
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution

4.0 International (CC BY 4.0).

Meta-monitoring system for ensuring a fault tolerance of the

intelligent high-performance computing environment

I A Sidorov1, T V Sidorova2 and Ya V Kurzibova3

1Matrosov Institute for System Dynamics and Control Theory of SB RAS, Lermontov

St. 134, Irkutsk, Russia, 664033
2Limnological Institute of SB RAS, Ulan-Batorskaya St. 3, Irkutsk, Russia, 664033
3Irkutsk State University, Karl Marks St. 1, Irkutsk, Russia, 664003

ivan.sidorov@icc.ru

Abstract. The high-performance computing systems include a large number of hardware and

software components that can cause failures. Nowadays, the well-known approaches to

monitoring and ensuring the fault tolerance of the high-performance computing systems do not

allow to fully implement its integrated solution. The aim of this paper is to develop methods

and tools for identifying abnormal situations during large-scale computational experiments in

high-performance computing environments, localizing these malfunctions, automatically

troubleshooting if this is possible, and automatically reconfiguring the computing environment

otherwise. The proposed approach is based on the idea of integrating monitoring systems, used

in different nodes of the environment, into a unified meta-monitoring system. The use of the

proposed approach minimizes the time to perform diagnostics and troubleshooting through the

use of parallel operations. It also improves the resiliency of the computing environment

processes by preventive measures to diagnose and troubleshoot of failures. These advantages

lead to increasing the reliability and efficiency of the environment functioning. The novelty of

the proposed approach is underlined by the following elements: mechanisms of the

decentralized collection, storage, and processing of monitoring data; a new technique of

decision-making in reconfiguring the environment; the supporting the provision of fault

tolerance and reliability not only for software and hardware, but also for environment

management systems.

1. Introduction

The development of a comprehensive monitoring system that would ensure the collection of data from

a large number of heterogeneous components included in modern intelligent high-performance

computational environment (IHPCE) is a difficult task because of the lack of appropriate standardized

formats and protocols for obtaining the necessary information. There is a large number of software

solutions that allow us to separately monitor the necessary components of IHPCE. In this regard, the

most expedient and promising direction of research in creating integrated monitoring systems for

IHPCE is the integration of existing local monitoring systems within a unified meta-monitoring

system [1]. At the same time, the local monitoring system acts as a supplier of data. The data

collecting and unification, expert analyzing the obtained information, and defining the necessary

control actions are assigned to the meta-monitoring system.

The monitoring of the IHPCE components can be conventionally divided into the following

categories:

 Monitoring and analysis of the software execution efficiency in IHPCE (control of the current

state of computational processes and their individual copies, evaluation of the efficiency of the

allocated resource use, etc.),

 Monitoring, testing, and diagnostics of hardware components of nodes (disks, processors,

RAM, network interfaces, etc.),

 Monitoring of the IHPCE engineering infrastructure (uninterruptible power supply systems,

climatic equipment, fire-fighting systems, etc.),

 Monitoring of the IHPCE computing infrastructure (monitoring of the current load of

computing nodes, control of communication, control of transport and service networks, data

storage systems, etc.),

 Monitoring of the IHPCE firmware (monitoring of the functioning of system services, task

queues, agents, various subsystems, etc.).

The paper suggests an approach to complex monitoring of the IHPCE with multiagent control of

computations [2, 3]. It is based on collecting and analyzing data received from a set of local

monitoring systems that control the operation of hardware and software components of the

environment. In addition, control effects on the IHPCE functioning are developed within the proposed

approach.

2. Related work

Tools for monitoring and analyzing the effectiveness of a program implementation in distributed

computing environments. A large number of systems have been accumulated in this category. They

include program profilers, tools for monitoring the utilization of computational resources by means of

copies of programs executed in distributed computing environments nodes, and tools for monitoring

the utilization of network components. The description of these systems is represented in Table 1.

Their comparative analysis is given in details in [4, 5].

Table 1. Systems for the monitoring and analysis of the program performance

System Description Reference

NWPerf A system for analyzing the performance of a parallel

program with the ability to provide data on its

individual blocks. It implemented in the Python

programming language.

https://github.com/EMSL-

MSC/NWPerf

Arm MAP A parallel, multi-threaded, and sequential profiler that

provides comprehensive analysis on a specific set of

metrics. It allows to analyze C, C ++, and Fortran

programs.

https://www.arm.com/pro

ducts/development-

tools/server-and-

hpc/forge/map

LAPTA Tools for multidimensional analysis of dynamic

characteristics of programs focused on

supercomputers. It provides various types of graphical

reports.

http://hpc.msu.ru/node/84

mpiP Lightweight profiler of MPI-programs. It enables to

analyze programs in C, C ++, and Fortran.

http://mpip.sourceforge.ne

t/

Integrated

Performance

Monitoring

(IPM)

Advanced profiler of parallel programs with the ability

to analyze data transfer processes, memory access,

communication network, and disks. It supports various

implementations of the MPI library.

http://ipm-

hpc.sourceforge.net/

Intel®

VTune™

Amplifier

Commercial software for analyzing the program

performance. Its supports the analysis of the

performance and scalability of programs,

communication network bandwidth, and data caching.

https://software.intel.com/

en-us/intel-vtune-

amplifier-xe

Tuning and

Analysis

Utilities

Tools for analyzing and visualizing the execution of

parallel programs. It allows to analyze programs in C,

C ++, Fortran, UPC, Java, and Python.

http://tau.uoregon.edu

HPCToolkit Tools for the automatic detection of inefficient blocks

of a parallel program with the reference to its source

code. It focuses on the use in computing environments,

including tens and hundreds of thousands of nodes.

http://hpctoolkit.org

Paraver A program performance analyzer based on event

tracing and allowing detailed analysis of changes and

distribution of a specific set of metrics. It supports the

prediction of program behavior in different scenarios.

http://www.bsc.es/paraver

Scalasca Tools for optimizing parallel programs by measuring

and analyzing their behavior during the execution. The

main emphasis in identifying inefficient blocks is

given for the synchronization of parallel programs.

http://www.scalasca.org

From the author's point of view, NWPerf and Paraver open-source packages are the most functional

and perspective solutions for analyzing the efficiency of the parallel program execution in distributed

computing environments.

Monitoring, testing, and diagnostics of hardware components of computational nodes.

Unfortunately, only a small number of systems intended for detecting defects in the hardware

components of distributed computing environments nodes are known. The description of these

systems is represented in Table 2.

Table 2. Monitoring, testing, and diagnostic systems for hardware components of nodes

System Description Reference

Disparity A software package that launches an MPI program on

target nodes in order to detect possible malfunctions. It

supports multiple modes of testing nodes (fast,

advanced, etc.).

[6]

Coordinated

Infrastructure

for Fault

Tolerant

Systems

The system implements consistent processes for

exchanging information about faults between nodes in

order to develop a holistic picture of their state as a

whole.

https://wiki.mcs.anl.gov/c

ifts/index.php/CIFTS

The most interesting of them is the Disparty software tool, which allows to detect malfunctions of

the components of the computing node during the downtime between the runs of instances of

computational processes.

Systems for monitoring the engineering infrastructure of distributed computing environments. The

systems represented in Table 3 are used to monitor the engineering infrastructure of supercomputer

and data processing centers. However, almost all of them are proprietary and tied to the specialized

equipment. Thus, they usually do not have the sufficient flexibility for monitoring the IHPCE

infrastructure.

Table 3. Systems for monitoring the engineering infrastructure of distributed computing environments

System Description Reference

ClustrX A resource management system that supports

automatic shutdowns of equipment in the event of a

failure of hardware and software components. The

description of the monitored components is performed

http://www.t-

platforms.com/

products/software/clustrx

productfamily/clustrxwatc

in the Erlang scripting language. h.html

EMC ViRP

SRM

Software for monitoring a corporate storage of

information resources and automating the generation

of reports about their status. It designed to monitor

specialized equipment only.

http://russia.emc.com/data

-center-management/vipr-

srm.htm

Bright

Cluster

Manager

A toolkit of automating the creation and control of

compute clusters in data centers or cloud platforms. It

provides a variety of reports.

http://www.brightcomputi

ng.com/products

Moab Cloud

HPC Suite

Resource management system for supercomputers. It

supports automation of planning, control, monitoring,

and reporting.

http://www.adaptivecomp

uting.com/moab-hpc-

basic-edition/

IBM cluster

system

management

Software management complex of large-scale

computing clusters. It used predominantly on

computing clusters manufactured by IBM.

https://www-

01.ibm.com/common/ssi/c

gi-bin/ssialias

At present, non-commercial software products which could provide universal description of

heterogeneous engineering equipment of a supercomputer center, creation of new objects, and setting

the rules of their monitoring are not known to the author. Monitoring systems Nagios [7] and Zabbix

[8] provide a set of tools for monitoring the engineering infrastructure of distributed computing

environments, which in each case should be significantly improved.

Monitoring the computation infrastructure of distributed computing environments. Today, there are

a large number of complex solutions in this category. The most popular complex systems are

represented in Table 4.

Table 4. Systems for monitoring the computation infrastructure

System Description Reference

Ganglia Scalable distributed monitoring system of computing

cluster resources and cloud platforms with a

hierarchical structure. It is the most common system

used in computer centers.

http://ganglia.sourceforge.

net

Nagios A monitoring system for computing systems and

networks that supports a wide range of functional

capabilities for notifying an operator of possible

malfunctions. It is often used to monitor

telecommunication networks.

https://www.nagios.org

Zabbix A system for monitoring and tracking the state of the

software and hardware of telecommunication

networks, including network servers and services. It

supports various databases for the data storage.

https://www.zabbix.org

ZenOSS Monitoring software package that supports the

automatic detection and configuration of monitoring

parameters of various systems. It focused on cloud

applications.

https://www.zenoss.com/

Ovis2 A comprehensive monitoring system that provides

high scalability and integration with other monitoring

tools.

http://ovis.ca.sandia.gov/

The most popular system in this category is Ganglia. However, its standard set of functions does

not meet the growing needs for monitoring the computation infrastructure of distributed computing

environments. Often, the limited set of functions leads to the need for additional monitoring systems,

such as Zabbix or Nagios. The most promising system in this category, from the author’s point of

view, is Ovis2, which provides high scalability and wide possibilities for connecting various data

sources.

Monitoring middleware of distributed computing environments. This category includes Nagios and

Zabbix monitoring systems described above, as well as more specialized tools represented in Table 5.

Table 5. Systems for monitoring middleware of distributed computing environments

System Description Reference

Xymon Software complex for monitoring the process of

functioning of the system services of computing

systems. The basic principle is to check the availability

of network ports.

http://xymon.sourceforge.

net/

Failure

Testing

Service

Toolkit for testing applications in the cloud

environment. It allows testing in the framework of

continuous integration.

[9]

CloudRift System for testing microservice applications for cloud

platforms. It enables to identify failures in individual

segments of cloud programs.

[10]

In addition to the aforementioned systems, environment administrators usually develop specialized

utilities to track the correct functioning of individual subsystems included into middleware. Such

utilities are often implemented in the form of scripts running on schedule using the CRON service.

The results of a comparative analysis of the functionality of the developed meta-monitoring system

with the capabilities of the key local monitoring systems described above is represented in Table 6.

These results show the obvious advantages of the meta-monitoring system.

Table 6. Comparison of the developed meta-monitoring system with local monitoring systems

Feature Lapta Disparity ClustrX Zabbix Ganglia Nagios Ovis2 Xymon Meta-

monitoring

system

Analysis of the

effectiveness of

program

implementation

+ – – – – – – – +

Monitoring and

diagnostics of

computing nodes
– + – + + + + – +

Engineering

infrastructure

monitoring
– – + + – + – – +

Computing

infrastructure

monitoring
+ – – + + + + – +

Testing of

services and

control

subsystems

– – – – – – + + +

3. Scheme of the environment component control

The general scheme of the IHPCE component control using the meta-monitoring system is shown in

Fig. 1. In this scheme, the IHPCE component acts as a control object. The administrator configures the

operation of the job management system, which handles the flow w of user tasks, using the vector c

configuration parameters. He also creates affects
1

u on the control parameters of the IHPCE

component. The task management system determines the computational load l of the component in

accordance with the flow w . The external disturbances d of the environment arise because of the

actions of local users of the environment or events that occur during the operation of the engineering

infrastructure.

The monitoring system collects the information i about the IHPCE component and computation

management system with the help of measuring tools and local monitoring systems. This information

is formed on the basis of the characteristics
1

h of component status and the information
2

h about

functioning the computation management system. Based on the collected information, the meta-

monitoring system assesses the current computational situation, predicts its development, and forms

the control effects
2

u and
3

u on the IHPCE component and the computation management system in

order to prevent or partially eliminate failures of hardware and software. In the event of a critical

situation when such actions cannot be performed automatically, the meta-monitoring system sends the

corresponding notification s to the environment administrator.

Figure. 1. Scheme of the IHPCE component control.

4. Meta-monitoring system architecture
The meta-monitoring system architecture is based on the principles of organization of multagenic

systems [11] and includes the following main components:

 Interface for the user access to components of the meta-monitoring system, which allows to

work with them in batch or interactive modes,

 Access level subsystem, which performs the differentiation of the access to the requested data,

 Agents that operate on the IHPCE nodes and carry out the data collection and processing. In

addition, they interact with other agents.

A software agent installed in the IHPCE nodes is a program executed in the background mode. The

agent collects data from the local monitoring systems, unifies the received data, and saves it in the

local DBMS. It includes a subsystem for the failure diagnostics and environment reconfiguration. In

addition, the agent has control subsystem that performs the execution functions of control actions and

interaction with the agents of upper levels.

The possibility of data analysis and making necessary decisions on the side of the computing node

is a key difference between the presented approach and existing solutions. In the well-known

monitoring systems, the client installed in the nodes performs the functions of data collection and their

periodic transmission to the control node. The centralized processing and analysis of the collected data

are performed on the control node. This creates an additional extra load on the network protocol stack,

which also requires CPU time, and has problems with scalability.

Agents of the developed meta-monitoring system consume about 37% less processor time in

comparison with the Ganglia agents at the same frequency of interrogation of sensors. They transfer

data to the central node of IHPCE or neighbouring agents only if necessary or on request. The

processor time spent for the data analysis on the node is less the time spent on formation of network

packets and control of their integrity. Thus, this reduces the load on the network stack and the central

node of the monitoring system. In addition, it is possible to reduce the negative impact of the

monitoring agent on the computational tasks performed in the nodes.

The measurement of node state metrics (processor, memory, etc.) is implemented by the functions

of the SIGAR library [12]. This library is cross-platform. It allows unified access to the necessary

information.

Integration of the meta-monitoring system with local monitoring systems is carried out in the

specialized language that is a subset of the ECMA Script language [13]. This specialized language

supports the call of external commands, network interaction, processing of output stream, regular

expressions, and a number of other mechanisms for rapid implementation of non-standard sensors.

The subsystem of the data collection and processing is based on the principles of Round-robin

Database. A volume of such databases does not change with time. Their fixed size is achieved due to

the predefined number of records used cyclically to store data.

Nowadays, there are many implementations of cyclic databases (MRTG, RRDtools, etc.). At the

same time, the performed tests have revealed a number of drawbacks in such systems related primarily

to unacceptable performance in reading/writing data. We tried to create a cyclic database prototype of

on the basis of the lightweight embedded relational database SQLite. However, the conducted

experiments have shown its lower performance in comparison with RRDtools.

In this regard, we have made a decision to create own implementation of the cyclic database, which

uses the specialized XML based format for storing structured information. We developed the

mechanisms of data reading and writing, aggregation of data for a certain time interval, displacement

of outdated data, data sampling in accordance to determined criteria, and means of data caching in

memory. The developed database has demonstrated its efficiency in comparison with MRTG and

RRDtools.

5. Practical application

The developed methods and tools for meta-monitoring IHPCE have been successfully tested in the

Irkutsk Supercomputer Center of SB RAS [14]. IHPCE included three pools of nodes:

 20 computational nodes with Intel Xeon E5-2695 v4 "Broadwell" processors with a total

number of 720 cores,

 10 computing nodes with AMD Opteron 6276 "Bulldozer"/"Interlagos" processors with the

total number of cores 320,

 20 computing nodes with Intel Xeon 5345 EM64T 2.33 GHz "Clovertown" processors with

the total number of cores 160.

During the study of IHPCE by the meta-monitoring system, a list of hardware and software

resources whose components were in a state close to critical or functioning with errors was revealed.

The list of nodes, diagnostic messages of the meta-monitoring system, and node state description

corresponding to the detected faults are given in Table 7.

Table 7. Meta-monitoring results

Pool

number

Node

number

Diagnostic message Node status description

1 4
«warning node-4.matrosov.icc.ru

loadavg5 43»

The average node load for the last 5 minutes

exceeded 43 points.

1 13
«critical node-13. matrosov.icc.ru

cpu-sys-p 77»

At the node, the loading of processor cores by

the tasks of the operating system prevails.

2 112
«critical sm112.matrosov.icc.ru

filesystem /home wtime 583816»
Writing to the /home directory is too slow.

1 14
«error node-14.matrosov.icc.ru

down»
Node not available.

2 102
«critical sm102.tesla.icc.ru memory-

used-ten 97»
On the node RAM is used by 97%.

3 7
«error node node-7.blackford.icc.ru

filesystem /store du-free 0»

The node has run out of free disk space in the

/store directory.

The analysis of data on the state of the IHPCE hardware and software resources collected by the

meta-monitoring system revealed the inefficient operation of user applications, optimized the load of

computing resources, and improved the reliability of the IHPCE operation. For example, when solving

an important practical task of annotating the Synedra acus genome with the help of the MAKER

software package [15], the prevalence of read-write operations in the network directory over

computational operations performed on processor cores was revealed. In accordance with the detected

inefficient use of resources, the package parameters indicating the location of directories for writing

the results of calculations were automatically corrected. Local directories of nodes (for example, /tmp)

were assigned as such directories, which allowed to significantly increase the efficiency of using

processor cores in this package by more than 30%.

Another illustrative example of the successful applying of the developed meta-monitoring system is

a significant improvement in power saving for one of the IHPCE pools, the nodes of which are

outdated, but continue to be operated by users. These users solve their problems with the help of

applications specialized in software and hardware features of the nodes in this pool.

The PBS Torque [16] system is used to control the completion of tasks in this pool. In order to

automate the power consumption control in pool nodes the following meta-monitoring operations and

rules have been developed:

 Operations to collect data from the sensors of the PBS Torque system about the used resources

and tasks set in the queue, to enable and disable pool nodes, to change the pool configuration

parameters,

 Set of output rules for the expert subsystem that define the conditions for applying these

operations.

When a task is added to the PBS Torque queue on the pool's management node, the number of

nodes in the pool required to solve it is automatically enabled using the Intelligent Platform

Management Interface (IPMI) protocol. Then they are quickly tested and computational processes in

these nodes are launched. After the task solution is completed, new tasks are waited for a specified

period of time (usually 1-2 hours). In the case of their absence, the nodes are automatically switched

off using the same IPMI protocol. As a result of automation in this pool with the help of meta-

monitoring system, their daily power consumption was reduced by 34%.

The meta-monitoring system is great importance for evaluating the efficiency of the processes of

functioning of the multi-agent system of distributed computing management [1, 2]. Permanent

monitoring of the work of this multi-agent system has shown its higher fault tolerance to failures of

software and hardware resources of IHPCE in comparison with other similar systems [17].

6. Conclusions

The paper addresses the relevant problem of monitoring the high-performance computing systems and

ensuring their fault tolerance. We proposed a new approach to monitoring IHPCE (the environment

with multi-agent management of distributed computing) and developed the specialized meta-

monitoring system. The developed meta-monitoring system provides control, diagnostics, localization,

and troubleshooting of the IPCE components. In addition, automatic reconfiguration of IHPCE in a

finite number of steps enables minimizing the time of diagnosis and troubleshooting through the

parallel execution of their operations. The fault tolerance increase of nodes by means the preventive

diagnosis and troubleshooting improves the reliability and efficiency of IHPCE.

The novelty of the presented approach includes the following elements:

 Special mechanism of decentralized collection, storage, and processing of monitoring data,

 Decentralized decision-making for the environment reconfiguration,

 Ensuring the fault tolerance and reliability for both the hardware and software of the

environment, and the environment management system itself.

Acknowledgment. The study is supported by the Russian Foundation of Basic Research, project

no. 19-07-00097 (reg. no. АААА-А19-119062590002-7). This work was also supported in part by

Basic Research Program of SB RAS, project no. IV.38.1.1 (reg. no. АААА-А17-117032210078-4).

References

[1] Bychkov I V, Oparin G A, Novopashin A P 2015 Agent-Based Approach to Monitoring and

Control of Distributed Computing Environment Lecture Notes in Computer Science 253-257

[2] Bychkov I, Feoktistov A, Sidorov I, Kostromin R 2017 Job Flow Management for Virtualized

Resources of Heterogeneous Distributed Computing Environment Procedia Engineering 201

534-542

[3] Feoktistov A, Sidorov I, Tchernykh A, Edelev A, Zorkalzev V, Gorsky S, Kostromin R,

Bychkov I, Avetisyan A 2018 Multi-Agent Approach for Dynamic Elasticity of Virtual

Machines Provisioning in Heterogeneous Distributed Computing Environment Proc. of the

Int. Conf. on High Performance Computing and Simulation (IEEE) pp 909-916

[4] Benedict S 2013 Performance issues and performance analysis tools for HPC cloud

applications: a survey Computing 89-108

[5] Mohr B 2014 Scalable parallel performance measurement and analysis tools – state-of-the-art

and future challenges Supercomputing frontiers and innovations 1(2) 108-123

[6] Desai N, Bradshaw R, Lusk E 2008 Disparity: Scalable Anomaly Detection for Clusters Proc.

of the 37th International Conference on Parallel Processing pp 116-120

[7] Josephsen D 2007 Building a Monitoring Infrastructure with Nagios p 255

[8] Zabbix. Available at: https://www.zabbix.org (accessed: 19.06.19)

[9] Haryadi S G 2011 FATE and DESTINI: a framework for cloud recovery testing Proc. of the 8th

USENIX conference on Networked systems design and implementation pp 238-252

[10] Savchenko D, Radchenko G, Taipale O 2015 Microservices validation: Mjolnirr platform case

study Proceedings of the 38th International Convention MIPRO (IEEE) pp 248-253

[11] Wooldridge M, Jennings N 1995 Intelligent Agents: Theory and Practice. The Knowledge

Engineering Review 10(2) 115-152

[12] System Information Gatherer and Reporter API. Available at:

https://github.com/AlexYaruki/sigar (accessed: 19.06.2019).

[13] Standard ECMA-262: ECMAScript Language Specification. Available at:

http://es5.javascript.ru/ (accessed: 19.06.2019)

[14] Irkutsk Supercomputer Center of SB RAS. Available at: http://hpc.icc.ru (accessed:

19.06.2019).

[15] MAKER – genome annotation pipeline. Available at: http://gmod.org/wiki/MAKER (accessed:

19.06.2019).

[16] PBS Torque. Available at: https://github.com/adaptivecomputing/torque (accessed: 19.06.2019).

[17] Bychkov I, Feoktistov A, Kostromin R, Sidorov I, Edelev A, Gorsky S 2018 Machine Learning

in a Multi-Agent System for Distributed Computing Management Data Science. Information

Technology and Nanotechnology 2018 (CEUR-WS Proceedings) 2212 89-97

