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Abstract
The success of various methods for unsupervised outlier detection
depends on how well their definition of an outlier matches the
dataset properties. Given that each definition, and hence each
method, has strengths and weaknesses, measuring those properties
could help us to predict the most suitable method for the dataset at
hand. In this paper, we construct and validate a set of meta-features
that measure such properties. We then conduct the first instance
space analysis for unsupervised outlier detection methods based on
the meta-features. The analysis provides insights into the methods’
strengths and weaknesses, and facilitates the recommendation of an
appropriate method with good accuracy.

1 Introduction
The applications of outlier detection include taks as diverse
as identifying fraudulent credit card transactions, and recog-
nising terrorist plots in social media. The significance of
these applications has spurred recent research efforts, lead-
ing to a steady growth in the number of detection methods
[1], and with a variety of definitions of an outlier. As result, it
is not uncommon for the methods to disagree on the number
and location of the outliers. It therefore becomes challenging
to identify the most suitable outlier detection method for the
problem at hand. Indeed, it is unlikely that a single method
outperforms all others in all applications [2, 3]. Therefore,
on a new problem, our focus should be on understanding the
suitability of various methods, by exploiting the experience
gained through solving similar problems.

This paper extends the computational study of Campos
et al. [4] by making the first exploration of algorithm se-
lection for outlier detection methods. Using a comprehen-
sive set of meta-features, i.e., measures of dataset proper-
ties, we are able to predict the suitability of a method for a
given problem. Moreover, we perform the the first instance
space analysis [5, 6, 7], which helps us gain further under-
standing of the comparative strengths and weaknesses of an
outlier detection method, more nuanced than a summary ta-
ble of statistical results can offer. As a resource for the re-
search community, we make available our repository of more
than 12000 datasets [8]. Moreover, we provide the R pack-
age outselect [9], containing the code to calculate all the
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meta-features, as well as the knowledge based used to train
the instance space model. Hence, outselect facilitates
the end-to-end evaluation for a new dataset.

2 Experimental setting
To demonstrate that an outlier detection method has regions
of “good” performance within the instance space, we define
an experimental setting including: (a) a portfolio of methods,
(b) a collection of instances, and (c) a definition of good
performance based on an evaluation metric. In the next
sections, we describe the details of each component of our
setting. We note that that the methodology would not change
even if the experimental setting does.

2.1 Outlier detection methods We investigate 12 outlier
detection methods studied by Campos et al. [4] using the
ELKI software suite [10]. These are:

1. k nearest neighbours (KNN) [11]
2. KNN weight (KNNW) [12]
3. Outlier Detection using In-degree Number (ODIN) [13]
4. Local Outlier Factor (LOF) [14]
5. Simplified LOF [15]
6. Connectivity based Outlier Factor (COF) [16]
7. Influenced Outlierness (INFLO) [17]
8. Local Outlier Probabilities (LOOP) [18]
9. Local Density based Outlier Factor (LDOF) [19]

10. Local Density Factor (LDF) [20]
11. Kernel Density Estimation Outlier Score (KDEOS) [21]
12. Fast Angle Based Outlier Detection (FastABOD) [22]

All of these methods have as a free-parameter the neigh-
bourhood size, k. Noting that no single value of k applies to
all scenarios, we use a simple heuristic to select its value
depending on the dataset, and use the same value across all
methods. Arguably, k can be finely-tuned to improve the
performance of each method. However, a detailed analysis
of the impact of k is outside of the scope of this paper. The
value is calculated as follows:

(2.1) k(dataset) = min (bN/20c, 100)

where N is the number of observations in the dataset. The
maximum of k = 100 limits the number of computations that
can result from a large dataset. The motivation for choosing



bN/20c is as follows: Choosing k = N would result in
a very large neighbourhood making some methods such as
KNN and LOF not discriminate enough between outliers and
non-outliers. On the other hand, a very small value of k such
as k = 1 may miss small clusters of outliers, as within that
small cluster the density is high and distances are low. As
such we choose a small value of k, that is not too small.

2.2 Datasets Our benchmark set contains approximately
12000 datasets, most of which were generated by following
the approach by [4, 23]. First, we take one of 170 datasets
[24] which originally represented a classification problem
sourced from the UCI Machine Learning Repository. Then,
we generate a new dataset by down-sampling one of the
classes. We repeat this procedure for all of the classes, la-
belling the down-sampled class as the outliers. In addition
we also use datasets from [4, 23] which have outlier class
down-sampled at rates 5% and 2%. Moreover, to guarantee
that the new datasets are fit for outlier detection benchmark-
ing, we carry out the following tasks:

Down-sampling For a dataset with K classes, each class
in turn is designated the outlier-class and observations
belonging to that class are down-sampled such that the
outlier percentage p ∈ {2, 5}. The down-sampling is
randomly carried out 10 times to produce 10 variants
for each value of p.

Categorical variables From each down-sampled dataset,
we create one dataset with categorical variables re-
moved, and one with categorical variables converted to
numerical values using the method of inverse data fre-
quency [4].

Duplicate observations Since the distance between dupli-
cates is zero, which in turn leads to infinite densities,
duplicate observations are removed to avoid numerical
instability caused by division by zero errors.

Missing values For each attribute in each dataset, the num-
ber of missing values are computed. Similar to [4], if an
attribute has less than 10% of missing values, the ob-
servations containing the missing values are removed,
otherwise, the attribute is removed.

2.3 Evaluation metric While outlier detection is consid-
ered an unsupervised learning task, assessing algorithm per-
formance requires a ground truth given by the outlier labels
[4]. This makes it possible to define an evaluation metric.
Although no single universally accepted metric exists, the
most popular ones in outlier detection are: (a) the Area Un-
der the Receiver Operator Characteristic curve (AUC), and
(b) the Precision-Recall curve. Other metrics include preci-
sion at n [25], average precision [26], and a combination of
positive and negative predictive values. In our study we use

Table 1: Types of features calculated

Feature category Number of features

Generic : Simple, Statistical
and Information theoretical

25

Density based 77

Residual based 35
Graph based 41

Total 178

AUC as the evaluation metric, and define good performance
of a method on a dataset if AUC > 0.8. Alternative defi-
nitions can be considered within the methodology, however
a detailed study on the impact of this choice is beyond the
scope of this proof-of-concept methodological paper.

2.4 Meta-features Given that our outlier detection
datasets have been generated by down-sampling classifica-
tion datasets, we are able to borrow many of the features
that have been used to summarize interesting properties of
classification datasets, and then add some additional features
that are unique to the outlier detection challenge. We have
categorized the features in two main classes, with the first
being generic features which measure various aspects of
a dataset but are not particularly tailored towards outlier
detection. While they are broadly relevant, they offer little
insight into the outlier structure of a dataset.

The second class of features measure properties of the
outlier structure of a dataset using density, residual and
graph-based characteristics. These use the outlier labels in
their feature computation. The reason for using class labels
in feature computation is two-fold. Firstly, different outlier
methods may disagree on outliers and their rankings. As
such, we need to know how each method declares its outliers.
Are they density related, distance related or graph related
outliers? Secondly, the use of ground truth in labelling
outliers gives the opportunity to learn when each method’s
definition is suitable. Learning these relationships from
training data enables identificaton of the most suitable outlier
method for a given problem. This is common in industry
applications where training data contains labelled outliers,
and the task is to find effective methods which extract these
outliers for future unlabelled data [27, 28].

We compute a broad set of candidate features, and later
select a subset for the instance space analysis. Due to space
constraints, we provide a brief overview of these features
here. More details of these features are given in our gihub
repository [9]. Table 1 summarizes the features by category.

Simple features These are related to the basic structure of a
dataset, e.g. the number of observations.



Statistical features These relate to statistical properties
such as skewness and kurtosis of a dataset.

Information theoretic features measure the amount of in-
formation present in a dataset, e.g. entropy of a dataset.

Outlier features In order to make our feature set richer we
include density-based, residual-based and graph-based
features. We compute these features for different sub-
sets of the dataset, namely outliers, non-outliers and
proxy-outliers, with the last subset being data points
that are either far away from “normal” data, reside in
low density regions, or have different graph properties
compared to the rest. We define proxy-outliers using
distance, density, residual and graph based perspectives.
If there is a significant overlap between proxy-outliers
and actual outliers, then we expect certain outlier detec-
tion methods to perform well on such datasets. Proxy-
outlier based features fall into the category of landmark-
ing, which has been popular in meta-learning studies
[29, 30, 31].

1. Density based features are computed either using
the density based clustering algorithm DBSCAN
[32] or kernel density estimates.

2. Residual based features are computed by fitting
a series of linear models and obtaining residuals.

3. Graph based features are based on graph-
theoretic measures such as vertex degree, shortest
path and connected components. The dataset is
converted to a directed graph using the software
[33] to facilitate this feature computation.

3 Predicting outlier detection method performance
from meta-features

Using a set of 178 candidate features, we predict suitable
outlier detection methods for given datasets. For this pur-
pose, we train 12 Random Forest classifiers - one for each
outlier method - with the 178 features as inputs and a binary
predictor for good performance as the output. Table 2 pro-
vides the average cross-validation accuracy over 10 folds for
each outlier detection method. As most outlier methods are
only good for a small number of datasets, a naive prediction
that performance is not good for all datasets achieves the de-
fault accuracy. Since our Random Forest accuracy is greater
than the default accuracy for all methods, the meta-features
are clearly able to help distinguish which methods are well
suited for some datasets, even when these are a minority.

4 Instance space construction and analysis
Having validated that the features contain sufficient infor-
mation to be predictive of outlier detection method perfor-
mance, we now use the features to construct an instance
space to visualise the relationships between dataset (in-

Table 2: Default and prediction accuracy of a random forest
classifier using all the available features. Good performance
is described as AUC > 0.8.

Method Default accuracy Prediction accuracy

COF 81% 86%
FAST ABOD 75% 85%
INFLO 88% 91%
KDEOS 94% 95%
KNN 73% 86%
KNNW 71% 86%
LDF 82% 88%
LDOF 84% 89%
LOF 80% 86%
LOOP 82% 88%
ODIN 84% 88%
SIMLOF 80% 87%

stance) features and strengths and weaknesses of methods.
Our approach to constructing the instance space is based

on the most recent implementation of the methodology [24].
Critical to both algorithm performance prediction and in-
stance space construction is the selection of features that are
both distinctive (i.e. uncorrelated to other features) and pre-
dictive (i.e correlated with algorithm performance). There-
fore, we follow a procedure to select a small subset of fea-
tures that best meet these requirements, using a subset of
2053 instances for which there are three well performing
algorithms or less. This choice is somewhat arbitrary, mo-
tivated by the fact that we are less interested to consider
datasets where many algorithms perform well or poorly,
given our aim is to understand unique strengths and weak-
nesses of outlier detection methods.

We pre-process the data such that it becomes amenable
to machine learning and dimensionality projection methods.
Given that some features are ratios, one feature can often
produce excessively large or infinite values. Hence, we
bound all the features between their median plus or minus
five times their interquartile range. Any not-a-number value
is converted to zero, while all infinite values are equal to
the bounds. Next, we apply Box-Cox transformation to
each feature to stabilise the variance and normalise the data.
Finally, we apply a z-transform to standardise each feature.

Starting with a set of 178 features, we determine
whether a feature has unique values for most instances. A
feature provides little information if it produces the same
value for most datasets. Hence, we discard those that have
less than 30% unique values, leaving 135 features. Then, we
check the correlation between the features and AUC. Sort-
ing the absolute value of the correlation from highest to low-
est, we select the top three features per algorithm. This re-
sults in 26 features, as some of them are correlated to more
than one algorithm and we do not need replicates. Next, we
identify groups of similar features, using a k-means cluster-



ing algorithm and a dissimilarity measure of 1−|ρ|, where ρ
is the correlation between two features. As result, we obtain
seven clusters. Retaining one feature from each cluster, there
are 2352 possible feature combinations. To determine the
best one for the dimensionality reduction, we project each
candidate feature subset into a 2-d space using PCA with
two components. Then, we fit a random forest model per al-
gorithm to classify the instances in the trial instance space
into groups of good and bad performance, as defined in Sec-
tion 2.3. That is, we fit 12 models for each feature com-
bination, and define the best combination as the one produc-
ing the lowest average out-of-the-bag error across all models.
This process results in 7 features finally being selected.

We then use the Prediction Based Linear Dimensionality
Reduction (PBLDR) method [24] to find a projection from
7-d to 2-d that creates the most linear trends of algorithm
performance and feature values across the instance space,
to assist visualisation of directions of hardness and feature
correlations. Given PBLDR’s stochasticity, we calculate
30 different projections and select the one with the highest
topological preservation, defined as the correlation between
high- and low-dimensional distances. The final projection
matrix is defined by Equation 4.2 to represent each dataset
as a 2-d vector Z depending on its 7-d feature vector.

(4.2)

Z =



−0.0862 −0.2078
0.1737 0.1845
−0.0460 −0.2847
−0.0938 −0.2025

0.1202 0.0378
0.1854 −0.0822
0.3543 −0.1325
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Figures 1 and 2 illustrate the resulting instance space,

with colours represent the feature values in the former, and
the algorithm performance in the latter. The scale has been
adjusted to the [0, 1] range. To interpret these graphs, we
describe the details of each selected feature:

Mean Entropy Attr is the average entropy of the attributes
of the dataset, and corresponds to a measurement of
the information contained by the attribute. For exam-
ple, if an attribute is constant for all observations, then
the entropy is zero. Thus, high values of entropy in-
dicate highly unpredictable fluctuations. If the outliers
are causing high values of entropy, then it is likely that
these points are different from the rest, resulting in mul-
tiple outlier methods performing well on these datasets,
as seen in Figure 2.

IQR TO SD 95 is the 95th percentile of the IQR to standard
deviation ratio of each attribute of a dataset. It captures
the presence of outliers by means of comparing two

(a) (b)

(c) (d)

(e) (f)

(g)

Figure 1: Distribution of normalised features in the projected
instance space.

measures of spread, of which one is affected by outliers
and another is robust. As this feature is first computed
per attribute before taking the 95th percentile, data
points that stand out in a single dimension give a small
IQR to SD ratio for that dimension. Thus, if the 95th

percentile of the IQR to SD ratio is small, then that
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Figure 2: Distribution of AUC for each outlier detection method in the projected instance space.

implies there are data points that stand out in different
dimensions. If these data points are indeed outliers, it
should be easy for distance based methods to find them.
We expect both KNN and KNNW to perform well on
datasets with small values of this feature.

OPO Res ResOut Median is the ratio between the median
of residuals of proxy-outliers to the median of residuals
of non-proxy-outliers. It is calculated by randomly
choosing a subset of non-binary attributes from the
dataset, s. Then, from each attribute a in s, we
fit a linear model with a as the dependent variable
and others as the independent variables. Next, for
each model, we compute the residuals r. Define the
residual based proxy-outliers ω as those with the top
3% absolute residual values. Finally, we compute
κ = median(r[ω])/median(r[ω̄]), where ω̄ denotes
non-proxy-outliers. The average of κ across all models

is the feature value.

OPO Res Out Mean is the ratio between the mean of
residuals of outliers to the mean of residuals of non
outliers. It is calculated following a similar approach
to that of OPO Res ResOut Median with the excep-
tion that ω denotes actual outliers instead of proxy-
outliers and the mean instead of the median is used.
We expect KNN and KNNW to perform well on
datasets with high values of OPO Res ResOut Median
and OPO Res Out Mean.

OPO Den Out 95P is the ratio between the 95% of density
estimates of non-outliers to 95% of density estimates
of outliers. It is calculated by performing PCA on the
dataset, omitting class information. Then, considering
two consecutive components at a time and up to the 10th

component, we build nine 2-d spaces. For each one of
these spaces, we compute kernel density estimates x.



Then, we compute y1 = x[ω̄] and y2 = x[ω], where ω
is the set of outliers and ω̄ denotes non-outliers. Let κ1
be the 95th percentile of y1 and κ2 be the 95th percentile
of y2. Let κ = κ1/κ2, whose average across all 2-d is
the feature value. If outliers reside in less dense regions,
this gives rise to high values of this feature, enabling
certain density based methods to perform well on these
datasets. As such, we expect LDF to perform well on
datasets with high values of this feature.

OPO GDeg PO Mean is a ratio of mean degree of inner
points to mean degree of non-inner points. It is calcu-
lated by generating a graph from the dataset using dis-
tances between points [33]. This graph would have v1
and its nearest neighbour v2 as vertices connected with
an edge. Then, we compute the degree θ of each vertex
v. Let ω be the set of inner points, which are defined as
the vertices with the highest 3% degree values. Then the
feature value is equal to mean(θ[ω])/mean(θ[ω̄]) where
ω denotes outliers and ω̄ denotes non-outliers.

OPO GDeg Out Mean is similar to OPO GDeg PO
Mean with the exception of using outliers instead of
inner points. These two features compute a ratio of
vertex-degree between different groups: outliers and
non-outliers, inner-points and non-inner points. As
outliers are generally isolated, they have low vertex-
degree values. Thus, these outliers make smaller angles
with other data points, making it easier for angle based
methods such as FAST ABOD to find them. Therefore
we expect FAST ABOD to perform well on datasets
with low values of OPO GDeg Out Mean, even though
we do not perform any angle based computation.

Combining all of this in Figures and 2, we see the per-
formance of KDEOS tends to increase from the bottom to
the top of the space. This is related to lower values of the ra-
tio between the residuals from proxy-outliers to non-proxy-
outliers (OPO Res ResOut Median) and mean entropy of
the attributes (Mean Entropy Attr). A low entropy suggests
that an instance is predictable or less random and a smaller
value of OPO Res ResOut Median indicates that residuals
of proxy-outliers are similar to those of non-proxy outliers.
This signifies a unique strength of KDEOS as it performs
well in an easy region in terms of entropy but in a difficult
region in terms of residual ratios.

The performance of KNN and KNNW tend to increase
from left to right of the space, while the opposite is true
for FAST ABOD. Their performance is related to the values
of the ratio between the interquartile range and the standard
deviation of the features (IQR TO SD 95) taken at its 95%,
and the mean graph degree of all vertices over the mean
graph degree of outliers (OPO GDeg Out Mean). Outliers
which have high nearest neighbour distances generally have

low graph degree, as their connections to other points are low
in number, making OPO GDeg Out Mean correlate with
KNN and KNNW performances.

4.1 Footprint analysis of algorithm strengths and weak-
nesses We define a footprint as an area of the instance space
where an algorithm is expected to perform well. To construct
a footprint, we follow the approach first introduced in [34]:
(a) we measure the length of the edges between all instances,
and remove those edges with a length lower than a threshold,
δ; (b) we calculate a Delaunay triangulation within the con-
vex hull formed by the remaining edges; (c) we create a con-
cave hull, by removing any triangle with edges larger than
another threshold, ∆; (d) we calculate the density and purity
of each triangle in the concave hull; and, (e) we discard any
triangle that does not fulfil the density and purity thresholds.
The values for parameters for the lower and upper distance
thresholds, {δ,∆}, are set to 1% and 25% of the maximum
distance respectively. The density threshold, ρ, is set to 10,
and the purity threshold, π, is set to 75%. We then remove
any contradictions that could appear when two conclusions
could be drawn from the same section of the instance space
due to overlapping footprints, e.g., when comparing two al-
gorithms. This is achieved by comparing the area lost by the
overlapping footprints when the contradicting sections are
removed. The algorithm that would loose the largest area
in a contradiction gets to keep it, as long as it maintains the
density and purity thresholds.

Table 3 presents the results from the analysis. The
best algorithm is the one such that AUC is the highest for
the given instance. The results are a percentage of the
area (6.6703) and density (305.6825) of the convex hull
that encloses all instances. The table demonstrate that
some algorithms, such as INFLO, LOOP and ODIN have
good performance in few, scattered instances; hence, we
are unable to find an area that fulfils the density and purity
requirements. On the other hand, FAST ABOD, KDEOS and
KNN have the largest footprints. Combining with Figure 2
we can see that FAST ABOD tends to dominates the lower
left corner, while KNN tends to dominate the lower right
corner. KDEOS performs the best in the few instances at
the top of the instance space.

4.2 Automated algorithm selection via instance space
Visualising regions of strength for some outlier detection
methods is a key advantage of the instance space. In
addition, we can also use the instance space for automatic
algorithm selection for new instances. By computing the
instance space coordinates of a new instance using its meta-
features, we can project it into the instance space and see
in which algorithm’s footprint it lies, and thus recommend
outlier detection methods accordingly.

This process can be automated if we learn the best par-



Table 3: Footprint analysis of the algorithms. αN is the area, dN the density and ρ the purity. The footprint areas (and their
density and purity) are shown where algorithm performance is good and best.

AUC > 0.8 Best algorithm

aN dN ρ aN dN ρ

COF 1.9% 253.0% 3.1% 0.5% 582.7% 7.7%
FAST ABOD 3.4% 144.7% 9.1% 14.2% 142.5% 20.4%
INFLO 4.0% 86.8% 7.1% 0.0% 0.0% 0.0%
KDEOS 15.5% 35.7% 8.0% 9.0% 23.0% 14.3%
KNN 2.3% 202.4% 3.1% 8.5% 169.3% 12.6%
KNNW 2.4% 178.5% 8.1% 1.6% 148.1% 18.4%
LDF 0.9% 729.4% 3.7% 2.9% 356.2% 14.9%
LDOF 5.1% 121.5% 7.9% 1.1% 69.4% 12.5%
LOF 0.8% 631.4% 6.1% 0.4% 303.7% 21.7%
LOOP 5.7% 94.6% 7.3% 0.0% 0.0% 0.0%
ODIN 1.7% 177.9% 5.0% 0.0% 0.0% 0.0%
SIMLOF 4.2% 117.8% 9.9% 0.1% 602.5% 12.5%

Table 4: Accuracy of SVM prediction of good performance
based on instance space location of test sets.

Method Prediction accuracy Default accuracy

FAST ABOD 66% 62%
KDEOS 92% 92%
KNN 65% 54%
KNNW 58% 57%

titioning of the instance space to expose regions of strength
for each method. We use support vector machines (SVM)
for this partitioning. Of the 12 outlier methods we consider
only FAST ABOD, KDEOS, KNN and KNNW, as these
methods have larger footprints that span a contiguous re-
gion of the instance space. For these outlier methods, we
use our definition of good performance as the output and
the instance space coordinates as the input for the SVM. We
train 4 SVMs, one for each of these selected outlier meth-
ods. The prediction accuracies using 5-fold cross validation,
along with the percentage of instances in the majority class,
are given in Table 4, showing better than default accuracy for
all methods except KDEOS.

Figure 3 shows the dominant regions of algorithms
FAST ABOD, KNN, KNNW and KDEOS. We can see that
FAST ABOD is stronger on the left side of the instance
space with a few sparse instances lighting up on the extreme
right, whereas KDEOS is stronger on the top region of
the instance space. KNN and KNNW have overlapping
regions of strength with KNNW sharing some instances
with KDEOS at the top. However, KDEOS is the stronger
algorithm in the top region of the instance space.

We combine these SVM predictions of regions of
strength to obtain a final partitioning of the instance space.
Regions of overlap mean that some instances have multi-
ple preferred outlier methods. For such instances, we break

ties using the prediction probability of the SVM and choose
the method with the highest probability. The resulting par-
titioned instance space is shown in Figure 4, where FAST
ABOD occupies the left, and KNN occupies the right of the
instance space with KDEOS occupying the top region. The
middle of the instance space is not occupied by any outlier
method.

This analysis highlights an opportunity for new out-
lier detection methods to be developed for this part of the
instance space with no genuine method superiority. Also,
the statistical analysis conducted by Campos and co-authors
([4], Table 3) shows that KDEOS is inferior to most other
methods. However, as seen from Figure 4 KDEOS has a
niche in the instance space where it clearly outperforms other
methods. This insight, which was missed by the standard
statistical analysis, highlights another contribution of the in-
stance space analysis.

5 Conclusion
We have investigated the algorithm selection problem for
unsupervised outlier detection. Given measurable features
of a dataset, we find the most suitable outlier method with
reasonable accuracy. This is important because each method
has its strengths and weaknesses and no single method out-
performs all others for all instances. We have explored the
strengths and weaknesses of outlier methods by analysing
their footprints in the constructed instance space. Moreover,
we have identified different regions of the instance space
that reveal the relative strengths of different outlier detection
methods. Our work clearly demonstrates for example that
KDEOS, which gives poor performance on average, has
a region of strength in the instance space where no other
algorithm excels.

In addition to these contributions, we hope to have laid
some important foundations for future research into new and



(a) (b) (c) (d)

Figure 3: Regions of strength for (a) FAST ABOD, (b) KNN, (c) KNNW and (d) KDEOS.

Figure 4: A partition of the instance space showing recom-
mended outlier detection methods.

improved outlier detection methods, in the following ways:
(a) rigorous evaluation of new methods using the compre-
hensive corpus of over 12000 datasets with diverse character-
istics we have made available; (b) using the instance space,
the strengths and weaknesses of new outlier methods can be
identified, and their uniqueness compared to existing meth-
ods; (c) using the R package outselect the outlier methods
suitable for a new dataset can be identified, and the new in-
stance can be plotted on the instance space. Equally valu-
able, the instance space analysis can also reveal if a new out-
lier method is similar to existing outlier methods, or offers a
unique contribution to the available repertoire of techniques.

As a word of caution, we note that our current instance
space is computed using our collection of datasets, outlier
methods and features. Thus, we do not make claim to have
constructed the definitive instance space for all unsupervised
outlier detection methods. Hence, the selected features for
the instance space may change with the expansion of the cor-
pus of datasets and outlier methods. Future research paths in-

clude the expansion of the instance space by generating new
and diverse instances to fill the space and considering other
classes of outlier detection methods, such as subspace, clus-
tering and PCA approaches. In addition we have transformed
non-numeric data to numeric in this study. Further avenues
of research include incorporating datasets with non-numeric
attributes in the instance space. To aid this expansion and
future research, we make all of our data and implementation
scripts available on our website.

Broadening the scope of this work, we have been adapt-
ing the instance space methodology to other problems be-
sides outlier detection. For example, machine learning [24]
and time series forecasting [35]. Part of this larger project
is to build freely accessible web-tools that carry out the in-
stance space analysis automatically, including testing of al-
gorithms on new instances. Such tools will be available at
matilda.unimelb.edu.au in the near future.
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