
Abstract 
Mortality prediction in Intensive Care Unit (ICU) 
could assist clinicians to make diagnosis. Many 
deep learning models have been previously pro-
posed to uncover the high order correlations among 
heterogeneous clinical events. However, they failed 
to address the importance of prior medical 
knowledge from experienced clinicians. In this pa-
per, we propose a novel ICU mortality prediction 
method called P-BiLSTM, which combines a bidi-
rectional Long Short-Term Memory model with 
prior medical knowledge of clinicians. In P-
BiLSTM, we first preprocess general descriptors 
and heterogeneous temporal events with a sophisti-
cated data completion strategy. After that, we use a 
weighted block with prior medical knowledge to en-
hance learning and explainable abilities of deep neu-
ral networks. The performance of the proposed 
method is validated using a real-world dataset con-
taining 37 types of temporal events from 4,000 ICU 
patients within 48-hour. Experimental results 
demonstrate that P-BiLSTM outperforms six base-
line methods. 

1 Introduction 
Medical diagnosis is a data-intensive and knowledge-inten-
sive scenario, which requires strong abilities of knowledge 
reserving, processing and judgment [He et al., 2019; Ma et 
al., 2018]. For instance, clinicians in surgical ICU would pay 
attention to indicators such as Platelets. Because when the 
number of Platelets sharply reduces, it indicates that patients 
may encounter a life threatening issue such as postoperative 
bleeding. In contrast with the common-sense knowledge, cli-
nicians in emergency department might be cautious about hy-
peroxia (i.e., using excessive oxygen) among mechanically 
ventilated patients. Because hyperoxia will generate toxic 
molecular in the blood that could be particularly injurious 
[Page et al., 2018]. In short, the lesson learnt from aforemen-
tioned examples is, besides continuous trends reflected from 
heterogeneous clinical events, clinicians make diagnoses 

largely based on their medical knowledge and experience. 
For example, they take into account the certain ICU type  of 
a patient and underlying considerations accordingly. In addi-
tion, these problems encountered by clinicians are far more 
complex in real world cases. Thus, it is urgent to combine 
their rich medical knowledge with multiple clinical variables 
to make a precise diagnosis for a specific patient. 

Many early works have utilized machine learning methods 
[Bhattacharya et al., 2017; Citi and Barbieri, 2012] to opti-
mize the prediction model with ICU datasets. More recently, 
many works tended to focus on mining the high order corre-
lations among heterogeneous clinical variables, with the su-
perior learning ability of deep neural networks such as Con-
volutional Neural Network (CNN) [Suo et al., 2017], Long 
Short-Term Memory (LSTM) [Nguyen et al., 2017] and 
many others [Yang et al., 2016; Krizhevsky et al.,2012; 
Chung et al., 2018]. However, they failed to address the im-
portance of prior medical knowledge from experienced clini-
cians. In addition, existing works often conduct a straightfor-
ward strategy to deal with the missing data issue from heter-
ogeneous temporal events. This is problematic since one 
causal factor of missing data relies largely on medical proce-
dures, such as measuring blood pressure hourly, while col-
lecting urine every 8 hours. As a result, a simple data com-
pletion strategy will inevitably introduce noises that might in-
terfere with the prediction model.  

To address the aforementioned challenges, we propose a 
novel ICU mortality prediction method, named P-BiLSTM, 
which combines a bidirectional LSTM (Long Short-Term 
Memory) model with prior medical knowledge of experi-
enced clinicians. First, we choose available general de-
scriptors and time-series variables as the input of each patient 
with a sophisticated data completion strategy. Second, we de-
sign a weighted block with prior medical knowledge to en-
hance learning and explainable abilities of deep neural net-
work model. Finally, we train and evaluate our model on a 
real-world dataset containing 37 types of heterogeneous tem-
poral events from 4,000 ICU patients within 48-hour. Exper-
imental results demonstrate that our proposed P-BiLSTM 
outperforms six baseline methods, including CNN, GRU, 
LSTM, BiLSTM, BiGRU and BiLSTM-ST.  
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2 Related Works 
Recently, there are plenty deep neural network models to 
solve the clinical endpoint prediction problem with their ca-
pacity of mining high order correlations among multiple clin-
ical variables [Liu et al., 2018]. Convolutional neural net-
work (CNN) shows strong ability to capture local features to 
predicting multiple diseases [Suo et al., 2017]. Later, to cap-
ture longtime characteristics of patients’ records, recurrent 
neural networks (RNNs) and its variants [Chung et al., 2014; 
Yang et al., 2016; Graves et al., 2005; Gupta et al., 2018] are 
applied to predict patients’ health status based on electronic 
health records (EHR). Furthermore, Long Short-Term 
Memory (LSTM) network [Lipton et al.,2015] and its vari-
ants [Nguyen et al., 2017; Zhu et al., 2018] are used to clas-
sify diagnoses based on massive EHR in pediatric intensive 
care units [Johnson et al., 2016]. However, these works failed 
to combine rich medical knowledge from experienced clini-
cians with heterogeneous clinical events to make diagnoses 
and treatments for a specific patient. Instead, we propose a 
novel ICU mortality prediction method that not only en-
hances the predictive performance, but also makes the pre-
diction result more explainable.  

 3 Preliminary 
In this section, we describe the notation used in this paper, 
and the problem definition about a mortality prediction task. 

3.1 Notation 
Each patient 𝑝 is associated with a specific ICUType, a se-
quence of heterogeneous events and survival days. ICUType 
is a categorical variable that specifies the type of ICU to 
which the patient has been admitted. We denote it as a binary 
vector 𝐾($) ∈ ℝ(  using one-hot coding, where 𝐶 is the num-

ber of ICU types. The sequence of heterogeneous events con-
tains D numerical variables of length T that reflects the pa-
tient's physiological state. We denote it as 𝑋($) ∈ ℝ+×- , 
where 𝑋.,0

($)	(𝑡 = 1,2,… , 𝑇, 𝑑 = 1,2,… , 𝐷) represents the ob-
servations of 𝑑.: variable in the 𝑡.: time step. Survival_days 
denotes the number of days the patient survived between ICU 
admission and death. 

Furthermore, the medical data inevitably carries missing 
observations. We introduce a masking matrix 𝑀 ∈ ℝ+×- to 
denote which variables are missing in the sequence of heter-
ogeneous events. Specifically, we define  

𝑀(𝑡, 𝑑) = <1, 𝑖𝑓	𝑋.,0
($)	𝑖𝑠	𝑜𝑏𝑠𝑒𝑟𝑣𝑒𝑑

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒																
.              (1) 

3.2 Problem Definition 
Definition 1 (Survived): We define a patient is survived if the 
number of survival days between ICU admission and death is 
over 30. 
Mortality Prediction Task: The mortality prediction is a time 
series classification problem. We predict whether the patient 
𝑝 is survived, given the ICUType 𝐾($) and the sequence of 
heterogeneous events 𝑋($). 

4 P-BiLSTM Method 
As shown in Figure 1, P-BiLSTM is composed of two mod-
ules, including a Knowledge Representation (KR) module 
that will be discussed in more details in Section 4.1 and a 
Prediction Module that will be discussed in Section 4.2. The 
proposed system works as follows. First, KR module extracts 
features from prior medical knowledge (e.g., ICUType). Sub-
sequently, medical knowledge, heterogeneous clinical events 
and its labeling matrix are integrated as the input of weighted 
block. After that, a shortcut between the output of weighted 

 
Figure 1: Overview of P-BiLSTM model. KR module extracts features from prior medical knowledge (e.g., ICUType),  

and Prediction module incorporated the aforementioned features into BiLSTM networks to predict ICU mortality. 
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block and heterogeneous clinical events are generated as fea-
tures. Finally, Prediction module incorporated the aforemen-
tioned features into BiLSTM networks to predict ICU mor-
tality. 

4.1 Knowledge Representation (KR) Module 
Besides sequences of heterogeneous clinical events, each pa-
tient’s record contains pattern of missing sequential data and 
a group of important general descriptions, such as ICUType. 
In real world cases, data missing patterns and general descrip-
tions are largely associated with the complex situation of di-
agnostic procedures, such as measuring blood pressure 
hourly, while collecting urine every 8 hours. To avoid noises 
introduced by straightforward data completion, it is necessary 
to incorporate indirect supervision (i.e., prior medical 
knowledge) with the deep neural networks to make prediction. 

Weighted Block  
We design a weighted block to realize the importance of prior 
medical knowledge, which is illustrated in Figure 2. First, we 
collect relevant medical knowledge from experienced clini-
cians, such as causality that represents their various emphasis 
on different ICU types. Heterogeneous clinical events of time 
step t, 𝑥. ∈ ℝ-  are concatenated with the corresponding 
medical knowledge (i.e., 𝑚𝑘 ∈ ℝL ) as a new vector 	𝜐. ∈
ℝ-NL, which is then applied to a fully connected layer to gen-
erate the weight for each variable 𝑤. ∈ ℝ-. Finally, the input 
vector 𝑥. is weighted by 𝑤. , as 

𝑥O. = 𝑥.⨂𝑤. ,                                     (2) 
where ⨂ denotes element-wise multiplication. The weighted 
block could guide the predictive model to predict decisions 
made by clinicians. 

It is known that clinicians make diagnoses largely based 
on their considerations for a patient with a certain ICU type 
𝐾($) ∈ ℝ( , as well as a group of variables 𝑋($) ∈ ℝ+×- ac-
cordingly. To reflect this in our design, as inspired by Resid-
ual network (ResNet) [He et al., 2016], we add a shortcut 
connection between the sequence of heterogeneous events 

                                                
1 PhysioNet website, https://www.physionet.org/challenge/2012/ 

and outputs of the weighted block to improve prediction per-
formance as illustrated in Figure 1. 

Data Labeling Block 
Medical datasets often carry missing observations. We ob-
served that one causal factor of missing data relies largely on 
medical procedures. In other words, a straightforward data 
completion strategy that failed to consider medical routine 
procedure will inevitably introduce noises, which might in-
terfere with the prediction model. For this reason, a better 
strategy is to label which data is completed explicitly to avoid 
noises in deep neural networks. In the paper, in order to label 
whether the variable is missing at each time step, we design 
a masking matrix 𝑀($) ∈ ℝ+×-. In Figure 1, the masking vec-
tor is used as an input to the weighted block in combination 
with sequences of heterogeneous events to reduce the impact 
of noises introduced by the missing data completion. For ex-
ample, if a feature is absent, the normalized feature after pro-
cessing will be penalized by the weighted block. 

4.2 Prediction Module  
Heterogeneous events consist of logic complex information. 
To obtain high mortality prediction accuracy, we take ad-
vantage of time-series data that capture heterogeneous events 
of patients to explore the pattern of the patient's physical con-
dition changes. 

Long short-term memory (LSTM) performs well in long-
term time-series prediction problem. In our scenario, each pa-
tient’s physical conditions are not only affected by the previ-
ous illness state, but also determined by present conditions. 
Bidirectional LSTM consists of forward and backward 
LSTMs, which helps us to avoid the blindness of unidirec-
tional propagation and capture changes in patient's physical 
signs. Therefore, in the prediction module, we use bidirec-
tional LSTM, and apply a fully connected prediction layer, 
which has sigmoid activation for the binary classification task 
(as shown in Prediction module in Figure 1). 

5 Experiments and Evaluations 
In this section, we first introduce the datasets and experi-
mental settings, and then provide detailed performance com-
parison among the proposed P-BiLSTM and state-of-the-art 
approaches. 

5.1 Datasets 
PhysioNet Challenge 2012 dataset (PhysioNet)1, is a publicly 
available collection of general descriptors and multivariate 
clinical time series from 4,000 ICU records. General de-
scriptors in this dataset contain patients’ basic information, 
including recordID, age, gender, height, weight and 
ICUType. ICUType specifies the type of ICU to which the 
patient has been admitted, including Coronary Care Unit, 
Cardiac Surgery Recovery Unit, Medical ICU, and Surgical 
ICU. The dataset also includes heterogeneous temporal 
events, which are composed of roughly 48 hours and contains 

 
Figure 2: Weighted block. 𝑥. is heterogeneous clinical events 
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37 variables that reflect each patient's physiological state 
such as Albumin, heart-rate, glucose, etc. More details of this 
dataset can be found on PhysioNet website. 

5.2 Data Preprocessing 
We used PhysioNet dataset in our experiment. We prepro-
cessed the dataset in three categories. First, for general de-
scriptors, we represented ICUType as a 𝐾 ∈ ℝQ×R	boolean 
matrix by one-hot code as part of input data. Second, for het-
erogeneous events, the preprocessing steps included: 1) data 
recording. We chose one hour as a time interval and statistic 
variable value of each sample in each time period with a 𝑋 ∈
ℝRS×TU matrix. At the same time, we recorded whether the 
value is null with a  𝑀 ∈ ℝRS×TUmasking matrix; 2) data 
completion. If a record is missing occasionally within 48 
hours, we imputed data that are missing using neighboring 
records. If there is no data in 48 hours, missing data were re-
placed with the mean value of the variable in the same type 
of ICU the patient belongs to; and 3) data normalization. To 
make heterogeneous temporal events comparable, the matrix 
uses the mean and standard deviation for normalization. 
Third, for patients’ labels, we labeled each patient as {0, 1}, 
according to the survival definition described in Section 3.2. 

5.3 Experimental Settings  
In order to balance positive and negative samples, we used 
up-sampling method to expand 4,000 records of PhysioNet 
Challenge 2012 dataset to 5,000 samples in random order. 
The dataset was split into three parts with fixed proportions, 
namely training set (3360 samples), validation set (840 sam-
ples), and testing set (800 samples). Besides, algorithms were 
implemented using TensorFlow and Keras, and experiments 
were run on two GPUs (GTX TITAN X). 

Comparing Methods 
The following models were compared with P-BiLSTM: (1) 
Convolutional Neural Network (CNN) [Krizhevsky et al., 
2015]; (2) Gated Recurrent Unit (GRU) [Chung et al., 2014] 
(3) Long short-term memory (LSTM) [Hochreiter and 
Schmidhuber, 1997]; (4) Bidirectional GRU (BiGRU) [Yang 
et al., 2016]; (5) Bidirectional LSTM (BiLSTM) [Graves et 
al., 2005]; and (6) Bidirectional LSTM network with super-
vision technique (BiLSTM-ST) [Zhu et al., 2018]. 

Evaluating Metrics 
We choose four widely used metrics, i.e., Precision, Recall, 
F1, and the area under ROC Curve (AUC) to compare the 
performances of our model against baseline methods.  

5.4 Results Summary 
Comparison with Baselines 
Table 1 shows that the proposed P-BiLSTM outperforms the-
state-of-the-art methods. Specifically, P-BiLSTM outper-
forms BiLSTM, mainly because the prior medical knowledge 
could guide models to learn optimal parameters. In addition, 
the result of P-BiLSTM is statistically significant according 
to Student’s T-test at level 0.063 compared to BiLSTM. 

Ablation Studies  
We re-trained our model by ablating two blocks to examine 
the effectiveness of our proposed techniques, namely the 
Weighted Block and Data Labeling Block. As shown in Table 
2, the experimental results show that: 1) each block is useful 
for the prediction task; and 2) the full model that integrates 
with two blocks preforms the best.   

Effect of Various Sequence Lengths  
We further trained P-BiLSTM model with 24-hour and 36-
hour heterogeneous temporal events after the patient was ad-
mitted into the ICU. Figure 3 shows that the performance of 
P-BiLSTM(36-hour) is slightly weaker than P-BiLSTM(48-
hour). Nevertheless, we could still use 36-hour model instead 
of 48-hour so as to give clinicians an earlier sense of which 
patients will require critical targeted treatments. 

Model Precision Recall F1 AUC 

CNN 0.675 0.650 0.682 0.804 
GRU 0.745 0.828 0.784 0.883 
LSTM 0.755 0.853 0.801 0.905 
BiGRU 0.757 0.848 0.800 0.894 
BiLSTM 0.779 0.845 0.826 0.906 
BiLSTM-ST 0.751 0.749 0.750 0.864 
P-BiLSTM 0.842 0.857 0.849 0.923 

 
Table 1: Performance of mortality prediction tasks 

Model Precision Recall F1 AUC 

W/O WB 0.815 0.856 0.835 0.914 
W/O DLB 0.825 0.857 0.842 0.920 
Full Model 0.842 0.857 0.849 0.923 

 
Table 2: Ablation studies. W/O WB denotes no weighted block is 
performed, and W/O DLB denotes no data labeling block is per-
formed. 

 
Figure 3: Performance with various sequence lengths. 
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6. Conclusion 
In this paper, we propose a novel mortality prediction method 
P-BiLSTM for ICU, which integrates prior medical 
knowledge into deep neural networks to enhance the learning 
and explainable abilities. Specifically, we train and evaluate 
our model on a real-world dataset. Experimental results 
demonstrate that P-BiLSTM outperforms all other baseline 
methods. In the future, we plan to employ causality discovery 
technologies (i.e., do-Calculus) to enhance the interpretation 
of the mortality prediction method. In addition, we will tes-
tify our model in a large dataset (i.e., MIMIC III). 
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