer data with itself as well as for each
axis with each other (i.e. X×X, X×Y , X×Z, etc.). The full
summary of all 1215 features can be found in Table 2.

Classifiers. We built and trained four different classifiers,
each of which was tuned on the training data via 5-fold grid
search. First, we built a shallow Multilayer Perceptron Network
(MLP) with TensorFlow [Abadi et al., 2015], setting hidden layer
size to 256 and learning rate to 0.001. Next we built an SVM
with a radial basis function, using LIBSVM [Chang and Lin,
2011]. We set C and γ as 0 and 2 respectively. Then we built
a random forest using Python’s Scikit-Learn [Pedregosa et al.,
2011] using a forest with 700 trees.

Finally, we built a convolutional neural network (CNN) due to
their success in other time-series classification tasks such as instru-
ment classification [Park and Lee, 2015; Han et al., 2017] and ac-
tivity recognition [Zhang et al., 2015; Jiang and Yin, 2015]. In gen-
eral, these approaches first convert the signal to the frequency do-
main by computing FFTs over several windows of the signal. This,
however, leads to very large inputs which prohibited training in our
case. Instead, we computed 16 MFCC coefficients for each sec-
ond of data on each individual axis resulting in far smaller inputs
(i.e. 10x16x3) which were much easier to use for training. The ar-
chitecture was as follows for a 10×16×3 input: CONV (6×32)
POOL (2×2) BATCHNORM () FC (1028) DROPOUT (0.5) FC
(2). We built the network with Keras [Chollet, 2015] and trained
using cross-entropy loss, Adam Optimizer, and a batch size of 256.

Dimensionality Reduction. We generate 1215 features
per window of accelerometer data. However, not all of those
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Figure 2: Area under the receiver operating characteristic curve vs.
the TAC cutoff point for separating classes. In general, classifier
performance is better when the cutoff is moved to extreme points but
worse at mid-range points, suggesting that student behavior is somewhat
similar for TACs in the range [0.10-0.15]. The number aligned with each
marker denotes the number of data points with TAC above that threshold.

features were essential for differentiating between classes, and
reducing the size of inputs can speed up training. We left the
fraction-of-most-important-features-to-keep, λ, as a parameter
to tune via grid search. To determine the importance of each
feature we trained Scikit-Learn’s Random Forest Classifier on
randomized subsets of the data, then evaluated the importance
of each feature calculated as the normalized reduction of the Gini
impurity brought by that feature [Pedregosa et al., 2011].

Parameter Tuning. Three parameters needed tuning
regardless of the underlying machine, namely the TAC cutoff
between classes, the fraction of important features to keep (λ) and
the length of the window of accelerometer data. These were cal-
culated individually using 4-fold grid search on the training data.

We suspected that the differences between “sober” and
“intoxicated” classes would become more pronounced and easier
to discriminate as we increased the cutoff. However, Fig. 2 shows
that classifier performance followed a U-shaped curve, suggesting
that student behaviors are very distinct when either sober or
dangerously intoxicated, but tend to have overlap in the middle
that can hinder learning. We chose to sacrifice some classification
power by keeping the cutoff at 0.08, since we intended our model
to be used to deliver JITAIs and since this marks the onset of
a binge drinking event as defined by the National Institute on
Alcohol Abuse and Alcoholism [NIAAA, 2019].

Fig. 3a shows the performance of our classifier vs. the percent
of top most important features kept. Gains in accuracy are made
until about 0.2, after which no additional improvements can be
seen and training becomes cumbersome. Therefore we set λ = 0.2.
Finally, we posited that our segmentation method to extract only
windows of walking data would provide the best downstream
results by reducing noise and narrowing the scope of our classifier.
However, using this method we obtained a maximal classification
accuracy of 65% (16% worse than our best result.) Thus we
used simply cut windows of non-zero accelerometer data. In

(a) Fraction of features to use

(b) Window length

Figure 3: Grid search run to determine the best (a) fraction of the most
important features to keep and (b) seconds of consecutive accelerometer
data to consider (window length.)

general with this approach we suspected that an ever-increasing
window length would add more information to be captured
by our features giving us better results downstream. However,
Fig. 3b demonstrates that the opposite was generally true. We
obtained the best performance when using the shortest window
of 10 seconds. Encouragingly, this is desirable for real world
applications, since the shorter the window length, the less
resources that are expended and more likely one is to be able to
gather the necessary data to perform a classification.

5 Results and Discussion
Using a window length of 10 seconds and λ = 0.2, we had 26,087
rows of data each with 243 features. Intoxicated samples (TAC
> 0.08) made up about one-third of the data. We randomized
the data and split 25% as the test set. Table 3 shows the results
for each classifier. The random forest is the clear best performer
in all categories. Among the remaining classifiers, notably the
shallow MLP network has the worst overall accuracy but is the
best at detecting intoxicated samples.
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Table 3: Final classification accuracies, precision, and recall per machine.
Best results are bolded. Note that recall also serves as the in-class
accuracy for the intoxicated data.

Classifier Acc. Sober Acc. Precision Recall

MLP 0.7328 0.7561 0.5981 0.6885
CNN 0.7427 0.7892 0.6262 0.6564
SVM 0.7467 0.8124 0.6362 0.6224
RF 0.7748 0.8153 0.6658 0.6979

Table 4: Additional Accuracy from MFCC Features

Classifier w/ MFCC w/o MFCC Change

MLP 0.7328 0.6581 0.1135
SVM 0.7467 0.6697 0.1150
RF 0.7748 0.6763 0.1456

To the best of our knowledge, this is the best-to-date binary clas-
sification accuracy on an accelerometer/intoxication task, reaching
77.5%. We were able to achieve this result for two main reasons.
First, we accessed a participant cohort that was sufficiently large
and that generated data for a time-span long enough to allow us
to collect more than 25,000 observations, whereas the classifiers
of some comparable studies have had far less training data.
Gathering so much data allowed us to train classifiers prepared
for many different input cases without suffering from overfitting.
Further, we discovered that calculating MFCC covariance
matrices as features drastically improved classification accuracy.

Thus, in Table 4 we quantify the predictive power added by
these features by retraining and testing the MLP, RF, and SVM
on the data without the MFCC covariance features. Note that
this analysis did not apply to the CNN because it did not use
covariance entries. Since this significantly changed the number
of features, before retraining we re-tuned the parameters for
each classifier. Grid search showed that λ=0.2 was still the best
fraction of important features to keep for all machines. MLP and
RF parameters were the same as the previous step, but for the
SVM we set C=8 and γ=4.

Finally, since the random forest performed the best across all
categories, we further investigated its robustness by exploring the
variance of its errant calls. Fig. 4 shows a box plot of the actual
TAC of samples that our model misclassified. The plot demon-
strates that the variability of even our most robust machine is still
high; especially for intoxicated samples. For sober samples that
we wrongly called intoxicated (false positives), 50% of samples
had TAC between 0.06 and 0.08, which is reasonable. However,
25% of false positive calls occurred for data between 0.01 and
0.04 TAC which is quite distant from the legal limit. For intoxi-
cated samples that we wrongly classified as sober (false negatives),
the variance of our machine is even more drastic. Specifically,
25% of these samples had TAC of 0.14−0.23 where patients
would be considered extremely intoxicated, but our classifier
missed them. We take this opportunity to highlight that, though
our system takes a step in the right direction for using mobile
phones to classify sobriety, more work would be needed to use our
tool in situations with social consequences (i.e. law enforcement.)

Figure 4: A boxplot showing the actual TAC for samples that were
misclassified by the random forest. The left shows the distribution for
false positive cases and the right for false negative cases. The red dashed
line denotes the TAC cutoff of 0.08.

Despite its variance, our model is well-suited to help develop
JITAIs for heavy drinking scenarios. Our model is capable of
making classifications of sobriety every 10 seconds. Thus, one
could use the model to make several informed predictions over
the course of 1 or 2 minutes, then use the whole of the predictions
to establish confidence in the user’s sobriety. Researchers could
then set their own confidence threshold on which to deliver the
JITAI within only minutes of the user becoming at risk for a
heavy drinking scenario. Further, since our model uses only
non-sensitive accelerometer data, our model could be used for
the real-world implementation of JITAIs outside of a research
setting since users will not face privacy concerns that might deter
them from using the technology.

6 Future Work and Improvements
Though we achieved a promising level of accuracy, we faced
three important challenges. First, while not controlling for phone
placement (pocket, purse, etc.) allowed us to capture more
general use-cases, it likely hindered our classifier’s performance.
Including data from gyroscopes might help alleviate this issue
and while still maintaining anonymity. However, even with more
sensor data more work is needed to incorporate device orientation
before classifications will improve. Further, we captured arbitrary
user gestures for which it may be difficult to learn general
classification rules. This could be remedied by focusing only on
one type of gesture such as a walking event. We attempted to
extract walking events during post-processing, but found that this
generally harmed classification accuracy. Using a mobile device’s
built-in algorithm for flagging walking data at sensor-time could
be a promising direction. Finally, it is also important to note that
all of our classifiers had a higher accuracy for sober data than
intoxicated data and that the variance of our best classifier was
high for intoxicated subjects. This suggests that more complex
techniques or features capable of modeling the diverse set of user
actions in heavy drinking scenarios may be needed.
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7 Conclusion
We gathered a high-quality dataset for training a machine learning
classifier to differentiate between a sober and intoxicated subject
using only tri-axial accelerometer signals. The dataset was more
reliable than most studies of its nature, given that ground truth in-
toxication levels were established using sensors, rather than poten-
tially biased self-reports. Further, on our dataset we achieved the
highest known accuracy for accelerometer-only binary classifica-
tion of sobriety, obtaining a test accuracy of 77.5% with a random
forest. We also identified a highly informative new set of features
to be investigated in future studies; namely MFCC covariance ma-
trix entries which improved classification accuracy by as much as
14%. More work is needed to better understand what differentiates
sober from intoxicated accelerometer signals—but these results
will serve to improve the baseline for future studies addressing
this issue. To support continued research, we plan to make the
de-identified accelerometer and transdermal alcohol content data
freely available on the UCI Machine Learning Repository.
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