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Abstract. This paper describes “traits”, an extension to a rule engine that
provides a dynamic type system for working with in an object oriented
code in a type safe environment. This extension is inspired by frame logic
and "duck typing". The implementation is based on the use of dynamic
proxies and form of runtime interface injection and requires the partial
redefinition of the traditional working memory operations (assert, update,
retract), but is otherwise transparently embedded in the engine. We evalu-
ate a reference implementation built on top of the open source rule engine
Drools, showing that the approach improves clarity without impacting
performance.
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1 Introduction

The claim of this paper is provide production rule systems with a dynamic
type system that is also type safe. The type system must be compatible with
an object-oriented context with inheritance and polymorphism, where it is
possible to distinguish between classes, types and fields (also called attributes,
properties or slots). Dynamically typed systems work more effectively with
loosely unstructured data, but lose the benefits of type safety. A statically typed
object orientation, allows for more robust systems [25], but does not cope well
with a dynamic domain, since types are assigned when an entity is created and
can not be reevaluated. A solution is proposed that combines type safety with
dynamic typing even in the context of mainstream OO languages that do not
support it. A reference implementation based on the rule engine Drools [21]
is provided; the benefits and limitations of the approach are further discussed
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in Section 5, based on some theoretical considerations and the results of some
empirical benchmarks.

The underlying principles are founded on an adaptation of Frame Logic
(F-Logic) [14] to production rule systems [12], leveraging the automatic man-
agement of dynamic, transparent proxies [24] that facilitate interface injection.
The classic RETE engine behavior has been extended so that rules can be written
against objects or proxies alike in a transparent manner. Any modification of
an object, due to the execution of a rule’s consequence, is guaranteed to be
reflected by its current proxies supporting its virtual types and vice versa. The
implementation supports both hard and soft properties in a uniform and trans-
parent way. Hard properties are provided by the underlying class system, such
as fields in Java, and provide for efficient and compact memory storage but
cannot be dynamically changed. Soft properties are provided by the framework,
and supplement dynamic properties at the instance level.

In the rest of the paper, the notation used to formalize the behavior is also
borrowed from F-Logic. Classes and individuals are denoted using constant
symbols. The symbol : denotes a membership assertion (e.g. joe : Person),
while :: denotes class subsumption (e.g. DiabeticPx :: Patient). Fields are mod-
elled as (inheritable) class properties, and their name and type(s) are linked
using the symbol ⇒ within the scope of a class, such as in Patient[mrn ⇒
{String, Identifier}]. Finally, the symbol→ is used to assert field values.

2 Related Works

The challenges of combining loosley structured data with a dynamic type system
that is also type safe are well known and have been explored in a multitude
of systems. The concept that historically is more similar to what is proposed is
that of “traits”. This term is adopted for the dynamic type system, even if with
some differences with respect to other systems. The term was first mentioned
in [17], where it is referred to as the “Traits Mechanism”. The paper was based
on an implementation for the Star Graphics system and the mechanism was
based on the idea of Simula-67 classes: where Simula-67 only allowed single
inheritance, traits in Star Graphics allowed for multiple inheritance. It defined
traits as “a characterization of behaviour and ... the primitive abstraction used to
define objects”. Star Graphics traits included, among other things, both state and
operations, which exposes the “diamond problem” of multiple inheritence when
multiple traits provide different implementations for the same operation name.
The Star Graphic’s class Trait was responsible for creating and destroying objects
in that class, acting as a factory. Once instantiated, an object’s trait hierarchy was
fixed and slots for data must be a part of the defined trait.

The term traits has since been used in a number of software systems, where
its definition has changed and evolved. Smalltalk created the concept of “roles”
as a variation on traits [10], but remains a statically typed system. In [23] traits
are further refined to only include operations, aiming to produce a system for
fine grained, composable units of behaviour. The Self programming language



[26] adopts a prototype approach: slots can be added over time and the type
can be dynamically changed. In this proposed system, objects can be instan-
tiated without the need of a trait class as a constructor, and properties (state)
can be added at runtime without any additional association. This allows for
unstructured data at runtime, as differentiated from the static structured data
of the Star Graphics system. Traits only involve representing state, realised in
the terms of properties, which allows to manage multiple inheritance issues as
will be described later in this paper. At runtime, an object plus a conforming
set of properties can thus be associated with one or more traits, through a pro-
cess of type recognition, providing class-like object oriented access to otherwise
unstructured data.

The static binding used e.g. in Java can be considered a trivial type of recog-
nition: all objects of class C are automatically recognized as having type T when
C implements T. Signature compliance or “duck typing” [8] is another basic
recognition method: in order for an object to have type T, it is necessary and
sufficient that its class (public) signature be a superset of the interface’s signature.
Duck typing does not require to enforce sound semantics, so more advanced
and robust strategies should be adopted. (Business) rules are commonly used
for decision making, based on the identification of complex situations, involving
a number of instances matching specific patterns. Individual classification is also
one of the main problems of Description Logic [4], where types are recognized
matching an object’s description with a concept’s definition. Even if most of the
methods are compatible to some degree with a rule engine implementation, the
actual discussion of the best recognition strategy is beyond the scope of this
paper. Instead, the paper focuses on the problem of using objects with dynamic
types for decision making, once the classification criteria have been applied.

3 Proposed approach

Conceptually, the framework makes a distinction between rigid type classes
(e.g. Person) and role type classes (e.g. Patient), improving support for the
latter when roles are either recognized, acquired or relinquished at runtime,
rather than being asserted statically. In order to work with objects directly, rather
than with their representation, it is necessary to support an operation called
interface injection [22]. Unlike the Java specification, however, it is required that
individual instances can be injected independently: i.e. if a particular Person is
recognized to be a Patient and should be treated as such, the same should not
hold true for all other Persons in general. Allowing individual type injection
raises two major issues: an object’s class may not provide an implementation for
all the methods declared in the injecting interface and multiple injections may
lead to multiple inheritance conflicts [7]. Traits, in general, may overlap, while
the underlying object model is statically typed. The seemingly obvious option
of making Patient a subclass of Person is disregarded. In fact, if Θ is the set of
types, the engine would need a class for each element of the power-set P(Θ).
Moreover, an object would have to be destroyed and reinstatiated every time its



current set of types θ changes. Alternative options common in the database world
such as variant classes with type flags are also impractical, since they would
unnecessarily expose attributes, most of which would be irrelevant, and possibly
lead to inconsistencies (e.g. setting the diabetes type for an OncologyPatient
who is not actually suffering from diabetes). Using separate helper objects,
one for each actual type, and linking them to the original object is a more
scalable approach, since up to |Θ| additional objects would be required for
each individual. However, this solution does not preserve transparency (e.g.
both a Person’s OncologyPatient and a DiabeticPatient proxy would
qualify when looking for a Patient). With interface injection, instead, the type
set Θ could be defined as a taxonomy of interfaces which can be applied (and
removed) dynamically to individual instances of a class, part of an information
model Γ , preserving types and identities at the same time. Interface injection is
not supported natively by the underlying object system. This is emulated by a
combination of interfaces and dynamic, wrapper proxies similar in principle to
what has been done in [24], the management of the proxies is delegated to the
inference engine, making it transparent to the user.

3.1 Traiting semantics

Type and Class definitions. In JavaClasses and objects are separate entities, so
there is no support for reification of classes as individuals, nor non-inheritable
class properties (i.e., static properties). This is an important restriction over
the model defined in [14]. An immediate consequence is that class and type
hierarchies are statically asserted and no new subsumption relationship or
property membership can be inferred at runtime: if necessary, this step should
be executed during a pre-processing phase. A distinction is made between a
conceptual domain model Θ and an information model Γ , typically used to
deliver data representing the domain, and it is assumed that the former will
be implemented using interfaces, while classes will be used for the latter. A
type (interface) T ∈ Θ is then defined by its name T and zero or more ancestry
assertions T :: Sj for some j ≥ 0, Sj ∈ Θ. Moreover, a type will have zero or
more inherited, typed properties pk(T ), k ≥ 0. A property p is defined by its
identifier, usually p itself, and its range type X ∈ Θ ∪ Γ ∪∆, where ∆ is a set
of primitive data types (strings, integers, dates, etc . . . ). The range can be scalar
or collection oriented. Some properties may also have an inheritable default
value, compatible with the property type defined in the property signature,
which is used in case no other value is provided. It is further assumed that
signatures will be defined for all properties. So, for example, it could be defined
Patient[ name ⇒ String; address ⇒? Address; contactPerson ⇒ Person ]
and DiabeticPatient[ diabetesType→ II ] :: Patient. Classes from the informa-
tion model Γ are defined similarly, except that each class can have at most one
parent. Classes and interfaces may have additional methods, but the focus is
only on their properties’ signatures and inheritable (default) values.

Except for inheritable default values of class properties on type interfaces,
this representation can be implemented directly in Java and similar languages,



provided that scalar properties p ⇒ X are interpreted as the accessor pair
T [ getP ⇒ X; setP @ X ⇒ ⊥ ] (resp. for collection-oriented ones). There is
explicit need to preserve the immutability of classes and types to retain the type
safety benefits of code compilation but, unlike Java, it is not assumed that types
are statically determined by the class which an object belongs to.

Object-Type association Given an instance o of a class C ∈ Γ and a type interface T
∈ Θ, interface injection is semantically equivalent to the direct, runtime assertion
o : T, as opposed to inferring it statically from o : C ∧ C :: T. Such assertions can
also be retracted, on an individual basis. Unfortunately, multiple such assertions
can introduce multiple inheritance and possibly lead to an inconsistent state
when an object is instance of at least two disjoint types, or (recursively) has a
property slot filled by a value that is inconsistent. Formally, given o : C ∧ o : Tj

(asserted or inferred), no two types T1 and T2 must be disjoint. As in frame logic
[14] or description logic [4], disjointness is not assumed by default. Asserting
disjointness axioms is currently not supported, but inconsistencies can arise with
properties. Given a property p ⇒ X defined by T , with optional return value
p→ x, inconsistencies can arise if:

1. p may not be defined or inherited by C
2. p may be defined or inherited by C with a different signature p⇒ Y

(a) p may be read through o or the interface associated to T, invoking either
C[getP ] or T [getP ].

(b) p may be updated using either C[setP ] or T [setP ].
3. p may be defined or inherited by o with the same type but p→ y and x 6= y

The first conflict can be solved allowing the property set of an individual
object to be extended in a controlled way. Avoiding the other two requires to
impose some additional constraints on the injection of a type into an existing
object. The details are discussed in the next paragraph.

Class-Interface Mapping An object o has a set of preallocated slots pC derived
from its concrete class C and its ancestors. Whenever a type is asserted, the
interface is required to provide a set of slots pT . In statically typed systems such
as Java, pT ⊆ pC is enforced at compile time. This proposal does not make such
assumption: the set po of properties available to an object is, at any time, the
union of all the properties inherited through the currently asserted types. So,
po = pC ∪j|o:Tj

(pTj). Moreover, a property p ∈ po is called a hard field iff p ∈ pC,
a soft field otherwise. The former are directly part of the object’s implementation,
while the latter must be allocated by the framework.

Following the approach in [14], for each property p ∈ po its range type is
taken to be the intersection of all the range types defined by the object’s class
and its current interfaces:

o[ p⇒
∧
i

Yi (∈ Γ ∪Θ ∪∆) | o : Zi (∈ Γ ∪Θ) ∧ Zi[ p⇒ Yi ] ] (1)



In the case of soft fields, no range type definition exists in the concrete
class, so it is taken it to be > (i.e. only those interfaces that define the soft
field are considered). Given a candidate object x to fill the slot p of o, this
requirement can be interepreted either as an axiom or as a restriction. More
formally, in the former case ∃i : (o : Zi ∧¬(x : Yi))⇒ ¬p(o, x), while in the latter
∀i : (o : Zi∧p(o, x))⇒ x : Yi. A mixed approach is adopted: whenever the range
type Yi ∈ Γ ∪∆ is a class or a datatype, it is assumed to be a constraint:

o : Z ∈ (Θ ∪ Γ ) ∧ Z[p⇒ X ∈ (Γ ∪∆)] ∧ ¬(x : X)⇒ ¬p(o, x) (2)

That is: since only interface types can be assigned dynamically, whenever a
property requires to be filled by a class (or datatype) X , no individual o can be
assigned unless it already belongs to that class, otherwise the knowledge base
would become inconsistent. When the range is an interface, instead, the ability
to make runtime assertions allows to support either modality in a mutually
exclusive way:

o : Z ∈ (Θ ∪ Γ ) ∧ Z[p⇒ X ∈ (Θ)] ∧ ¬(x : X)⇒ ¬p(o, x) (3a)
o : Z ∈ (Θ ∪ Γ ) ∧ Z[p⇒ X ∈ (Θ)] ∧ p(o, x)⇒ x : Y (3b)

Notice that whenever a new type is injected or removed from o, the objects
filling its slots should be constrained or updated accordingly, but the operation
can be executed incrementally since a conjuction of assertions or constraints is
associative.

Default property value initialization An object’s slots are usually initialized during
its construction, or assigned explicit values later using accessors. If no value for a
property is explicitly given or set, default values may be inherited from ancestor
classes or (dynamic) interfaces. A sound strategy to deal with inheritable class
properties Z[ p→ v ] is presented in [27]. 3-valued logic is not introduced into the
framework (to be integrated and investigated in a future work), but nevertheless
adopt a similar cautious approach. The most specific inheritance contexts for
p are considered, i.e. the set {Zj | Zj [ p → vj ]}, such that o : Zj and there is
no Zk|o : Zk ∧ Zk :: Zj . In general, a number of candidate values {vj} will be
retrieved: if there is only one candidate v0, that value is chosen to populate the
slot, i.e. p(o, v0) is asserted. Otherwise, the conflict is resolved by leaving the
value unspecified.

Property value access To guarantee type safety, methods have to be partially
anti-monotone [14] with respect to their input and output arguments. Given a
property p, this requirement holds for its accessors, getters o[ getP ⇒ Y ] and
setters o[ setP @ Y ⇒ ⊥ ], for all class and types Zi that (re)define p with some
type Y . By definition (1), given a property p, any valid object in its range must
have all the required types, so it can be accessed safely using any of the getters.
Setters are not so straightforward, since when a particular setter is used, the
new value will be guaranteed to be compatible with at least one, but not all, of



the required types. So, any valid implementation of a setter will have to apply
either (2) or either one of (3a) and (3b) before any slot can be succesfully updated.
Setting the value of a field is considered an explicit (re)assertion at the object
level [27], so it will override any previous or inherited default value. However,
should the newly set value violate either (2) or (3a), the property p will be reset
to its current default value (if one exists), or left unspecified.

3.2 Architectural Overview

While the model described in section 3.1 originated in a logic programming
context, it has been specialized to be compatible with an object-oriented frame-
work in general and a Java-based environment in particular. Any type in Θ is
mapped to a Java interface with the same name, which exposes the required
properties as pairs of accessors. All interfaces are annotated with a Java marker
annotation and extend a known interface Top, which models >, as well as the
internal interface CodedType, which provides the internal data structures required
by trait proxies, as will be discussed in this section.

Trait Proxies In the proposed framework, a proxy is a lazily generated class that
implements a type interface T and wraps a “core” class C. The proxy is needed
to map all (and only) the properties declared by T to the specific set of (hard)
fields provided by C, as well as managing those soft fields not provided by C
directly. Whenever a type T must be injected into an object o of class C, the proxy
class TraitProxy(T,C) is created (if not existing) and instantiated. The proxy
instance wraps the “core” object o, providing the type T as well as access to the
data structures in the implementation. More precisely, a TraitProxy(T,C) is
compliant with type inheritance, so the instantiation of a proxy t for an object o
is equivalent to the explicit assertion o : T and the implicit assertions o : S for
any S | S :: T . Calls to the proxy’s accessor methods are transparently delegated
to the core object. Notice that should a core object be wrapped by two or more
proxies that expose the same property, a unique copy of the slot’s value will
be maintained, thus avoiding duplications and synchronization issues. This is
trivially true for hard fields, while soft fields are kept in a data structure that is
unique for each core object, regardless of the number of proxies applied.

Type Encoding In order to manage the dynamic types efficiently, a convenient
way to index and compare them is used. The set Θ is a directed, acyclic multiple
inheritance hierarchy, equipped with a top element> and a partial order relation
≤modelling subtype inheritance, i.e. for s, t ∈ Θ, s ≤ t implies that s is a subtype
(“inherits”) of t. So, an efficient and compact encoding mechanism proposed
in [6] is adopted. Each element T ∈ Θ is assigned a signature key k(T ), a bit
set, with the properties that k(>) = ∅ and ∀s, t ∈ Θ : s ≤ t ⇔ k(s) � k(t). The
partial order relation � is, in turn, defined as such: denoting with k(x)[j] the
j − th bit in a key, k(s) � k(t) ⇔ (∀j : k(t)[j] = 1 ⇒ k(s)[j] = 1). Informally
speaking, the key of the subtype extends the keys of all its supertypes, since any
bit set to 1 in any of the latter must also bet set to 1 in the former. So, for example,



if Patient, DiabeticPx and OncologyPx were the only types in the hierarchy, they
could be encoded using 1, 11 and 101 respectively. This encoding allows to
map the complex lattice operations ∧ and ∨ in Θ to the much simpler boolean
bit-wise operations & and | on the key bitsets. Moreover, while it is reasonable
to assume that Θ is statically known at compile time, the encoding strategy is
incremental, so that elements can be added later, for example when a knowledge
base is expanded to refine the concepts used by an application.

Core Data Structures The core object itself is an instance of class C, augmented
with the data structures required to hold references to the current traits, soft
fields and field type constraints. These additional structures are fixed and can be
generated automatically when C is initialized. The required structures serve the
following purposes:

– Soft Fields Store: The soft field store is a map-like data structure used to hold
the current values of an object’s soft fields, based on its current dynamic
types. The map may be local to the object or global. In the former case, the
property can be used as key; in the latter, a two-level index based on the core
object and property is required.

– Trait Store: The trait store contains references to the proxies wrapping a
specfic object, indexing them by name. Exposed as a Map, it allows to store
and retrieve proxies using an identifier (e.g. the fully qualified name) of
the interface they implement. Internally, the trait store sorts the proxies by
linearizing the partial order defined over the type set Θ, so that proxies
can be iterated from the most specific to the most general (Top) and vice
versa. The ordering is based on a topological linearization algorithm [9] and
exploits the bitstet type encoding for efficient comparisons between pairs of
proxies.

– Field Metadata Store: For each field (hard or soft), the Field Metadata Store
contains reference to a Trait Field Metadata descriptor. This class is respon-
sible for applying the type constraints on a field’s value imposed by the
current class and types, as defined by equation 1. Given a field’s value x and
a required field type Y here are four possible combinations to consider:
1. x : C ∈ (Γ ∪∆) and Y ∈ (Γ ∪∆) s.t. x is valid ⇐⇒ C :: Y .
2. x : C ∈ (Γ ∪∆) and Y ∈ (Θ) s.t. x is valid ⇐⇒ x has trait Y .
3. x : T ∈ (Θ) and Y ∈ (Γ ∪∆) s.t. x is valid ⇐⇒ ∃K : x.getCore() : K

and K :: Y .
4. x : T ∈ (Θ) and Y ∈ (Θ) s.t. x is valid ⇐⇒ C :: Y or x.getCore() has

trait Y .
Notice that options (2) and (4) may be interpreted either as constraints or
axioms, depending on whether 3a or 3b is applied.
The Metadata Descriptor is also responsible for computing a field’s candidate
default value, based on the current types. Both operations require to compare
the currently available traits, according to the partial order on Θ, so they
take advantage of the efficient type encoding. Before a value is tentatively
assigned to a field, the Descriptor will validate it: whenever the field’s



current value does not satisfy the constraints in 1 or 3a, it becomes invalid
and the Descriptor will return the default value (if any) to be set in place of
leaving the value unspecified.
Notice that, in case of collections, the validation procedure is applied to each
element, but the default value is set only in case no valid value is available.

3.3 Production Rule Integration

Production Rule Systems are a widely adopted technology for the implementa-
tion of rule-based decision support systems. Their engines are usually based on
the Rete algorithm [13], even if alternatives exist such as TREAT [18] and LEAPS
[5]. This paper focuses on Rete-based engines because, to this date and to the
best of the authors knowledge, most Production Rule Systems implementations
are based on this algorithm. A Production Rule Systems system has three major
components: (i) a rule base which is compiled into a data processing network, (ii)
a working memory (WM) that contains the facts provided to or inferred by the
engine and (iii) the engine itself. A detailed description of Rete engines is beyond
the scope of this paper, but a formal model of their behavior can be found in [20].
Here, the main area of interests are the working memory operations, namely the
assertion, modification and retraction of a fact. In an object-oriented Rete, the
first condition checked by discrimination part of the data processing network
is the class of a candidate fact, which must match the type defined in a rule
pattern. Proxies allow an object o to match a pattern requiring type T even if that
object’s class C does not implement T directly. To do so, proxies must be asserted
into the same WM of their core fact. However, this might lead to unwanted
rule activations, since the WM is populated with additional objects which are
not under the control of the client’s application. To preserve transparency, WM
actions and the underlying engine have been extended, so that the core object
and its proxies will be treated as a single entity.

Algorithm 1 Generalized WM Type Assertion

Require: o : TraitableBean, t: Trait
if not isA(o,t) then

T ← new traitProxy( t, o.implClass )
τ ← encode( mst(o) )
o.typeLattice.update( T )
bind( o, T )
wm.assert( T, τ(o) )

end if

Assertion Let [o] denote the set containing an object and all its current proxies.
To enable assertions of the type o : T , a new operation is defined don(o,T).
This operation does not have any effect if o already has type T at the time it is



called. Assuming then that o : T does not hold, this operation is responsible for
instantiating a proxy implementing T and wrapping C (where C is the implemen-
tation class of o). This proxy is added to the core object’s internal proxy lattice.
To ensure that the current set of proxies form a lattice at any time, a > and a ⊥
elements are required: the first time don is applied to an object o, don(o,Top) is
also invoked implicitly. In general, the set will not have a single bottom element:
if necessary, the collection is completed with a mock bottom element whose code
τ(o) is the bitwise or (∨) of the currently assigned types. This element is updated
whenever the set changes and is removed if an appropriate bottom element
can be found among the available traits. This mock type needs not necessarily
correspond to the code of an element of Θ, but it allows for the efficient retrieval
of the most specific types [6]. This set, denoted by mst(o), is the minimal set
of types Tj such that o : Tj and ∀Tj ∈ mst(o) @ Tk ∈ mst(o) such that Tk :: Tj .
The transitive closure of mst(o), based on the sub-type relation ::, is the set of
types Θ(o) ⊆ Θ that can be inferred for o. The code τ(o) has the property that
∀T ∈ Θ(o) : τ(o) � k(T ).

During the wrapping process, field constraints and default values are com-
puted and applied, based on the semantics described in section 3.1 and exploiting
the internal data structures presented in section 3.2. Notice that this may change
the value of some fields, and/or require some nested calls to don, in case a
dynamic type has to be added to an object referenced by one of o’s fields. Once
the data structures have been linked, the newly instantiated proxy is asserted as
a fact into the WM. The proxy can potentially match any pattern requiring T or
any of its supertypes, which o itself would not have been able to match. How-
ever, it is still possible to create undesired activations: it is sufficient that there
exists a type S such that o : S before adding T and T :: S . Any pattern matching
S would have already been evaluated by o or one of its previous proxies, so it
should not be considered again. To this end, the propagation context of the new
proxy T includes the value of τ(o) before it was updated with k(T ). Any time
the propagation reaches a RETE type node S, its type code is compared with τ(o)
and the propagation is blocked in case τ(o) � k(S). In this case, o::S used to
hold even before adding T, so a new evaluation is not necessary. Let’s consider
for example the coded set

Θ = {Top(), Patient(1), DiabeticPx(11), OncologyPx(101), F luPx(1001)}

The set includes one main type (Patient) descending from Top and three of its
subtypes. It is assumed that the WM contains a Person x with dynamic types
Θ(x) = {Top,DiabeticPx,OncologyPx}. Its closure code τ(x) is 111, which
implies Patient since 111 � 1. At this point, don(x,FluPx) is executed and a
new proxy is created and configured. Since it is not the case that 1001 � 101,
the new assertion adds novel information, so the proxy must be propagated
through the Rete network. The value τ(x) = 111 is added as context information,
allowing the new proxy to match patterns for FluPx but not for Patient, since the
check τ(x) � k(Patient) blocks the propagation in that branch of the Rete.

So far, this method would work assuming that the engine supports only one
type check per pattern, i.e. that constraints in alpha and beta RETE nodes can



only involve fields. If types are allowed to participate in constraints, condition
such asPatient[ this instanceOfFluPx ] orFluPx[ this instanceOfOncologyPx ]
might be written. The latter would be matched by the propagation of the new
proxy, but the former would not, since Patient patterns would be blocked. For
this reason, and because of the potential changes to the object’s field values dur-
ing the dynamic type injection, the core object o must be updated after asserting
the new proxy T.

Modification/Update A working memory update is performed to notify the engine
that a fact has changed in some way: the engine, in turn, will reevaluate any
potentially matching pattern to take the new value(s) into account. To ensure
transparency, updates are redefined to operate on [o], regardless of whether
they are invoked on o directly or one of its proxies. The goal is to reevaluate all
possibly matching patterns exactly once. First of all, o is updated, automatically
covering patterns expressed in terms of class C, any of its superclasses and any
interface that C implements statically. Second, the set of dynamic proxies is
considered, to reach patterns matching types acquired dynamically at runtime.
In particular, only proxies Tmst

j ∈ mst(o) are considered. By definition, the type
information carried by any other proxy would be implied by at least one element
of mst(o). Even then, however, patterns matching a common ancestor of two
or more elements of mst(o) would potentially be evaluated more than once.
Similarly to what was done for assertions, the updates are propagated with a
“veto” bit code ν that summarizes the types which have already been covered.
Its value is initialized with the mask of all the interfaces implemented by C
statically. The elements in mst(o) are then updated sequentially, passing the
veto bitset as a context parameter: after each update, the veto code is bitwise
or-ed with the mask of the last propagated proxy. Like in the case of assertions,
during the propagation of Tmst

j , no node requiring type S (with Tmst
j :: S) will

be (re)evaluated if ν � k(S). Notice that during the updates triggered by don
operations, the set mst(o) is computed without considering the new type. The
algorithm for updates is outlined in Algorithm 2.

Algorithm 2 Generalized WM Update

Require: o : TraitableBean
mst← o.getMostSpecificTypes()
ν ← getVetoForClass( o.class )
for all TraitProxy T ∈mst do

update(T, ν)
ν ← ν ∨ T.getTypeCode()

end for

After the propagation of FluPx, the Person x is updated. The set mst(x)
prior to the addition of FluPx is mst(x) = {DiabeticPx,OncologyPx}. Since
Person does not implement any interface, ν = ∅. DiabeticPx is updated first,



potentially matching pattern types Top, Patient and DiabeticPx. OncologyPx is
updated next, with ν = ∅ ∨ 11: because of the veto, only patterns for OncologyPx
can be matched. Nodes requiring FluPx have already been evaluated when the
specific proxy was inserted. On a normal update, not triggered by a don, mst(x)
would also include FluPx, which would be updated using the veto mask ν = 111,
again preventing it from matching Top and Patient.

Retraction In presence of proxies, retraction can be defined in multiple ways. The
default retract operation is redefined to operate on [o] : retract(y ∈ [o]) := ∀x ∈
[o] : retract(x). This ensures that a fact can be retracted regardless of whether
it is selected directly or through one of its proxies; at the same time, no proxy
will remain in the WM after its core object has been retracted. To allow a user to
retract dynamic type assertions such as o : T a different operation is provided,
called shed. As the dual counterpart of don, shed(o,T) requires an object o
and a type T to be executed. Conceptually, it removes any assertion of the type
o : S | S :: T ; concretely, it retracts any proxy of o that implements or inherits
T. By definition, shed(o,T) does not require o to have type T directly, and will
have no effect if o does not have any subtype of T. If one or more types are
actually removed, however, [o] will be updated so that rules triggered by the
negation of T can be reevaluated. Notice that the negation of o : T is assumed to
be weak. Production rule engines do not usually support strong negation and
rely on negation as failure, so the ability to explicitly state that o does not have
type T will be the subject of future works.

3.4 Drools-specific implementation

An implementation of the proposed framework has been included in the open
source Production Rule Systems engine Drools [21] starting from version 5.6 and
above. The implementation builds on top of the engine’s features and language
and is optimized to offer a trade-off between features and performance.

Language extensions Drools is object-oriented and supports both class and
interface-based patterns, even in its native version. From a rule language per-
spective, the first major extension that is proposed is the introduction of don
and shed as working memory actions, with the behavior described in section
3.3. The second major extension involves the definition of the data models to
use in the rules. Drools provides a compact domain specific language for the
declaration of java beans as a part of DRL, its native rule language. This language
fragment can be described by the following grammar:

〈S〉 ::= 〈Declaration〉+
〈Declaration〉 ::= ’declare’ 〈JClass〉 ( ’extends’ 〈JClass〉 )? 〈Body〉 ’end’
〈Body〉 ::= 〈JAnnotation〉* 〈FieldDeclaration〉*
〈FieldDeclaration〉 ::= 〈JField〉 ’:’ 〈JClass〉 ( ’=’ 〈JLiteralExpr〉 )? 〈JAnnotation〉*

Elements starting with “J” must be compatible with Java class names, anno-
tations, field names and expressions, in order of appearance, and are not further



specified. Classes defined using the declare syntax are compiled directly into
Java bytecode using ASM [15] and loaded to be used in the rule base runtime.
The code compiler will generate fields, constructor(s), accessors, equality/hash-
Code and toString methods automatically. If present, literal expressions will be
used as default values in the constructors, in case no explicit value is provided.

In order to generate traitable beans, it is sufficient to add the annotation
@Traitable to the class declaration: the code compiler will add the required
internal data structures. To generate trait interfaces, instead, a minor extension
to the grammar was necessary to add support for multiple inheritance:

〈Declaration〉 ::= ’declare’ 〈JClass〉 ( ’extends’ 〈JClass〉 )? 〈Body〉 ’end’
| ’declare trait’ 〈JClass〉 ( ’extends’ 〈JClass〉 )* 〈Body〉 ’end’

Existing or generated trait interfaces will be annotated with @Trait. Notice
that while the interfaces are generated at compile time, to allow them to be
used in the rules, the trait proxy classes are generated lazily at runtime, the
first time that a particular type/class combination is required. The annotations
@Traitable and @Trait are mandatory, but they can be used with preexisting
Java classes and interfaces: in that case, the engine will provide the additional
data structures at runtime. Both annotations can specify an additional boolean
parameter, false by default. Unless @Traitable(logical=true) is speci-
fied, the field type management feature will not be enabled for that core class.
While more efficient, it restricts core objects and trait interfaces to always declare
the same type for the same property, trivially satisfying (1) or an exception will
be thrown. The restriction is necessary since, without field type management,
no attempt to cast or convert between objects and proxies can be attempted. En-
abling or disabling @Trait(logical=true), instead, allows to differentiate
between (3a) and (3b) in case a field’s filler object needs a specific type which it
does not currently have. Notice that this flag is meaningful only if the core class
providing the field is marked as @Traitable(logical=true), regardless of
whether the field is hard or soft.

Additional features In addition to the core framework, a number of additional
enhancements are provided to facilitate rule authoring and execution.

– Use maps as core objects. Any class implementing java.util.Map can
be marked as @Traitable and used in don operations. All fields will be
considered soft, but the values will be stored and extracted from the core
map. This feature provides a convenient way to mix dynamic data structured
with type safety.

– isA operator. Type checks can be used both in patterns and constraints,
so that rules such as X( this isA Y ) or X( field isA Z ) can be
written. isA generalizes intanceof since it considers dynamic types. Its
implementation leverages the type codes for efficiency.

– Truth Maintenance. Drools supports “justified” chained assertions [11],
which are automatically retracted once the premises supporting them are no
longer valid. A “justified” variant of don is provided, which automatically



retracts the generated proxies once the rule activation(s) that supported
them are no longer valid. Notice that, unlike shed, this kind of automated
retractions will only involve individual, specific proxies.

– Property Reactivity. Property Reactivity is a configurable form of refraction
that was introduced in [19]. On updates, traits would attempt to reevaluate
any pattern matching an object’s types, regardless of whether they have
been acquired statically or dynamically. Property reactivity, then, guarantees
that a pattern will be reevaluated if and only if it constrains at least one field
that was modified during the update. Unlike the original version, property
reactivity has been extended to take the set of dynamic types into account,
allowing isA to be used with it.

4 Extended Example

Inference and decision rules based on the classification of individuals are perva-
sive in most business domains. In healthcare, specifically, computerized decision
support (CDS) is one of the main areas of application of reasoning technolo-
gies. One application of CDS is to check whether a patient has met certain
goals and/or schedules, to issue recommendations (re. alerts) with the intent to
maintain (re. achieve) compliance to a given care plan. The rules are applied to
data provided using standard interchange models, such as the HL7 Reference
Information Model (RIM, [28]) or the Fast Interoperable Healthcare Resources
(FHIR, [2]). These models define a relatively small number of generic classes,
which are meant to be constrained semantically based on the instance data to
be represented. For example, a class called Condition may be used to model
disorders and other ailments, which may or may be not actual illnesses, and may
or may not have a confirmed diagnosis. The actual type of Condition would be
specified using (medical) terminologies such as SNOMED-CT [16], and the type
would imply additional constraints, such as the admissible progression stages,
body sites, and symptoms.

For example, a (simplified) diabetes management rule may state that “Diabetic
Patients with a poorly managed blood sugar concentration should be seen every 2-3
months”. Rules of this kind predicates on non-rigid types such as ’patient’, ’(well
managed) diabetes’ and ’blood sugar’, which apply to classes such as ’person’,
’condition’ and ’laboratory test result’, respectively. In order to execute this
business logic in a rule engine, one would have to rewrite the constraints in a
form that is more operational, such as:
rule " Diabetes Recommendation " when

$per : Person ( $name : name , addr : address )
$pat : P a t i e n t ( person == $per )
/ / confirmed diagnosis of act iv e diabetes
$dia : Condition ( sub j == $pat , code == " s c t :73211009 " , s t a t u s == A)
/ / uncontrol led blood sugar , assessed via Hemoglobin A1C t e s t
$a1c : Observation ( sub j == $per , code == " lnc :74246−0 " , value > 7 . 0 )

then
/ / Schedule next appointment 2−3 months from now

end



Rules like this mix business and data concepts, and are less understandable
than the original guideline. Moreover, they tend to overfit the intent business
logic. There are several ways to infer that a Patient “has diabetes”, not all of
which have enough context to instantiate an object of type Condition consistently.
Likewise, a specific lab test (with a threshold that is subject to variation) is not
the only way to infer that a person’s blood sugar is “uncontrolled”. To mitigate
these issues, one could make the intermediary inferences explicit, leveraging
domain (and rule-) specific facts:

declare D i a b e t i c
sub j : P a t i e n t

end

declare HasPoorlyControlledBloodSugar
sub j : P a t i e n t

end

rule " D i a b e t i c " when
$pat : P a t i e n t ( )
$dia : Condition ( sub j == $pat , code == " s c t :73211009 " , s t a t u s == A)

then
i n s e r t L o g i c a l ( new D i a b e t i c ( $pat ) ) ;

end

rule " Blood Sugar " when
$pat : P a t i e n t ( )
$a1c : Observation ( sub j == $at , code == " lnc :74246−0 " ,
value # Quantity > 7.0%) / / ’ value ’ i s variant , so a cast i s needed

then
i n s e r t L o g i c a l ( new HasPoorlyControlledBloodSugar ( $pat ) ) ;

end

rule " Diabetes Recommendation " when
$per : Person ( $name : name , addr : address )
$pat : P a t i e n t ( person == $per )
$dia : D i a b e t i c ( sub j == $pat )
$sug : HasPoorlyControlledBloodSugar ( sub j == $pat )

then
/ / Schedule next appointment

end

This wording emphasizes the domain concepts, but the knowledge engineer
writing the rules has to maintain the consistency between the domain objects
and the helper facts, using technical features of rule engines such as truth main-
tenance and/or refraction. For example, the ’HasPoorlyControlledBloodSugar’
fact holds only as long as the Hemoglobin value remains above the threshold.
Moreover, joins are still required to match the marker facts with the correspond-
ing core objects, increasing the complexity of the underlying RETE network.
Using traits, instead, type markers can still represent domain concepts, but the
integrity of the working memory is handled by the engine rather than the user:

declare t r a i t P a t i e n t
mrn : S t r i n g / / medical record number − s o f t f i e l d



end
declare t r a i t D i a b e t i c extends P a t i e n t end
declare t r a i t Diabetes end
declare t r a i t HemoglobinA1CTest

value : Quantity / / type r e s t r i c t i o n
end
declare t r a i t HasPoorlyControlledBloodSugar extends P a t i e n t end

rule " P a t i e n t " when
$per : Person ( )
e x i s t s Condition ( sub j == $per )

then don ( $per , P a t i e n t . c l a s s ) . with ( mrn = getMRN( $per$ ) ) ; end

rule " Diabetes " when
$con : Condition ( code == " s c t :73211009 " , s t a t u s == A)

then don ( $con , Diabetes . c l a s s ) ; end

rule "HgbA1c" when
$a1c : Observation ( code == " lnc :74246−0 " )

then don ( $a1c , HemoglobinA1CTest . c l a s s ) ; end

rule " Poorly managed d i a b e t e s " when
$pat : P a t i e n t ( )
$dia : Diabetes ( sub j == $pat )
$a1c : HemoglobinA1CTest ( sub j == $pat , value > 7.0% ) / / no cast

then
$don ( $pat , { D i a b e t i c . c l a s s , HasPoorlyControlledBloodSugar . c l a s s } ) ;

end

rule " Diabetes Recommendation " when
$per : D i a b e t i c ( $name : name , $addr : address , $mrn : mrn ,

t h i s isA HasPoorlyControlledBloodSugar . c l a s s )
then

/ / Schedule next appointment
end

This formalization, which is one of many possible, demonstrates some as-
pects of the proposed approach. The rule base is larger, but captures a deeper
level of domain knowledge, leveraging concepts with domain semantics rather
than data semantics. It allows for a better separation of concerns, decoupling
inference and classification from decision making. Traiting allows to intro-
duce constraints in the forms of convenient types and casts. An object can
have multiple traits within the same type hierarchy, so Patient(this isA
Diabetic.class) and Diabetic() are equivalen to Person(this isA
Diabetic.class): in particular, a rule would activate only once for an in-
stance of Person that has both the Patient and the Diabetic trait since the latter
implies and thus masks the former. From a technical perspective, type checks
are enforced by means of alpha node constraints, rather than beta node ones,
resulting in a simpler RETE network. Finally, truth maintenance is handled by
the engine automatically.



5 Benchmarks and Results

The use of traits increases the expressivity of the rule language, and consequently
the complexity of the rule engine. Even if this complexity is hidden from the
knowledge engineers and subject matter experts, it has implications in terms
of performance. To prove that this additional cost is balanced by the ability to
construct simpler rules, we have defined a suite of synthetic benchmarks that
mimic the basic trait usage patterns. Japex [1] is used to write the java-based
micro-benchmarks and run them with appropriate warmups and repetitions.
All the test suites ran on a desktop machine with an Intel Core i5 processor, 8GB
of RAM, Microsoft Windows 7 64bit OS, JDK 7, Drools 5.6 and Japex 1.1.3. The
benchmarks compare the use of traits against marker facts emulating the same
logic provided by traits, measuring the overall cost of traits execution against
the join cost of the Rete algorithm [3]. The first test evaluates the scalability of
the system as the number of isA constraints increases, with a very large number
of dynamic types. The results in Table 1 show the trait version was faster and
scaled better with the number of dynamic types. This implies that the more types
are possibly matched by a fact, the more convenient it is to use traits instead of
helper objects.

Table 1: speed-up with increasing number of isA in µs
Iteration Native Trait Native/Trait

100 1.824 1.539 1.185

500 5.109 3.579 1.427

1000 13.535 7.167 1.888

The second benchmark, Figure 1, focuses on a single insert/join replaced by a
don/isA, monitoring its execution time as the pattern gets applied multiple times
to multiple facts. Just In Time (JIT) compilation causes the initial speed increase,
with traits taking longer due to the proxy runtime generation. As iterations
increase, the trait version becomes asymptotically more efficient, possibly due to
the simpler structure of the Rete. The third benchmark, Figure 2, was designed
to see how adding fields to traits and using them in constraints would affect the
overall performance. In this benchmark, a single trait was declared in each test
with a different number of fields, mixing soft, hard and hidden ones. The results
show the execution time was not affected by hidden fields, but increased with
the number of soft and hard fields. In all benchmarks, the measurements have
been reproducible and consistent, as shown by the low value of the standard
deviation. The small differences in the value of the average, computed using
different strategies, confirm the absence of outliers in the measurements.



Fig. 1: Rule execution time during the initial transition : trait vs native
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6 Conclusions

We have proposed an extension for a on object oriented production rule sys-
tem, based on the concept of dynamically typed facts. The approach combines
the flexibility of dynamic data structures while enabling the benefits of type
safety. To this end, we have extended the Rete engine with the addition of two
new working memory actions, don and shed, and redefined the existing ones
(assert, retract and update) to work with the new specification.

The extensions are conservative and do not impact the engine unless used
explicitly. Moreover, they provide a good compromise between memory con-
sumption, execution time, data integrity, declarativeness and expressivity. As
shown by the benchmarks, the use of traits is not detrimental to performance
except for the simplest cases, while there exists cases where it has actually been
proven to be beneficial. In general, any time that traits allow to simplify the
structure of a rule, some kind of performance gain is to be expected. A precise
quantification of this gain is hard to predict in practice, since it heavily depends
on the use cases and will be the subject of further studies. The only important
aspect to remember is that trait proxy classes are generated lazily the first time
that they are needed.

From a knowledge represenaion perspective, the proposed framework al-
lows rules to be written against clean conceptual domain models, implemented



using interfaces, rather than concrete information models. This approach can be
considered a good practice in general: it allows the decoupling of the rules from
the facts they are supposed to match and increases their portability between dif-
ferent systems, which is a well known limit in areas where automated decision
making plays an important role.

From a theoretical perspective, there should be further investigate the integra-
tion of production rules with ontologies and other formalism for the definition
of concepual models. Preliminary works, not discussed in this paper, show
that trait-oriented domain models (as well as companion information models)
could be derived from ontologies automatically, and will be the subject of future
publications. On top of this, the potential role of traits in bridging some of the
differences between rule-based and description logic reasoning will be explored.
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