CEUR-WS.org/Vol-2434/paper2.pdf

Bad Smells in Scratch Projects: A Preliminary Analysis

Angela Vargas-Albal, Giovanni Maria Troiano?, Quinyu Chen?,
Casper Harteveld? and Gregorio Robles!

!Universidad Rey Juan Carlos, Madrid, Spain — {a.vargasa@alumnos,grex@gsyc}.urjc.es
2Northeastern University, Boston, MA — {g.troiano, q.chen, c.harteveld}@northeastern.edu

Abstract

Computational Thinking (CT) is an area of
great relevance today. Although its skills may
be developed in various ways, one of the most
common tools to learn it, train it and develop
it, is through programming. From software
engineering, we know that problems solved
through programming may have not been
solved in the most appropriate way. These
symptoms are known as “bad smells”. This
article aims to analyze the presence of sev-
eral bad smells in Scratch projects and how
they relate to the development of CT skills.
Therefore, we make use of a dataset of several
hundreds of Scratch projects with the aim of
creating a game on climate change. Our re-
sults show that bad smells can be found in
all types of Scratch projects, independently of
the development of CT skills they require. We
discuss why the learning community should
address bad smells appropriately, as they may
hinder the development of abstraction, reuse
and other relevant skills.

1 Introduction

Bad (code) smells are symptoms that the problem to
be solved is not developed in the most appropriate way.
In other words, the program may run and may even
solve the problem, but it contains elements that make
it difficult to understand, to modify and to reuse [9].

Copyright © 2019 for this paper by its authors. Use permitted
under Creative Commons License Attribution 4.0 International
(CC BY 4.0).

In: I. Fronza, C. Pahl (eds.): Proceedings of the 2nd Systems of
Assessments for Computational Thinking Learning Workshop
(TACKLE 2019), co-located with 14th European Conference
on Technology Enhanced Learning (EC-TEL 2019), 17-09-2019,
published at http://ceur-ws.org.

Martin defines code smells as follows [3]: “Code smells
are usually not bugs; they are not technically incor-
rect and do not prevent the program from function-
ing. Instead, they indicate weaknesses in design that
may slow down development or increase the risk of
bugs or failures in the future.” Despite the negative
effect they produce, code smells have been little in-
vestigated and analyzed in Computational Thinking
(CT) research. As Hermans and Aivaloglou have found
in an experiment with Scratch learners [1], we argue
that bad smells hinder the proper development of CT
skills in learners. Their identification should be a first
step towards guiding learners towards good practices
that offer them the possibility to develop themselves
to their full potential.

For this reason, the main motivation of this research
is to analyze to what extent bad smells are present in
Scratch projects, a block-based language that is widely
used around the globe to develop CT skills. Our re-
search is similar to a previous one done on LEGO
MINDSTORMS EV3 and Microsoft’s Kodu [2], ex-
panding it with information on the complexity of the
projects. Therefore, we use Dr. Scratch, a tool that
evaluates the richness of elements used in the pro-
grams, for evaluating the Scratch projects. Thanks
to Dr. Scratch it is possible to detect different types
of bad smells that are present in the code.

The remainder of this paper is structured as follows:
In Section 2, we introduce and motivate the research
goal and research questions that we address in this pa-
per. A more detailed description about the definition
of bad smells is summarized in Section 3. Section 4
and Section 5 describe the data set used in the study,
as well as the functionality and design of Dr. Scratch
in more detail. Section 6 shows the results obtained
after the analysis and in Section 7 a discussion is pro-
posed based on it. Limitations and problems found
are described in Section 7.1. Finally, Section 8 con-
tains the main conclusions and future work that we
envision.

2 Research Goal and Questions

The main objective of this paper is to analyze the
presence of bad smells in a large set of Scratch
projects.

For this, the research questions that we want to
address are as follows:

RQ1. To what extent are bad habits present
in Scratch projects?

In particular, we answer this question by offering
the percentage of projects that have at least one type
of bad smell. This question allows to see how frequent
projects show a bad smell, hinting to the relevance of
the topic. We expect a significant number of projects
to contain bad smells.

RQ2. Does the development of CT skills re-
late to the presence of bad smells?

We would like to find out if the presence of bad
smells correlates with the complexity of the projects.
Our hypothesis is that projects that have higher de-
grees of CT development will have less bad smells, as
these may hinder the development of CT skills.

RQ3. Do projects with more blocks have a
higher number of bad smells?

More complex projects usually have more blocks.
Thus having a single bad smell in a small, simple
project may have less impact than in a project with
hundreds of blocks. In the former case, the impact
could be big, while in the latter it could be seen as an
exception, with little impact.

To answer this question, for projects of the same
level of CT development we calculate the ratio of the
number of bad smells detected to the total number of
blocks. We expect that this ratio decreases with an
increase in the development of CT skills required to
create the Scratch projects.

RQ4. Can we find a relation among specific
bad smells?

As by now, we have considered all type of bad smells
together. In this question, we dig into each of them
separately. It may be possible that some bad smells
appear more frequently in projects of lower complexity,
while others appear in more complex projects.

RQ5. To which extent can bad smells
be identified in each of the CT development
phases?

Related to the previous question, we analyze how
the different bad smell types appear in projects in the
different stages of CT development. Therefore, we con-
sider projects with a low complexity (basic), medium
complexity (developing) and major complexity (profi-
ciency) and compute how often they contain a specific
type of bad smell.

We expect that several types of bad smells appear in
the early phases (basic), while others are more promi-

nent in more complex projects (proficiency). We as-
sume therefore that learners that achieve higher levels
of complexity have overcome certain bad smells due
to having developed certain CT skills, while other bad
smells appear in those more complex projects.

3 Bad smells in Scratch

Scratch is a visual programming language formed by
different blocks, designed for children and beginner
programmers, which contains different bad smells re-
lated to the use of these blocks [6].

In our research, we have identified four different
types of bad smells that can be present in Scratch
projects: copy and pasted code (duplicate scripts) [7],
the use of default names for sprites (default names),
code that is never being executed (dead code), and
variables that are not correctly initialized (attribute
initialization). Their characteristics and impact are
summarized in Table 1.

4 Research Context

In order to analyze the presence of bad smells, as well
as their relationship with the level that users have in
CT development, a large set of projects is necessary.
The data set used in this article is the same which was
used for another, previous research [8]. A group of
438 students designed games for STEM using Scratch
2.0. During this process, we obtained snapshots of the
process, in different periods of time, in order to show
a temporary evolution'. The total number of projects
without taking into account the replicas over time, is
711. As a result, the complete data set is comprised
of 62,074 projects formed by the snapshots. With the
total data set, we wanted to analyze the same 711
projects in different points of time.

All these snapshots were analyzed with Dr. Scratch,
of which 2,158 were erroneous in the analysis for dif-
ferent reasons: the project was saved incorrectly, the
code contained special characters, etc. The final set
of projects analyzed was 59,916 (further details can be
found in [8]).

5 Methodology

We have taken all snapshots of the Scratch projects
and have analyzed them with Dr. Scratch. Dr.
Scratch is a web-based tool that analyzes different cat-
egories related to computational thinking based on the
blocks of the Scratch projects [4] (a screenshot of their
main web page can be seen in Figure 1). It analyzes
the code and, depending of the diversity of blocks used,
the application gives a score to the project.

Lhttps://drive.google.com/drive/u/0/folders/
1tDI6nx2{6344xJAKeUeWBeTg0YzxE3bO

Table 1: Types of Bad Smells.

Bad Smell Type

Definition

Impact on Learning

Duplicate scripts

Code is copy and pasted, some-
times with minor changes

It hinders the use of user-defined
blocks and as such can be seen a
limitation to the development of
the abstraction skill

Default names

Objects are not given a meaning-
ful name, but keep the default
SpriteN name

It hinders interaction among ob-
jects, as using them in other ob-
jects becomes more difficult

Dead code

Code that is never being exe-
cuted (usually because they do
not have a starting condition)

It may indicate missing function-
ality

Attribute initialization

Variables are not well initialized

It hinders the start of some ob-

jects, because their position, size,
costume, etc are not correctly
initialized

WORKINGON ~ CONTACT US

This is a Beta version

We are working on it. If you have comments or

ideas to share, please contact us on or

Figure 1: Main page of the web tool Dr. Scratch

The outcome is a numeric punctuation based on
seven categories of computational thinking: paral-
lelism, logical thinking, flow control, user interactivity,
data representation, abstraction and synchronization.
For each of these abilities a project can obtain a punc-
tuation from 0 to 3 points, according to the different
blocks used in the Scratch project. In this way, the
final punctuation can be from 0 to 21 total points.

Based on that, there are three different profiles of
leaner: between 0 and 7 points, Basic, between 8 and
15, Developing and between 16 and 21, Proficiency.

Once the project is analyzed, the application will
show different dashboards with these results, as it is
possible to see in the Figure 2.

In addition to the former, Dr. Scratch identifies the
four types of bad smells that we study in this work.

6 Results

In this Section we describe the results obtained from
addressing our research questions using the previously

v HELP DR. SCRATCH(BETA VERSION)

Level up Level

The level of your project
is. DEVELOPING:

You're doing a great job. Keep if up:::

ovNQ

Hello,sbz

[Dowrload |

Figure 2: Example of the analysis of a Scratch project
with Dr. Scratch

described data set.

6.1 To what extent are bad habits present?

As shown in Table 2, bad smells can be found in almost
all projects in our data set — over 97% of the projects
have at least one bad smell.

Table 2: General presence of Bad Smells (RQ1)

Projects with | Projects without
bad smells bad smells
58,162 1,754
97,07% 2,93%

We expected a high share of projects having bad
smells, but this result is a surprise for us, as the pres-
ence of bad smells is not only more frequent than ex-
pected, but almost general.

6.2 Does the development of CT skills relate
to a minor presence of bad smells?

We have analyzed in more detail those projects that
have and do not bad smells. In particular, we want
to see how the complexity of the projects is related
to having a bad smell. We use the mastery required
to create a project, as measured by Dr. Scratch, as a
proxy for the complexity of the project.

In Figure 3 we can observe the distribution of each
set of projects. We can observe that more than 50% of
those projects with not bad smells have a total mastery
of 0. In other words, these are skeleton projects with-
out any content. The amount of projects with content
and without any bad smell is therefore even lower than
calculated in the previous research question. In addi-
tion, we see that projects with no bad smells are in the
lower part of the complexity ladder.

Projects without bad smells Projects with bad smells

700

Number of projects
Number of projects

2000

00 1000

o
00 25 50 75 100 125 150 175 200

Total Mastery Total Mastery

Figure 3: Distribution for projects without bad smells
and with bad smells (RQ2).

In summary, bad smells in Scratch can be found in
almost all projects. Only a small set of projects with
low complexity do not have them.

6.3 Do projects with more blocks have a
higher number of bad smells?

One could argue that projects with more complexity
(those with higher values of CT score in Dr. Scratch)
usually have more blocks, and that the impact of a
code smell there is lower than in less complex projects.
In other words, even if more complex projects have
bad smells, their presence is mitigated by the fact that
these are large projects. This would imply that achiev-
ing high values of CT development means to have less
bad smells.

Figure 4 visually shows the number of blocks for
all projects for a given CT score (blue line) and the
number of bad smells in those projects. Both curves
have been normalized to their maximum values. We
can observe how the two curves run almost in parallel
(up to 8 points they share the same ratio, and then

]
00 25 50 75 100 125 150 175 200

they share a ratio of around 0.5 up to 21 points, where
the ratio is over 1).

104 TotalBadsmells
—— TotalBlocks f

0.8

0.6

0.4

0.2

0.0 T = T T T T
0.0 25 5.0 75 00 125 150 175 200
Total Mastery

Figure 4: Relation between the total number of bad
smells and the total number of blocks for each mastery
level (RQ3).

Table 3 offers more details about this situation.

6.4 Can we find a relation among specific bad
smells?

From Figure 5 (again, this graph is normalized), we
can observe that the four different types of bad smells
that we have studied have a similar distribution be-
low the proficiency level. The presence of bad smells
has a similar behavior for projects up to 17 points of
mastery. Then, when the mastery is above 17 points,
the behavior of each of them is different: While dupli-
cated scripts and bad attribute initialization continue
to slightly grow, the number of dead code blocks grows
more abrupt way. However, and the number of default
names decreases considerably. This last trend may be
because in projects with a high number of blocks and
objects it is more difficult to program with the default
names (Sprite 1, Sprite 2, etc) instead of personalizing
them.

6.5 To which extent can bad smells be iden-
tified in each of the CT development
phases?

As already seen wit RQ3, the number of bad smells
is higher when the total mastery increases. In Figure
6, we have represented the percentage of projects that
have at least a specific type of bad smell for each level
of CT proficiency. The percentage of projects from
users with the basic level that have bad smells is much
smaller than the percentage of projects that require
a proficiency level. This result indicates that all bad
smells have an incremental evolution with the increase
of CT efficiency. So, it seems that bad smells appear
in early phases and instead of disappearing with the

Table 3: Detailed information on number of blocks and bad smells for each mastery level (RQ3).

Total Total Total Mean | Median Total Mean Median | Total Blocks
Mastery | Projects Blocks | Blocks | Blocks | Bad Smells | Bad Smells | Bad Smells | / Bad Smells
0 1747 198 0.11 0 2087 1.19 1 0.09
1 279 2096 7.51 1 2200 7.89 1 0.95
2 171 702 4.11 3 468 2.74 1 1.50
3 464 3519 7.58 4 2914 6.28 0 1.21
4 425 2902 6.83 5 1414 3.33 0 2.05
5 1325 15365 11.60 9 7268 5.49 1 2.11
6 1417 28878 20.38 16 8298 5.86 2 3.48
7 1470 51024 34.71 22 10304 7.01 2 4.95
8 1935 92437 47.77 29 13459 6.96 2 6.87
9 2349 191908 81.70 55 20221 8.61 3 9.49
10 3473 | 334075 96.19 66 38376 11.05 3 8.71
11 5900 | 683490 115.85 82 64702 10.97 4 10.56
12 5786 | 779130 134.66 103 66401 11.48 4 11.73
13 6206 | 1142705 184.13 142 108307 17.45 7 10.55
14 8173 | 2184999 | 267.34 201 182128 22.28 10 12.00
15 4954 | 1383152 279.20 193 104416 21.08 7 13.25
16 5346 | 1735651 324.66 255 130280 24.37 10 13.22
17 3352 | 1276143 | 380.71 291 103394 30.85 16 12.34
18 1795 | 631899 | 352.03 279 50581 28.18 10 12.49
19 2092 | 872027 | 416.84 342 71391 34.13 14 12.21
20 960 | 533958 | 556.21 507 66419 69.19 26 8.04
21 296 | 1639757 | 5539.72 7183 355809 1202.06 1505 4.61
100
104 DefaultNames Basic
—— DupScripts m Developing
08 Deai:!Code gg | = Proficiency
Attinit _
£
06 - £
g
0.4 - E 40
£
021 20 -
0.0 —_— . . . : :
0o 25 5.0 75 10.0 125 15.0 17.5 200 0

Total Mastery

Figure 5: Evolution of the different types of bad smells
with CT mastery (RQ4).

development of more advanced CT skills, they become
more prominent.

7 Discussion

We have observed that bad smells are very common in
Scratch projects. The results indicate as well that bad
smells do not limit the development of a project, be-
cause it is possible to create projects at the proficiency
level even with a large amount of bad smells.

We argue that researchers, educators and learners

Sprite_names. Dup_scripts Dead_code Attribute_initialization
Figure 6: Presence of bad smells for each proficiency

level (RQ5).

should devote more effort in avoiding the presence of
bad smells in learning projects. The very nature of bad
smells makes them difficult to identify. They are not
errors and a program could run perfectly having many
of them. However, their effects are very well known in
Software Engineering research. These effects are in the
long term, when maintainability of a software system
is considered. In such a situation, the software has to
be understood and changed, and in that situation is
where these bad smells become more prominent. The

large presence of bad smells indicates that understand-
ing and changing code is not among the priorities of
the projects under study, although “good code” has
always been considered as that one that is easy to un-
derstand and to change. That is why we think that
with the current presence of bad smells learners do not
achieve their full potential of CT development skills.
In our opinion, further research and tools should be
envisioned and created to address this issue.

7.1 Limitations

As any research, our work comes with a number of
limitations that can be seen as threats to its validity.

The first one is related to our methodology, and in
particular to the limited set of bad smells that we can
identify. We are sure that many other types of bad
smells could be thought of in Scratch. On the other
hand, we use as complexity metrics the CT scores pro-
vided by Dr. Scratch. While there have been some
research that has studied how Dr. Scratch correlates
with other complexity metrics [5], this is always a cor-
relation and not causation.

We have studied projects from a specific environ-
ment, which may not be representative for all Scratch
projects, so the generalization of results is a threat to
validity. However, it should be noted that this is a case
study, with the aim to raise attention on this matter.
We should analyze a wider data set which includes
different sectors of programming with Scratch, such as
stories, music, animations, among others. We do not
know if the behavior of bad smells could be different
in other areas of programming.

8 Conclusions

Bad smells are common in Scratch projects, from basic
to proficient. As the complexity increases, bad smells
do not disappear, so learners can create projects that
demand a high development of CT skills having bad
smells in them.

We ask for further research on this topic.

Acknowledgments

This work has been co-funded by the Madrid Re-
gional Government, through the project e-Madrid-
CM (P2018/TCS-4307). The e-Madrid-CM project
is also co-financed by the Structural Funds (FSE and
FEDER).

References

[1] F. Hermans and E. Aivaloglou. Do code smells
hamper novice programming? a controlled exper-
iment on scratch programs. In 2016 IEEE 24th

International Conference on Program Comprehen-
sion (ICPC), pages 1-10. IEEE, 2016.

F. Hermans, K. T. Stolee, and D. Hoepelman.
Smells in block-based programming languages. In
2016 IEEE Symposium on Visual Languages and
Human-Centric Computing (VL/HCC), pages 68—
72. IEEE, 2016.

R. C. Martin. Clean code: a handbook of agile
software craftsmanship. Pearson Education, 2009.

J. Moreno-Leén, G. Robles, et al. Analyze your
scratch projects with dr. scratch and assess your
computational thinking skills. In Scratch confer-
ence, pages 12-15, 2015.

J. Moreno-Leén, G. Robles, and M. Roman-
Gonzalez. Comparing computational thinking de-
velopment assessment scores with software com-
plexity metrics. In 2016 IEEE global engineer-
ing education conference (EDUCON), pages 1040
1045. TEEE, 2016.

M. Resnick, J. Maloney, A. Monroy-Hernandez,
N. Rusk, E. Eastmond, K. Brennan, A. Millner,
E. Rosenbaum, J. S. Silver, B. Silverman, et al.
Scratch: Programming for all. Commun. Acm,
52(11):60-67, 2009.

G. Robles, J. Moreno-Leén, E. Aivaloglou, and
F. Hermans. Software clones in scratch projects:
On the presence of copy-and-paste in computa-
tional thinking learning. In 2017 IEEFE 11th In-
ternational Workshop on Software Clones (IWSC),
pages 1-7. IEEE, 2017.

G. M. Troiano, S. Snodgrass, E. Argimak, G. Rob-
les, G. Smith, M. Cassidy, E. Tucker-Raymond,
G. Puttick, and C. Harteveld. Is my game ok dr.
scratch?: Exploring programming and computa-
tional thinking development via metrics in student-
designed serious games for stem. In Proceedings of
the 18th ACM International Conference on Inter-
action Design and Children, pages 208-219. ACM,
2019.

M. Zhang, T. Hall, and N. Baddoo. Code bad
smells: a review of current knowledge. Journal
of Software Maintenance and Evolution: research
and practice, 23(3):179-202, 2011.

