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ABSTRACT

The introduction of internet-connected hearing aids constitutes a
paradigm shift in hearing healthcare, as the device can now po-
tentially be complemented with smartphone apps that model the
surrounding environment in order to recommend the optimal set-
tings in a given context and situation. However, rethinking hearing
aids as context-aware recommender systems poses some challenges.
In this paper, we address them by gathering the preferences of seven
participants in real-world listening environments. Exploring an au-
diological design space, the participants sequentially optimize three
audiological parameters which are subsequently combined into a
personalized device configuration. We blindly compare this configu-
ration against settings personalized in a standard clinical workflow
based on questions and pre-recorded sound samples, and we find
that six out of seven participants prefer the device settings learned
in real-world listening environments.
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1 INTRODUCTION

Despite decades of research and development, hearing aids still fail
to restore normal auditory perception as they mainly address the
lack of amplification due to loss of hair cells in the cochlea [16],
rather than compensating for the resulting distortion of neural
activity patterns in the brain [22]. However, the full potential of
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hearing aids is rarely utilized as devices are frequently dispensed
with a “one size fits all” medium setting, which does not reflect
the varying needs of users in real-world listening scenarios. The
recent introduction of internet-connected hearing aids represents
a paradigm shift in hearing healthcare, as the device might now be
complemented with smartphone apps that model the surrounding
environment in order to recommend the optimal settings in a given
context.

Whereas a traditional recommender system is built based on data
records of the form < user,item,rating > and may apply collaborative
filtering to suggest, for instance, new items based on items pre-
viously purchased and their features, recommending the optimal
hearing aid settings in a given context remains highly complex.
Rethinking hearing aids as recommender systems, different device
configurations could be interpreted as items to be recommended
to the user based on previously expressed preferences as well as
preferences expressed by similar users in similar contexts. In this
framework, information about the sound environment and user
intents in different soundscapes could be treated as contextual in-
formation to be incorporated in the recommendation, building a
context-aware recommender system based on data records of the
form < user,item,context,rating > [1]. However, addressing some
challenges related to the four aforementioned data types is essen-
tial to make it possible to build an effective context-aware recom-
mender system in the near future. In this paper, we discuss the main
challenges posed when rethinking hearing aids as recommender
systems and we address them in an experiment conducted with
seven hearing aid users.

1.1 Rating

In order to be able to precisely and accurately recommend optimal
device settings in every situation, gathering relevant user prefer-
ences (expressed as ratings) is essential. However, learning user
preferences poses some challenges. Firstly, the device settings re-
flect a highly complex audiological design space involving multiple
interacting parameters, such as beamforming, noise reduction, com-
pression and frequency shaping of gain. It is important to explore
the different parameters, in order not to disregard some parameters
that might have relevant implications for the user listening experi-
ence, and to identify which parameters in an audiological design
space [10] define user preferences in a given context. Secondly, the
preferred device settings depend on the human perception of the
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listening experience and it is therefore difficult to represent the per-
ceptual objective using an equation solely calculated by computers
[21]. Having to rely on user feedback, it is important to limit the
complexity of the interface, to make the interaction as effective as
possible. Thirdly, capturing user preferences in multiple real-world
situations not only guarantees that the situations are relevant and
representative of what the user will experience in the future, but
it also allows the user to test the settings with a precise and real
intent in mind. However, this increases the complexity of the task,
since the real-world environment is constantly changing and a user
might explore the design space while performing other actions (e.g.
conversing).

A traditional approach to find the best parameter combination
(i.e. the best device configuration) is parameter tweaking, which
consists in acting on a set of (either continuous or discrete) param-
eters to optimize them. Similarly to enhancing a photograph by
manipulating sliders defining brightness, saturation and contrast
[21], the hearing aid user could control her listening experience
by tweaking the parameters that define the design space and find
the optimal settings in different listening scenarios. However, this
method can be tedious when the user is moving in a complex de-
sign space defined by parameters that interact among each other
[13]. One frequently used method to simplify the task of gather-
ing preferences is pairwise comparison, which consists in making
users select between two contrasting examples. A limitation of
this approach is efficiency, given that a single choice between two
examples provides limited information and many iterations are
required to obtain the preferred configuration. Based on pairwise
comparisons, an active learning algorithm may apply Bayesian
optimization [2] to automatically reduce the number of examples
needed to capture the preferences [3], assuming that the samples
selected for comparison capture all parameters across the domain.
Alternatively, one might decompose the entire problem into a se-
quence of unique one-dimensional slider manipulation tasks. As
exemplified by Koyama et al. [13], the color of photographs can be
enhanced by proposing users a sequence of tasks. At every step, the
method determines the one-dimensional slider that can most effi-
ciently lead to the best parameter set in a multi-dimensional design
space defined by brightness, contrast and saturation. Compared to
pairwise comparison tasks, the single-slider method makes it possi-
ble to obtain richer information at every iteration and accelerates
the convergence of the optimization.

Inspired by the latter approach we likewise formulate the learn-
ing of audiological preferences in a given listening scenario as an
optimization problem:

z=argmax f (x)
xeX
where x defines parameters related to beamforming, attenuation,
noise reduction, compression, and frequency shaping of gain in an
audiological design space X [10] and the global optimum of the
function f : X — R returns values defining the preferred hearing
aid settings in a given listening scenario.

However, while it remains sensible to assume that individual ad-
justments would converge when crowdsourcing (i.e. asking crowd
workers to complete the tasks independently) the task of enhancing
an image [13], it is less likely that hearing impaired users would
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have similar preferences due to individual differences in their sen-
sorineural processing [16, 22]. Therefore, at least in the first phase,
we need to ask the same user many times about her preferences,
until her optimal configuration is found. Furthermore, in order to
optimize the device in different listening scenarios, we need to ask
the same user to move in the same design space multiple times.
Altering the one-dimensional slider at every step of the evaluation
procedure might make the task difficult, since the user would not
know the trajectory defined by the new slider. We believe that
decoupling the parameters and allowing users to manipulate one
parameter at a time, moving in a one-dimensional space that is
clearly understood, would allow them to better predict the effects
of their actions and hence more effectively assess their preferences.

1.2 Item

In order to enhance the hearing aid user experience, it is important
to appropriately select the parameters that define the hearing aid
configurations evaluated by users. Indeed, not only should the
parameters have a relevant impact on the user listening experience,
but the different levels of the parameters should also be discernible
by untrained users. Three parameters have been demonstrated to
be particularly important for the experience of hearing impaired
users:

(1) Noise reduction and directionality. Noise reduction reduces
the effort associated with speech recognition, as indicated by
pupil dilation measurements, an index of processing effort
[23]. By allowing speedier word identification, noise reduc-
tion also facilitates cognitive processing and thereby frees
up working memory capacity in the brain [18]. Moreover,
fast-acting noise reduction proved to increase recognition
performances and reduce peak pupil dilation compared to
slow-acting noise reduction [23]. Given that the ability of
users to understand speech in noisy environments may vary
by up to 15 dB [4], it is essential to be able to individualize
the threshold levels for the activation of noise reduction.
Brightness. While a lot of research has been focused on adapt-
ing the frequency-specific amplification which compensates
for a hearing loss based on optimized rationales like VAC+
[5], rationales still reflect average preferences across a popu-
lation rather than individual ones. Several studies indicate
that some users may benefit from increasing high-frequency
gain in order to enhance speech intelligibility [11, 12].

Soft gain. The perception of soft sounds varies largely among
individuals. Hearing aid users with similar hearing losses
can perceive sounds close to the hearing threshold as being
soft or relatively loud. Thus, proposing a medium setting for
amplification of soft sounds may seem right when averag-
ing across a population, but would not be representative of
the large differences in loudness perception found among
individual users [17]. For this reason, modern hearing aids
provide the opportunity to fine-tune the soft gain by acting
on a compression threshold trimmer [14].

Taking a naive approach, treating each parameter independently,
the preferences could subsequently be summed up in a general hear-
ing aid setting, by simply applying the most frequently preferred
values along each audiological parameter.
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1.3 User

Hearing aids are often fitted based on a pure tone audiometry, a
test used to identify the hearing threshold of users. However, as
mentioned above, users perceive the sounds differently and might
benefit from a fully personalized hearing aid configuration. For this
reason, it is essential to fully understand what drives user prefer-
ences and which is the relative importance of users’ characteristics
and context. It is interesting to analyse whether users exhibit similar
preferences when optimizing the hearing aids in several real-world
environments and whether they result into similar configurations.

1.4 Context

Users often prefer to switch between highly contrasting settings de-
pending on the context [11]. It has been shown that a context-aware
hearing aid needs to combine different contextual parameters, such
as location, motion, and soundscape information inferred by audi-
tory measures (e.g. sound pressure level, noise floor, modulation
envelope, modulation index, signal-to-noise ratio) [12]. However,
these contextual parameters might fail to capture the audiological
intent of the user, which depends not only on the characteristics of
the sound environment but also on the situation the user is in. For
this reason, in addition to retrieving the characteristics of the sound
environment and the preferred device settings, it is also important
to capture the contextual intents of users in the varying listening
scenarios. Contextual information, in this exploratory phase, can be
explicitly obtained by directly asking the user to define the situation
she is in. However, in the future, to enable an automatic adaptation
to the needs of users in real-world environments, relevant contex-
tual information will need to be inferred using a predictive model
that classifies the surrounding environment.

2 METHOD
2.1 Participants

Seven participants (6 men and 1 woman), from a screened popula-
tion provided by Eriksholm Research Centre, participated in the
study. Their average age was 58.3 years (std. 12 years). Five of them
were working, while two were retired. They were suffering from a
binaural hearing loss ranging from mild to moderately severe, as
classified by the American Speech-Language-Hearing Association
[6]. The average hearing threshold levels are shown in Figure 1.
They were all experienced hearing aid users, ranging from 5 to 20
years of experience with hearing aids. All test subjects received
information about the study and signed an informed consent before
the beginning of the experiment.

2.2 Apparatus

The participants were fitted according to their individual hearing
loss with a pair of Oticon Opn S 1 miniRITE [8]. All had iPhones
with i0S 12 installed and additionally downloaded a custom smart-
phone app connected to the hearing aids via Bluetooth. The app
enabled collecting data about the audiological preferences and the
corresponding context.
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Figure 1: Average hearing threshold (i.e. the sound level be-
low which a person’s ear is unable to detect any sound [7])
levels for the 7 participants. The participants had a hearing
loss ranging from mild to moderately severe. Error bars in-
dicate +1 standard deviation of the hearing thresholds.

2.3 Procedure

The experiment was divided into four weeks. As shown in Table 1,
the first three weeks were devoted to optimizing the three audio-
logical parameters, one at a time. Each of the first three weeks, the
participants were fitted with four levels of the respective parameter,
while the other two parameters were kept neutral at a default level.
For instance, in week 1, each participant could select between four
levels of noise reduction and directionality. The participants were
instructed to compare, using a smartphone app, the four levels of
the parameter in different situations during their daily life and to
report their preference. To ensure that the participants would eval-
uate the different levels in relevant listening situations and when
motivated to optimize their device, they were instructed to perform
the task on a voluntary basis. Moreover, every time they reported
their preference, the participants were asked to specify:

o The environment they were in (e.g. office, restaurant, public
space outdoor). Different environments are characterised
by different soundscapes and pose disparate challenges for
hearing aid users.

e Their motion state (e.g. stationary, walking, driving). Mo-
tion tells more about the activity conducted by the person,
but may also mark the transition to a different activity or
environment [9].

e Their audiological intent (e.g. conversation, work meeting,
watching TV, listening to music, ignoring speech). Comple-
menting the contextual information by gathering the intent
of the participants in the specific situation might provide a
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Table 1: Study timeline

Week ‘ Activity

W.1 | Optimization of noise reduction and directionality

W. 2 | Optimization of brightness (amplification of high-frequency
sounds)

W.3 | Optimization of soft gain (amplification of soft sounds)

W. 4 | Final test of preference

deeper insight into how the different audiological parameters
help them in coping with different sounds.

o The usefulness of the parameter in the specific situation (on a
scale ranging from 1 to 5). This evaluation is important not
only to understand the relative importance of each prefer-
ence, but also to assess the perceived benefit of the parameter
in diverse situations.

The fourth week each participant compared two different device
configurations in a blind test:

e An individually personalized configuration combining the
most frequently selected preferences of the three audiologi-
cal parameters gathered in real-world listening environments
during the previous three weeks.

e A configuration personalized in a standard clinical work-
flow based on questions and on pairwise comparisons of
pre-recorded sound samples capturing different listening
scenarios including, for instance, speech with varying levels
of background noise.

The participants were instructed to compare the two personalized
configurations in different listening situations throughout the day
and report their preference, while also labeling the context. At the
end of the week, the participants were asked to select the configu-
ration they preferred.

3 RESULTS

During the four weeks of test, the participants actively interacted
with their devices, changing the hearing aid settings, overall, 4328
times (i.e. the level of the parameter during the first three weeks
or the final configuration during the last week) and submitting 406
preferences. On average, the participants tried the different hearing
aid settings 11 times before submitting a preference. Although one
parameter affects the perception of the others, isolating them al-
lows to analyse their perceived impact on the listening experience.
As illustrated in Figure 2, the brightness parameter was on aver-
age rated higher in perceived usefulness. This result is consistent
among the seven participants. Conversely, the noise reduction and
directionality parameter resulted to have the lowest perceived use-
fulness for five participants out of seven. The soft gain parameter
resulted to have an average perceived usefulness between those of
the other two parameters.

Recording, together with each preference, the perceived use-
fulness of the parameter in the specific situation also allows to
understand how much each parameter contributes to the overall
setting of the hearing aid. Figures 3, 4, 5 display the preferences of
test participants for different levels of noise reduction and direction-
ality, brightness, and soft gain, respectively. Only the preferences
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Noise Reduction and Directionality (n=94)
Brightness (n=98)
Soft Gain (n=103)

Usefulness
w

A B Cc D E F G
Participant

Figure 2: Average perceived usefulness of three parameters
(noise reduction and directionality, brightness, soft sounds).
Brightness is perceived to be the most useful parameter.
Noise reduction and directionality tends to be perceived as
the least useful parameter.

recorded in situations where the usefulness of the parameter is
rated higher than two out of five are considered.

Firstly, the results indicate that the participants have widely dif-
ferent audiological preferences, rather than converging towards
a shared optimal value. As the participants are ordered by age (A
being the youngest), there seem, nevertheless, to be some com-
mon tendencies among younger or older participants across all
parameters.

Secondly, most participants are not searching for a single op-
timum but select different values within each parameter. When
adjusting the perceived brightness (Figure 4), six participants out
of seven prefer, most of the time, the two highest levels along this
parameter. Thirdly, the participants frequently prefer highly con-
trasting values within each parameter, depending on the context.

Noise Reduction and Directionality

100%

80% Level 4
g 60% Level 3
<
% 10% Level 2
o 0% Level 1

0%
A B C D E F G
(n=5) (n=9) (n=0) (n=4) (n=13) (n=1) (n=20)

Participant

Figure 3: Preferences for the 4 levels of noise reduction and
directionality, which correspond (from level 1 to level 4) to
increasing directionality settings, increasing levels of noise
reduction in simple and complex environments and earlier
activation of noise reduction [15]. The participants exhib-
ited different noise reduction and directionality preferences
and five of them preferred more than one level in different
situations.
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Brightness
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(5]
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Participant

Figure 4: Preferences for the 4 levels of brightness, which
correspond (from level 1 to level 4) to increasing amplifica-
tion of high-frequency sounds. The participants exhibited
different brightness preferences and six of them preferred
more than one level in different situations.

Soft Gain
100%
80% Level 4
8
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()
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o Level 1
20%

0%
A B c D E F G
(n=6) (n=16) (n=4) (n=0) (n=11) (n=6) (n=37)

Participant

Figure 5: Preferences for the 4 levels of soft gain, which cor-
respond (from level 1 to level 4) to increasing amplification
of soft sounds, thus increasing dynamic range compression
[14]. The participants exhibited different soft gain prefer-
ences and five of them preferred more than one level in dif-
ferent situations.

In order to combine the sequentially learned preferences, we
summed up the most frequently chosen values along each param-
eter into a single hearing aid configuration. For each participant,
we subsequently compared it against individually personalized set-
tings configured in a standard clinical workflow based on questions
and pre-recorded sound samples. After the fourth week, six out of
seven participants responded they appreciated having more than
one general hearing aid setting, as they used both configurations in
different situations. They also wished to keep both personalized con-
figurations after the end of the test. However, in a blind comparison
of the two configurations, six out of seven participants preferred
the hearing aid settings personalized by sequentially optimizing
parameters in real-world listening scenarios.
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4 DISCUSSION

Due to the aging population, the number of people affected by hear-
ing loss will double by 2050 [20] and this will have large implications
for hearing healthcare. Rethinking hearing aids as recommender
systems might enable the implementation of devices that automat-
ically learn the preferred settings by actively involving hearing
impaired users in the loop. Not only would this enhance the expe-
rience of current hearing aid users, but it could also help overcome
the growing lack of clinical resources. Personalizing hearing aids by
integrating audiological domain-specific recommendations might
even make it feasible to provide scalable solutions for the 80% of
hearing impaired users who currently have no access to hearing
healthcare worldwide [19]. The accuracy of the recommendation
primarily depends on the ability of the system to gather user pref-
erences, while the user explores a highly complex design space. In
this study, we proposed an approach to effectively optimize the
device settings by decoupling three audiological parameters and
allowing the participants to manipulate one parameter at a time,
comparing four discrete levels. The fact that the participants pre-
ferred the hearing aid configuration personalized in real-world
environments suggests that the proposed optimization approach
manages to capture the main individual parameter preferences.
Looking into the individual preferences learned when sequen-
tially adjusting the three parameters, several aspects stand out. The
results suggest that the brightness parameter has the highest per-
ceived usefulness. This could be due to the fact that enhancing the
gain of high frequencies may increase the contrasts between conso-
nants and as a result improve speech intelligibility. Likewise, it may
amplify spatial cues reflected from the walls and ceiling, improving
the localization of sounds and thereby facilitating the separation of
voices. The participants seemed to appreciate a brighter sound when
listening to speech or when paying attention to specific sources
in a quiet environment. Despite the advances in technology that
reduce the risk of audio feedback and allow the new instruments
to be fitted to target and deliver the optimal gain [8], in some situa-
tions most of the participants seemed to benefit from even more
brightness. Conversely, users might prefer a more round sound in
noisy situations or when they want to detach themselves.
Adjusting the noise reduction and directionality parameter is per-
ceived as having the lowest usefulness. Essentially, this parameter
defines how ambient sounds coming from the sides and from behind
are attenuated, while still amplifying signals with speech character-
istics. Although the benefits of directionality and noise reduction
are proven, our results indicate that users find it more difficult to
differentiate the levels of this parameter if the ambient noise level is
not sufficiently challenging. The four levels of the parameter mainly
affect the threshold for when the device should begin to attenuate
ambient sounds. However, these elements of signal processing are
partly triggered automatically based on how noisy the environment
is. Therefore, in some situations, changing the attenuation thresh-
olds (i.e. the parameter levels) might not make a difference. Thus,
users may feel less empowered to adjust this parameter. On the
other hand, the data also shows that participants actively select the
lowest level of the parameter (level 1), which provides an immersive
omnidirectional experience without attenuation of ambient sounds
in simple listening scenarios. This suggests that, in some contexts,
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users express a need for personalizing the directionality settings
and the activation thresholds of noise reduction. Furthermore, pre-
vious studies have shown that the perception of soft sounds varies
largely among individuals. Our results not only confirm that users
have widely different audiological preferences, but also suggest
they would benefit from a personalized dynamic adaptation of soft
gain dependent on the context.

Focusing on the optimization problem in the audiological de-
sign space, some indications can be inferred. The large differences
among the participants suggest that, in a first phase, users’ inter-
action is essential to gather individual preferences and thereby
reach the optimum configuration for each single user. Simplify-
ing the optimization task and offering a clear explanation of the
one-dimensional slider made the process more transparent and
increased users’ empowerment. Once a recommender system is in
place, this component might also prove useful in enhancing users’
trust in the recommendations provided. Moreover, performing the
optimization task in real-world environments ensured an accurate
assessment and communication of users’ preferences. In the short
term, user preferences collected with this approach could flow into
the standard clinical workflow and help hearing care professionals
to fine-tune the hearing aids. However, a single static configura-
tion, although personalized, might not fully satisfy the user. Our
results indicate that such recommender systems should not simply
model users as a sole set of optimized audiological parameters, be-
cause the preferred configuration varies depending on the context.
It is therefore essential for these models to likewise classify the
sound environment and motion state in order to infer the intents
of the user. Being fully aware of the intent, by automatically la-
beling it, would add further value to the collected preferences and
would allow to ask for user feedback in specific situations. That
would make it feasible to verify hypotheses based on previous data,
and progressively optimize several device configurations for differ-
ent real-world listening scenarios. Once some configurations are
learned, the hearing aids could automatically recommend them in
specific situations and, by monitoring users’ behavior, continuously
calibrate to the preference of the user.

5 CONCLUSION

Internet-connected hearing aids open the opportunity for truly
personalized hearing aids, which adapt to the needs of users in real-
world listening scenarios. This study addressed the main challenges
posed when rethinking hearing aids as recommender systems. It
investigated how to effectively optimize the device settings by
gathering user preferences in real-world environments. A complex
audiological space was simplified by decoupling three audiological
parameters and allowing the participants to manipulate one param-
eter at a time, comparing four discrete levels. The participants se-
quentially optimized the three audiological parameters, which were
subsequently combined into a personalized device configuration.
This configuration was blindly compared against a configuration
personalized in a standard clinical workflow based on questions
and pre-recorded sound samples, and six out of seven participants
preferred the device settings learned in real-world listening en-
vironments. Thus, the approach seemed to effectively gather the
main individual audiological preferences. The parameters resulted
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to have a different perceived usefulness, differently contributing to
the listening experience of hearing aid users. The seven participants
exhibited widely different audiological preferences. Furthermore,
our results indicate that hearing aid users do not simply explore the
audiological design space in search of a global optimum. Instead,
most of them select multiple highly contrasting values along each
parameter, depending on the context.
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