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ABSTRACT
In this conceptual paper we suggest a framework for flexible and
efficient recommender systems. It is based on an unified finite
multivariate model space for both user and products. Association
functions map each entity to each model-dimension fuzzily. Finally
distance- and learning-operations allow efficient operation. The
main differences to existing approaches are the reduced model
space and the fuzzy location of entities. The reduced model space is
most advantageous where item features are inconsistent structured
or sparse. The association function allows to express a distribution
of agreement, not just a single location.

CCS CONCEPTS
• Information systems→Personalization;Recommender sys-
tems; Collaborative search; Similarity measures.

KEYWORDS
recommendation, personalization, feature based recommendation,
similarity measurement, fuzzy mapping

1 INTRODUCTION
Tourism is for many reasons an interesting and challenging field for
recommender systems: Travel experiences are complex and include
various physical and mental aspects. Decisions are mainly based
on subconscious, abstract ideas and emotions attached to them. At
the same time hard constraints, like the available time frame and
budget, have to be met. Also multiple persons are usually involved
in the decision finding process. Products are very diverse, they are
often inconsistent and incomplete documented. More often than
not, products themselves do not satisfy the tourists need directly,
but are prerequisites for the tourists dreams to be fulfilled. With all
that challenges in mind, we reach for a flexible generic solution.

Generally, recommender systems aim to provide useful sugges-
tions to their users. They use any combination of user-, item-, and
context- information.

We suggest a recommendation-framework that:

• Reduces the feature-space to few interpretable (user-related)
and manageable dimensions.

• Maps users and products, and other entities of interest to
the model space.

• Treats the entity-dimension-relationship fuzzily.
• Provides a heuristic to efficiently compute distances between
entities.

• Provides self-learning procedures in near real-time.

2 CORE CONCEPTS
In this section we introduce the essential concepts in theory. Prac-
tical aspects will be treated in section 3 and 4.

2.1 Model Space
In this framework we use a multidimensional, finite model space.
All entities, users, products, or whatever abstract or actual items
are of interest, are fuzzy–located in the very same model space.
In most cases the number and interpretation of the dimensions
will be defined domain specific. This can be done through domain-
knowledge or by dimension reduction techniques such as factor
analysis (see [3] for a related approach). The latter of course requires
a suitable data corpus. For tourism seven factors have already been
identified [5], [4].

Alternatively a generic, user oriented data model can be used to
obtain a cross-domain recommender system. For example the Big
Five personality traits [2] could be used straightforward as dimen-
sions. For a comprehensive work on cross-domain recommenda-
tions see [1], and for thoughts on personality and recommender
systems see [6].

2.2 Association Function
Association functions express the degree of accordance between en-
tities and model-dimensions. They are most comparable to member-
ship functions in fuzzy logic but should not be confused with prob-
ability density functions. Dimensions are treated independently, so
each entity has a separate association function for each dimension.

In our model space, we think of each dimension as closed interval
between 0 and 1. We believe that placing an entity on a single point
on each dimension is an oversimplification. Instead it should be
possible to express the spread of conformity over an adjustable
range. Hence we were looking for a function that:

• Is defined on the closed interval [0, 1];
• Takes values between 0 and 1;
• Is continuous (sufficiently small changes in x result in arbi-
trarily small changes in f (x));

• Allows to specify location and dispersion independent of
each other, hence takes (at least) two parameters;

• Is memory-efficient (is specified by as little as possible pa-
rameters).

We found the association function defined in (equation 1) fulfilling
all requirements above.

fa,b (x) =


1 if a = b = 0

xa (1 − x)b( a

a + b

)a (
1 −

a

a + b

)b otherwise (1)
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f is fully specified by two real parameters a ≥ 0 and b ≥ 0. An
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Figure 1: Two examples of association functions. Solid line:
µ = 0.2, ρ = 10, a = 2, b = 8; Dashed line: µ = 0.4, ρ = 4, a = 1.6,
b = 2.4;

alternative, more human comprehensible parametrization is given
by the location parameter µ ∈ [0, 1] and the precision parameter
ρ ≥ 0. Both parametrizations can easily be converted into each
other via (2), (3), (4), and (5). Examples for f are shown in figure 1.

µ =
a

a + b
a + b > 0 (2)

ρ = a + b (3)
a = µρ (4)
b = (1 − µ)ρ (5)

The value of fa,b (x) is in [0, 1] for all valid a, b, and x ∈ [0, 1]. If a =
0 andb = 0, f (x) is constant 1. We call f0,0 the non-informative case.
µ is not defined in the non-informative case and not needed either.
Note: fa,b is proportional to the beta distribution Beta(a + 1,b + 1),
but density functions are scaled to an area of 1while the association
function is scaled to the range of [0, 1]. Further, Beta(0.5, 0.5) is
called the non-informative prior in the context of Bernoulli trials
in Bayesian statistics. Our case f0,0 is not intended to possess the
same non-informativeness and should not be confused.

Realistically ρ should not be to small since f gets increasingly
vague as ρ approaches 0. On the other hand, ρ should not be to
large neither as it would suggest an non-existing precision.

There are several ways how an entity gets its association func-
tions:

(1) Per mapping-algorithm: For products, or whatever enti-
ties are considered for recommendations, mapping functions
can be defined. A mapping function translates the available
feature description into association function. Mapping al-
gorithms can also be used related to users: in [5] users are
mapped according to pictures they have selected. Also a
mapping based on demographic features is possible.

(2) Manually: The graph of f can be used to set up an easy to
use human interface. While using two sliders, one for the
mode and one for the precision, one could alter the associa-
tion function until the desired properties are reached. This
option is favorable if no mapping-algorithm exists. In cases
where the recommendation is in the foreground, it might be
attractive to offer a tool for user-self-classification.

(3) Self-learning: Entities – typically users – can learn their
position in the model space based on interaction with other
entities – typically products – that already have been classi-
fied (see 2.4 for details).

The association function can also be used to retrieve item properties,
particularly after a self-learning phase.

2.3 Distance
We define the distance d between two association functions as

d(fa1,b1 , fa2,b2 ) =

{
0 if ρ1 = 0 or ρ2 = 0
1 − fa1,b1 (x) otherwise

(6)

where x is uniquely defined by the two properties (without loss of
generality we assume from now on that µ1 ≤ µ2):

µ1 ≤ x ≤ µ2 (7)
fa1,b1 (x) = fa2,b2 (x) (8)

In words: x is the place between both modes where the two associ-
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Figure 2: In the left example the association functions are
very dissimilar hence the distance d is large. In the right ex-
ample the association functions are somewhat similar so the
distance is rather small.

ation functions intersect. d is 1minus the value of f at x . The basic
idea of d is illustrated in figure 2.

Determining x requires numerical optimization but a good ap-
proximation is given by d :

d(fa1,b1 , fa2,b2 ) =


0 if ρ1 = 0 or ρ2 = 0

1 −
fa1,b1 (x̂) + fa2,b2 (x̂)

2
otherwise

(9)
with

x̂ =
µ1w1 + µ2w2
w1 +w2

(10)

and

w1 =
(
1 + 0.4 (1 + s1)

)√
ρ1 (11)

w2 =
(
1 + 0.4 (1 − s2)

)√
ρ2 (12)

where s (skewness) is defined as

s =
2(b − a)

√
a + b + 3

(a + b + 4)
√
(a + 1)(b + 1)

(13)
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The closed solution for d is easy to compute and the deviation 
|d − d | is limited for a given range of ρ, e.g. |d − d | ≤ 0.039 for 
the reasonable assumption 0.5 ≤ ρ ≤ 10 (without proof). Obvious 
properties of d are (also without proof):

µ1 = µ2 ⇒ d(fa1,b1 , fa2,b2 ) = 0 (14)
d(fµ1,ρ1 fµ2,ρ2 ) < d(fµ1,ρ1 fµ2+ϵ,ρ2 ) ϵ > 0 (15)
d(fµ1,ρ1 fµ2,ρ2 ) > d(fµ1,ρ1 fµ2,ρ2+ϵ ) ϵ > 0, µ1 , µ2 (16)

The overall distance D between two entities is the weighted mean
of the distances of all k dimensions.

D =
k∑
i=1

divi (17)

The weights v are chosen proportional to the importance of the
corresponding dimension.

2.4 Learning Procedure
The learning procedure allows entities (usually users) to adopt their
location in the model space according to their interaction with other
entities (usually products). It is based on the merge-operation.

The merge-operationm translates an ordered set of association
functions F into a single association function:

F
m
−→ fanew,bnew (18)

We assume that no element of F is the non-informative function
(otherwise those elements are simply removed as they do not hold
information anyway). The cardinality of F (the number of elements
in F ) is denoted by n. The new parameter anew is defined as

anew =


0 if n = 0
a1 if n = 1

д
(
h(F )

) n∑
i=1

(aiwi ) if n > 1
(19)

and bnew is defined accordingly.
Here w is a vector of weights associated with the elements of F
with

∑n
i=1wi = 1. h is a function that represents the dissimilarity

of F . We currently use the mean of all pairwise distances within F
for h (see equation 20) but other definition are certainly possible.

h(F ) =
1∑n−1

i=1
∑n
j=i+1wiwj

n−1∑
i=1

n∑
j=i+1

(
d(fi , fj ) wiwj

)
(20)

The function д transforms the result of h to a reasonable shrinking
factor, such as

д =
(
1 − h (F )

)λ (21)

where λ ≥ 0 is a tuning parameter. For larger lambdas the penalty
for the dissimilarity increases. If λ = 0 there is no shrinking at all.
In this case anew and bnew are simply the weighted averages of the
input-parameters (figure 3, left side). With a sufficient shrinkage
factor on the other hand,m acts more like an union operation (figure
3, right side). Note that shrinking refers to a and b and consequently
to the precision ρ whereas the spread of f works in the opposite
direction. The merge-operation is commutative but generally not
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Figure 3: The tuning parameter λ controls the extent to
which the dissimilarity h diminishes anew and bnew. On the
left λ = 0 and the precision parameter of the resulting func-
tion is simply the average of the precision parameters of
the input functions (dashed line). On the right λ = 6 and
the resulting function covers roughly the same area which
is covert by the two input functions in conjunction.

associative:

m(fa1,b1 , fa2,b2 ) = m(fa2,b2 , fa1,b1 ) (22)

m
(
m(fa1,b1 , fa2,b2 ), fa3,b3

)
, m

(
fa1,b1 , m(fa2,b2 , fa3,b3 )

)
(23)

3 USAGE
A standard application works as follows: The model space (the
number and interpretation of the dimensions) would be determined
based on expert knowledge or dimensionality reduction methods
or both. As mentioned earlier, seven factors have already been
determined for the scope of tourism [5], [4].

Once the model space is specified, mappings from item-descrip-
tions to the model dimensions must be implemented (see section
2.2).

In tourism, items are very diverse, including travel packages,
hotels, flights, events, sights, natural phenomena, destination, cities,
forms of sport and many others. Some of them are real products
meaning bookable, other are not. The latter are still important
for recommender systems as they serve as connection to actual
products. Sometimes strong intangible aspects such as culture-
dependent attributions or emotional concepts are involved. (The
decision process might roughly be like: honeymoon + love + Europe
→ city of love → Paris → hotel → room / suite, not right away to
the hotel room.)

Users obtain their profile in a self-learning way as they inter-
act with items (or even other users). Depending on the particular
domain and application, interactions can include book-, buy-, like-
, rate-, comment-, view-, listen-to-, read-, search-, compare-, and
other actions. Using the learning procedure from section 2.4, defined
interactions modify the users profile towards the items interacted
with. To define relevant interactions can be straightforward in some
cases and sophisticated in others.

The initial association functions might be: the non-informative
association function, the (dimensionwise) grand mean, the contex-
tual a priori association function (for example based on known or
estimated demographic characteristics).
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The recommendation service itself calculates distances between 
users and products, sorts the results, and holds a list of most ap-
propriate items ready. Computations can be done on demand or 
in advance. Filters might be implemented additionally to meet the 
users constraints.

Implementing stochastic components can increase serendipity 
and diversity but destruct predictability and reproducibility.

4 WORKED EXAMPLE
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Figure 4: Example with two dimensions (columns) and three
products (rows). The filled shapes display the users prefer-
ences, the dashed lines indicate the product properties.

For a simple example we assume that we have a travel recom-
mendation system with two dimensions: Action and Culture, both
equally important meaning equally weighted.

Our user is inclined towards exiting activities as long as they
are not too extreme (figure 4, left column). The user is not really
interested in culture (figure 4, right column).

We have three items to suggest: A skydiving holiday, a city trip
to Rome, and a sailboat cruise in the Mediterranean.

The skydiving holiday is about as exiting as it gets with virtually
no cultural options. (figure 4, first row).

The city trip to Rome offers ample cultural sights but besides
that, it’s not terribly exciting. (figure 4, second row).

Finally the sailboat cruise is exiting at times (although not as
thrilling as skydiving), and the oldMediterranean cities also provide
the opportunity to get in touch with old cultures. (figure 4, bottom
row).
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Figure 5: All item-locations in the R2. The dotted lines are
drawn approximately at f = 0.75 to indicate the spread along
both dimensions.

In this toy example, the Mediterranean sailboat cruise would
clearly be the best recommendation according to our measurement
D (see equation 17), followed by the skydiving holiday. However
if we had used the location parameter µ in conjunction with the
Euclidean distance or theManhattan distance, the skydiving holiday
would have appeared to be the closest to the user. The reason for
this divergence is the different spread of associations.

In table 1 all user-item distances are presented, according to
Euclidean-, Manhattan-, and D-distance. Figure 5 illustrates the
locations of all items in the R2.

Table 1: Euclidean-, Manhattan-, and D-distance for all
items.

Item Euclidean Manhattan D

Skydiving 0.35 0.50 0.36
Rome 0.86 1.20 0.45
Sailboat Cruise 0.49 0.55 0.15

5 DISCUSSION
The framework presented here offers interesting possibilities as
it is flexible, possibly cross-domain, self-learning, and the entity-
dimension-memberships relation is easy to understand. It has no
cold start problem with new items and it is not necessary to match
an user to other similar users. It can serve as basis for multivariate
outlier detection and for cluster analysis. Deviations in the product-
and user- distribution can be revealed as side effect.

However this approach comes with two downsides: Firstly the
dimensions of the model-space must be defined in advance and are
hard to modify in a running system. Hence setting up the model
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space is the crucial task. Secondly the mapping from the original 
feature space to the model dimensions must be implemented. Man-
ual input is simple but time-consuming thus expensive with large 
quantities. The next steps will be the utilization in an operating rec-
ommender system and measuring and reporting the performance, 
ideally in comparison with an established system.

REFERENCES
[1] Iván Cantador, Ignacio Fernández-Tobías, Shlomo Berkovsky, and Paolo Cremonesi. 

2015. Recommender Systems Handbook (2 ed.). Springer, New York Heidelberg

Dordrecht London, Chapter 27, 919–959.
[2] Oliver P. John and Sanjay Srivastava. 2008. Handbook of Personality: Theory and

Research (3 ed.). The Guilford Press, New York, Chapter 4, 114–158.
[3] Yehuda Koren, Robert Bell, and Chris Volinsky. 2009. Matrix factorization tech-

niques for recommender systems. Computer 42 (08 2009), 30–37.
[4] Julia Neidhardt, Rainer Schuster, Leonhard Seyfang, and Hannes Werthner. 2014.

Eliciting the Users’ Unknown Preferences. In Proceedings of the 8th ACMConference
on Recommender Systems (RecSys ’14). ACM, New York, NY, USA, 309–312.

[5] Julia Neidhardt, Leonhard Seyfang, Rainer Schuster, and Hannes Werthner. 2015.
A picture-based approach to recommender systems. Information Technology &
Tourism 15-1 (2015), 49 – 69.

[6] Marko Tkalcic and Li Chen. 2015. Recommender Systems Handbook (2 ed.). Springer,
New York Heidelberg Dordrecht London, Chapter 21, 715–739.

RecTour 2019, September 19th, 2019, Copenhagen, Denmark. 31

Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 International (CC BY 4.0).


