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Abstract—Preventing privacy-related risks in the creation of
Trustworthy Smart IoT Systems (TSIS) will be essential, not
only because of the growing amount of regulations that impose
strict mechanisms to control risks and quality, but also to
effectively mitigate the effect of potential threats exploiting
vulnerabilities that may jeopardize privacy. While privacy-related
risks usually consider assets represented by elements of the
functional description of a TSIS, most monitoring efforts are
focused on monitoring security aspects related to the system
architecture components and it is not straightforward to link the
evidences collected through this monitoring systems to functional
description elements, making it difficult to use this information
for privacy-related risk management. In this paper, we propose
a methodology for continuous risk management and a model
for risks to increase trustworthiness in IoT systems by enabling
continuous monitoring of privacy-related risks. Our approach is
based in connecting our risk model with a modelling language to
describe IoT architectures, such as that proposed in GeneSIS, and
Data Flow Diagrams (DFD). With the combination of architecture
(technical description) and data flow models (functional descrip-
tion), we enable continuous risk management using monitoring
to improve risk assessment related to data protection issues, as
required by GDPR.

Index Terms—Risk management, Trust, IoT, Continuous, Pri-
vacy, Security

I. INTRODUCTION

Until now, IoT system innovations have been mainly fo-
cused on sensors, device management and connectivity, usu-
ally aimed at gathering data for processing and analysis in the
cloud1. The next generation IoT systems need to perform dis-
tributed processing and coordinated behaviour across IoT, edge
and cloud infrastructures, manage the closed loop from sensing
to actuation, and cope with vast heterogeneity, scalability and
dynamicity of IoT systems and their environments [9]. To
unleash the full potential of IoT, it is essential to facilitate
the creation and operation of trustworthy Smart IoT Systems
or, for short, TSIS. TSIS typically operate in changing and
often unpredictable environments. Thus, the ability of these
systems to continuously evolve and adapt to their new environ-
ment is essential to ensure and increase their trustworthiness,
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quality and user experience. Besides, by 2021, the number
of connected things will grow to 25 billion, according to
Gartner2. Thus, processes that were formerly run by humans
will be automated, making it much more difficult to control
data ownership, privacy and regulatory compliance.

Yan et al. [27] described the different dimensions of trust
for IoT systems, concluding that risk management is essential
to guarantee trustworthiness. Markets in the need of TSIS,
such as eHealth, are just flourishing and businesses will be
continuously adapting to new technologies. In this context,
poor risk management together with a reactive strategy usually
forces companies to continuously re-factor application archi-
tectures to improve software quality and security, incurring
high re-implementation costs [5]. In general, there is the lack
of solutions to support continuous control of risks through
evidence collection. Companies have little control on actual
effectiveness of the mitigation actions defined during risk
management process. Besides, many companies fill this gap by
using manual procedures based on storing all the information
in spreadsheets, by departments and locally [1]. This approach
rapidly turns inefficient as projects or teams grow.

In parallel, GDPR discusses data protection by design and
by default, remarking that it is essential to consider privacy
from the beginning to address related issues successfully. This
is specially true in the IoT arena, where technologies are not
consolidated yet and mixing legal requirements with a deep
technical understanding is challenging. In particular, including
privacy aspects in a continuous risk management process
is difficult. Continuous evidence collection to support risk
management is usually key, but most monitoring approaches
focus on collecting evidences from the TSIS infrastructure or
technical architectural components. However, privacy-related
risks are usually detected by analyzing functional descriptions
of the system [26] (e.g. data flows). Connecting this functional
level with the components of the architecture that are being
monitored is not trivial. Recognizing the overlap between pri-
vacy and security is key to determining when existing security
risk models may be applied to address privacy concerns [6].

In this paper, we improve continuous risk management in
TSIS development by embedding privacy-related risks explic-

2https://www.networkworld.com/article/3322517/internet-of-things/a-
critical-look-at-gartners-top-10-iot-trends.html
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itly through the combined used of models for both the architec-
ture and the data flow implemented on the components of the
architecture. We present a new approach that, through linking
GeneSIS [8] models and Data Flow Diagrams (DFDs) [7],
improves risk assessment process for privacy-related risks. We
achieve this by enabling the use of the information that is
typically collected from the infrastructure to control security,
thanks to the link that LINDDUN [26] establishes between
privacy and security threads in STRIDE [22].

This paper is organized as follows. Section II provides an
analysis of the state of the art. In Section III, we describe
a usual use case for our proposal. Section IV presents a
brief analysis of existing approaches and risk guidelines in
standards. Section V presents our methodology and a class
diagram model to describe the concepts we use in our risk
management methodology, and describe the mapping between
the architecture model and DFDs as well as our risk model.
Finally, in Section VI, we draw some conclusions.

II. STATE OF THE ART

There exist quantitative risk methodologies and tools, like
RiskWatch3 or ISRAM [13] and qualitative risk methodolo-
gies such as OCTAVE [2], CORAS [14] or STRIDE [22].
Traditional risk management methodologies focus on the as-
sessment of risks at a singular stage in time, and do not address
the challenge of managing continuously evolving risk profiles.

Managing continuous changes in software development has
been studied from different perspectives. The most common
practice in industry is continuous software integration [24].
Fitzgerald et al. [10], for instance, published a roadmap and
agenda for continuous software engineering. Besides, there is
a growing interest on security and privacy and this has moti-
vated work on continuous security and regulatory compliance.
Continuous security [16] was proposed to prioritize security
throughout the whole software development life cycle.

There has been work on risk management in complex and
evolving environments. For instance, different papers [12],
[20] propose managing risk related to accountability, assur-
ance, agility or financial aspects in multi-cloud applications.
Risks analysis is then used to guide the selection of cloud
service providers. Shrivastava et al. [23] present a risk man-
agement framework for distributed agile development, study-
ing risks related to software development life cycle, project
management, group awareness, etc. However, they focus on
analysing risk factors that represent a threat to the successful
completion of a software development project, rather than
risk related to non-functional requirements such as security or
privacy. In [3], the authors performed a systematic literature
review on risks and control mechanisms for distributed soft-
ware development. Moran [17] explicitly tackles issues related
to risk management for agile software development. Moran
proposes a risk modified kanban board and user story map.
Finally, in [18], a framework to manage risks that supports
collaboration, agility, and continuous development is proposed.

3RiskWatch: https://www.riskwatch.com . Accessed: 2019-07-18

None of these contribution tackles how to monitor privacy-
related risks for continuous risk management.

In general, even for security, risks are not analysed and
monitored continuously and historical data is not taken into
account [1], [4]. Besides, security risks are assessed based on
speculation rather than evidence [21], [25]. The interaction
between analytics capabilities and information security risk
management (ISRM) capabilities can help organizations to
perform continuous risk assessments and enable evidence-
based decision making [19].

In parallel, Article 25 in GDPR4 discusses data protection
by design and by default, underlining that considering privacy
from the beginning is essential to address privacy successfully.
GDPR establishes binding data protection principles, individ-
uals rights, and legal obligations to ensure the protection of
personal data of EU citizens. However, legal measures need
to come along with technical measures to protect privacy and
personal data in practice. PDP4E H2020 project [15] focuses
on the importance to involve engineers in the loop, for Privacy-
by-Design (PbD) to be viable.

A. MUSA Risk Assessment tool

The MUSA Risk Assessment tool5 is a reference implemen-
tation of the continuous risk management framework proposed
by [18]. The tool uses a pull system in the style of Kanban,
where the status of each asset with respect to a risk analysis
methodology is expressed through the different columns in the
Kanban board. Albeit this approach makes the tool agnostic
to any specific risk analysis methodology, the tool showcases
a methodology that is tailored to multi-cloud environments.

In order to assess the risks in the different components
of an application, the tool asks users to provide an informal
description of the system and its components. Then, users are
free to choose among pre-defined threats that may potentially
affect each individual component. Once threats are selected,
they are automatically classified in the STRIDE security-
oriented framework (Spoofing identity, Tampering, Repudia-
tion, Information disclosure, Denial of service and Elevation
of privilege). Then the user can continue with the assessment,
evaluation and posterior mitigation of the risk. We take this
tool as the baseline for the proposal presented in this paper.

B. GeneSIS Modelling Language

Recent work in the ENACT H2020 project [9] defined TSIS
as the next generation IoT systems, capable of performing
distributed processing and coordinated behaviour across IoT,
edge and cloud infrastructures. GeneSIS [8] facilitates the
development and continuous deployment of TSIS, allowing
decentralized processing across heterogeneous IoT, edge, and
cloud infrastructures. GeneSIS includes a domain-specific
modelling language to model the architecture of TSIS as well

4Regulation (EU) 2016/679 of the European Parliament and of the Council
of 27 April 2016 on the protection of natural persons with regard to the
processing of personal data and on the free movement of such data, and
repealing Directive 95/46/EC (General Data Protection Regulation). Official
Journal of the European Union, L119:188, May 2016.

5https://musa-project.eu/node/326
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as the orchestration and deployment. In this paper, we will base
our Risk Management methodology in the GeneSIS domain-
specific modelling. Figure 1 shows a high level description of
the generic elements modelled through GeneSIS.

Fig. 1. GeneSIS concepts [8].

GeneSIS modelling language is an extension of
ThingML [11]. ThingML is a domain specific language
for modelling distributed IoT systems including the behaviour
of the distributed components in a platform-specific or
-independent way. Currently, GeneSIS engine maintains a
list of the generic component types that are available in the
registry, namely FIWARE Orion, Arduino, RFXCom, and
ThingML. For instance, a component written in ThingML will
use the ThingML type. However, GeneSIS is very flexible
and allows any user to create new component types at any
level of abstraction (e.g. “SQL database” or even “Oracle
SQL database”). Any of these types can be modelled as
a subtype of an Internal, an External or an Infrastructure
Component (see Figure 1). Communication channels can be
established between internal and external components and
also between internal components through execution ports.

C. LINDDUN

LINDDUN [26] is a threat modelling methodology that
encourages risk analysts to address privacy risks affecting end-
users of the application or system. This methodology provides
some guidance to identify and categorize threats under a set
of general risks (Linkability, Identifiability, Non-repudiation,
Detectability, Disclosure of information, Unawareness, and
Non-compliance). LINDDUN is sometimes considered the
privacy-oriented alternative to the STRIDE framework. In
fact, LINDDUN threats are described in the so-called LIND-
DUN trees which are explicitly connected to STRIDE threats
trees [22]. We take this link between privacy and security as
the baseline for our proposal in this paper.

Unlike the approach proposed by MUSA Risk Assessment
tool, which grounds its threat modelling on descriptions of
individual components, the LINDDUN methodology requires

to formalize the functionality of the system and their de-
pendencies with respect to personal data. In such sense,
LINDDUN proposed the usage of the Data Flow Diagrams [7].
The notation of a DFD is based upon 4 distinct element types:
(i) an external entity (i.e., end-users or third party services
that are external to the system), (ii) a data flow (explains
data propagation and dependencies between all the functional
components), (iii) a data store (i.e., a passive container of
information) and (iv) a process (i.e., a computation unit).

III. USE CASE MOTIVATION

We devote this subsection to explain the usual scenario we
may find in a software company that offers Trustworthy IoT
solutions. The aim of this section is to provide some context
for the paper rather than characterizing the generic organiza-
tion of TSIS companies, as this would require conducting an
exhaustive and more accurate study.

The scenario discussed is particularly relevant in highly
regulated markets where a company needs to prove they follow
a risk-based approach as required by GDPR or comply with
existing standards such as ISO 27001 for security for instance.
This company needs to gain trust because it is dealing with
data that may be crucial about users (e.g. health data about
remotely monitored patients at home). Content of this section
is based on our experience with our customers.

Companies in highly regulated markets usually have risk
management owners in the organization. The exact role they
play may depend on the type of company and the type of re-
quirements this company may have. For instance, the company
may have a Chief Security Officer (CSO), a Data Protection
Officer (DPO) as requested in some situations by GDPR, etc.
In large organizations, it is common to have risk analysts to
support the risk management process, while in SMEs this is
typically a role played by individuals whose background and
knowledge is not on risk management. Companies that are
truly following DevOps principles, tend to make decisions
around risk in a collegial manner, involving product owners,
risk analysts, developers, operations, etc.

In this context, companies need to face many challenges,
including coping with rapid software evolution, the need to
obtain and keep relevant certificates to gain the trust of their
customers, the need to prepare for any unwanted incident that
may negatively impact their businesses, etc. For this, they need
to prepare internal policies to describe their procedures to
handle risk management. Among these procedures, frequent
meetings are usual where they need to rapidly understand
the status of risks in their projects, as well as, to reshape
or re-prioritize risk plans to better accommodate the current
situation and market. When these needs are crossed with IoT,
proper risk management procedures become even more sig-
nificant. Requirements change frequently, technology evolves
rapidly and, consequently, companies adopt agile software de-
velopment processes. Therefore, continuous risk management
is probably the only effective strategy to ensure that risks are
properly mitigated in long-term development processes.
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Fig. 2. High-level overview of the tasks around risk management that are
relevant in the creation of TSIS.

Figure 2 shows the high-level description of a typical risk
management processes implemented in software companies. A
company may be developing software in the form of a product
or SaaS (e.g. connected to a trustworthy IoT system). Each
product will have a person playing the role of the product
owner, who will supervise the whole development of that
product. Apart from this role, the company will typically have
a risk owner, who owns the risk management process and
strategy. This role may also take the form of a committee, com-
posed of different people playing different roles, and bringing
different perspectives, including Chief Product Officers, Chief
Technology Officers or Chief Operation Officers. Risk owner
will typically start and contribute and monitor the risk manage-
ment process. Engineers may also be involved in this process
including developers and operators, to empower a DevOps
approach. Architects and Product Owners will also be involved
in the risk management process. An efficient risk management
process will help the organization to understand risk level
associated to detected risks and prioritize the implementation
of mitigation actions (or treatments or controls) in the form
of new product features. Finally, risk management owner(s)
needs to report the status of risk management.

In this context, companies lack mechanisms to continuously
monitoring processes. In particular, there is a lack of mech-
anisms to monitor privacy-related issues. They require mech-
anisms to monitor the implementation of related mitigation
actions and the effectiveness of the treatments.

IV. ALIGNMENT WITH STANDARDS AND BEST PRACTICES

While most risk management methodologies presented in
the literature and accepted by the international community
through standards, scientific work or other best practices are
similar, they also differ in some aspects. Following, we analyze
some well-known risk management methodologies or risk
management guidelines proposed in standards, focusing in
particular in those related to privacy issues. In particular, we
explore the following best practices in industry and some
previous related FP7 and H2020 projects:

• Risk management methodologies used in MODAClouds6

6MODAClouds FP7 (Project id: 318484) www.multiclouddevops.com

and MUSA7 (and CORAS methodology implicitly):
MODAClouds risk management methodology has a
strong influence from CORAS, simplified to favour us-
ability. It was later on inherited and refined in MUSA.
We use it as the baseline of our methodology.

• ISO/IEC 29134:2017 : it gives guidelines for: (i) a
process on privacy impact assessments, and (ii) a structure
and content of a Privacy Impact Assessment (PIA) report.
PIAs include a methodology for risk management.

• ISO/IEC 27001:2013 : it specifies the requirements for
establishing, implementing, maintaining and continually
improving an information security management system
within the context of the organization. It also includes
requirements for managing information security risks.

• ISO/IEC 27550 (to be published in 2019) : this standard
complements ISO/IEC 27001:2013 by providing an engi-
neering, privacy-oriented perspective. LINDDUN is men-
tioned as a methodology in this risk-oriented standard.

• ISO 31000:2018 : it provides guidelines on managing
risk. It can be used throughout the life of the any
organization and can be applied to any activity, including
decision-making at all levels. Since it is the most generic
standard to describe risk management activities and it is
agnostic to a particular context, we take it as a general
reference for our methodology.

Fig. 3. Comparison between the methodology followed by the Risk Assess-
ment tool of MUSA (inspired by CORAS) and ISO/IEC 29134:2017.

Figure 3 shows a visual summary of the main steps followed
by the risk management methodology in MUSA and the steps
suggested in ISO/IEC 29134:2017. While the vocabulary is not
identical, the processes are similar, and it is possible to estab-
lish reasonable mappings among them. For instance, in MUSA

7MUSA H2020 (Project id: 644429) www.musa-project.eu
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assets and vulnerabilities are defined and threats are identified
with respect to those. In ISO/IEC 29134:2017, the definition
of assets and vulnerabilities is quite ambiguous, but they put
the emphasis in the description of risk sources. Both define
threats (i.e. unwanted incidents in CORAS) and then risks. In
general, a risk is an unwanted incident which likelihood and
impact have been analyzed. Some methodologies talk about
treatments, while others talk about controls. In general, these
are all different terms to refer to mitigation actions.

V. MODEL-BASED CONTINUOUS RISK MANAGEMENT

In this section, we will present our risk management
methodology, focusing in particular on capturing those aspects
that make the risk management process suitable to enable
continuous risk management on privacy-related issues.

Figure 4 presents a class diagram to model risk manage-
ment concepts to allow to control privacy risks using DFDs.
In particular, we consider each element of a DFD (Entity,
DataFlow, DataStore and Process) a specific asset, following
LINDDUN methodology. This diagram is inspired by the
UML diagram presented by Gupta et al. [12]. We generalize
that UML diagram eliminating the part of the model that was
specific to cloud aspects. We also introduce the idea of a
vulnerability associated to a combination of different assets in
the system. In order to consider vulnerabilities and unwanted
incidents on multiple assets, we propose a new AssetSet
class and link vulnerabilities to this class (in addition to the
link to Asset class). Finally, note that when simplifying the
risk management process is important, the explicit description
of vulnerabilities may be taken into consideration implicitly.
Therefore, an alternative UML diagram could be considered
that connects Asset class with Unwanted Incident class.

In Figure 5, we propose a methodology for risk management
for the creation of TSIS and we indicate the actors involved in
each of those steps. Our methodology, inspired by the previous
analysis, can be summarized in 6 main steps:

• S1: TSIS Assets Definition: first, we edit or load DFDs
representing the functional description of the system. This
DFDs are useful to manage risks related to privacy as
described by LINDDUN, although they were initially
used for security risk control (e.g. in STRIDE). Although

Fig. 4. Class diagram to model risk management concepts using DFDs to
describe system functionality.

Fig. 5. Proposed Model-based Risk Management methodology. Roles: (O)
Risk Management Owner; (P) Product Owner; (A) Architect; (V) Developer
and (R) Risk Analist

DFDs represent our primary assets in the risk manage-
ment process, our proposal entails the use of a second
layer of supporting assets in the form of TSIS archictec-
ture description. Therefore, in S1, GeneSIS Models (or
equivalent architectural models) are also traversed and
components are pre-loaded. This step also includes the
definition of the vulnerabilities related to a component of
an architecture or a subset of components.

• S2: Threats Identification: in this step, users identify
threats that may affect the components in the described
system. These threats are captured as instances of the
Unwanted Incident class in the UML diagram in Figure 4.

• S3: Risk Assessment: risk assessment is composed of
two different steps: risk analysis, where risks are eval-
uated in terms of likelihood and consequence, and risk
evaluation, where risks are accepted, or they are classified
as risks that need to be mitigated.

• S4: Definition of Treatments: mitigation actions are
defined in the form of treatments.

• S5: Residual Risk Assessment: once the mitigation con-
trols are defined, the residual risks need to be reassessed.
This involves again two steps: risk analysis, where like-
lihood and consequence are updated after the application
of the control(s), and risk re-evaluation, where risks are
analysed again, and they are classified as accepted or
further mitigation actions required.

• S6: Treatment Implementation Control: finally, we
add a last step in the methodology that goes beyond
other previous methodologies. In particular, it involves
the monitoring of the effectiveness of the mitigation
actions proposed in the previous step. This step requires
the connection to data collectors or agents that collect
evidences from a monitoring system in order to match
them to treatments and risks. Mapping of DFDs and
architectural models will be the key for this to be possible.
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TABLE I
CONNECTION BETWEEN LINDDUN THREAT CATEGORIES (PRIVACY) AND STRIDE THREAT CATEGORIES (SECURITY).

L I N D D U N

Entity Information Disclosure at data flow
(between user and service)

Data flow Information Disclosure at data flow

Data store
Information Disclosure at data store

Spoofing External Entities
Tampering against authorization process

Tampering with policy
data store

Process

Information Disclosure of a process
Spoofing External Entities

Tampering against authorization process
Tampering threats against persistent storage/process blocks

Information
Disclosure

Note that this methodology is continuous in the sense that
new evidence is continuously collected to challenge previous
knowledge upon which risk-related decisions were made in the
past. While immediate triggering of mitigation actions is not
our main focus, conditional options based on the status of the
system could be included in S4 to strengthen the continuous
approach. Also, the methodology is particularly customized for
TSIS, specifically in S1, where GeneSIS models are used as
the baseline, and S6, where evidences are collected to consider
privacy-related issues, as we show later on in this section.
However, the methodology can be easily adapted to other types
of systems and used generically. This will mainly depend on
the models and the risks and mitigation actions defined.

Model-based Risk Management approach

GDPR establishes a set of duties imposed on the data
processors, controllers and third parties which are aimed at
honoring the corresponding data subjects rights. In GDPR, risk
is explicitly scoped (Rec. 76) with regards to the rights and
freedoms of the data subject. In order to understand whether
these data subject rights and principles (described in GDPR)
are being effectively protected by mitigating existing risks,
current approaches tend to analyze the data flow in the system
(e.g. LINDDUN and DFDs). However, elements in a DFD
tend to be defined at a functional level (e.g. process to collect
profile data from a user or process to merge data from two
existing data sources). In this situation, collecting system data
to monitor a threat related to the identifiability of an entity as
defined by LINDDUN, just to take an example, is not obvious,
if we do not understand the relationship of a data flow in
the application with the architecture of the infrastructure that
we monitor. Without a proper connection of these elements
to architectural levels that can be monitored, continuous risk
management for privacy becomes much more difficult. Most
monitoring tools monitor the infrastructure level. These tools
may monitor system aspects in a data center or a particular
server, tools for network monitoring, etc, and collect metrics.

The main contribution of the approach proposed in this
section is the mapping of TSIS architecture models, such as the
one proposed by GeneSIS, with data flows in the application
under analysis (e.g. DFDs). In S6, we may assume that the
elements from both models have been mapped establishing a
link between the two types of models. Details on this mapping

are provided below. For instance, a NoSQL data store in our
system architecture may be mapped to a data store component
in a DFD. As another example, a particular process element in
a DFD may be mapped to the server the process is running on.
As an alternative, it is possible that the mapping is not pre-
established before starting the risk analysis process. In this
situation, we consider that phase S1 can be extended to allow
the user to establish this mapping manually.

1) Model mappings: in order to drive the mapping between
the architecture model and DFDs, we take as the baseline
the connection between privacy-related threats studied in
LINDDUN and the vulnerabilities that are related to security
aspects of the architecture, as captured by STRIDE. Please
note that LINDDUN defines a connection between threats in
LINDDUN categories and STRIDE threats through their threat
trees catalogs [26]. Table I is a summary of the analysis of the
connection of these LINDDUN and STRIDE threat catalogs.

In Table II, we show a sample of vulnerabilities extracted
from [22] related to the STRIDE threats analyzed in Table I.
The table shows a brief description and some usual mitigation
actions. In the last two columns, we show examples of metrics
that could be used for continuous security monitoring and
what type of architectural components are being monitored.
We would like to remark that this table is not meant to
be an exhaustive list of all the potential threats, but some
examples for illustrative purposes that serve the purpose of
analyzing which DFD components are to be mapped to which
architectural components.

Note that these vulnerabilities are specially relevant in an
IoT context. For instance, let us take the example in Table II
related to Information Disclosure of Data Flow. There may
be different vulnerabilities associated in particular to TSIS.
For instance, if we have a device IoT hub, eavesdropping
or interfering the communication between the device and the
gateway would be a potential threat. You may also find similar
threats in the communication between devices, where data may
be read in transit, tampering with the data or overloading the
device with new connections. Or even with the cloud gateways,
where eavesdropping or communication interference between
devices and gateways may occur.

In general, mappings between architectural models and DFD
will link:

• entities in DFDs with the associated network channels in
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TABLE II
SAMPLE OF THE MAPPING BETWEEN STRIDE THREATS (RELATED TO LINDDUN THREATS IN TABLE I) AND RELATED METRICS THAT CAN BE

DETECTED FROM MONITORING ARCHITECTURAL COMPONENTS.

STRIDE
Threat

STRIDE tree
node [22] Description Key mitigation actions Metrics for continuous

monitoring
Monitored

Components

Spoofing
External
Entities

Transit

An attacker copies an
authenticator from a non-
encrypted channel or tamper
with the connection.

Use standard authentication
protocols, instead of your
own. Use strong encryption
and authentication.

Continuous authenticator
detector warnings (comparing
data in the channel with user
database)

Network /
Communication
Channels

Obtain
credential
from storage
at a 3rd
party

Reuse of passwords is
common. 3rd parties may
leak passwords your
customers use.

Avoid static passwords.
Avoid using e-mail
addresses as usernames.
Detect brute-foce attempts,
or increase in successful
logins from new locations.

Monitoring of number of
brute-force attempts or
successful logins from a new
location or IP. Continuous user
behavior analysis.

Network /
Communication
Channels

Predictable
credentials

Predictable usernames or
a poor random generator
for passwords.

If assigning passwords, use
strong randomness.

Detect usernames sent
matching actual user names in
your internal databases.

Database /
Data store

Information
Disclosure
at Data
Flow

No or Weak
Confidentiality
(Observing a
Message
Structure)

Content of a message not
protected or weakly
protected.

Cryptographic. Use
available message
protection add-ons or
tunneling.

Continuous monitoring message
content readability. Can
we detect some content structure
or detect words with meaning?

Network /
Communication
Channels

No or Weak
Confidentiality
(Observing a
Channel)

No or weak protection of
channel contents. Data
about the messages can
be revealing.

Encrypt the channel.
Tunneling.

Continuous channel monitoring
content readability. Can we get
some structure of the content?
Or detect words with meaning?

Network /
Communication
Channels

Tampering
at Data
Store

Bypassing
protection
rules because
of no or weak
protection

ACLs, permissions, policies,
etc allow people to alter data
without a clear justification.

Ensure data is created with
appropriate permissions.
Change permissions.

Random data editor reporting
the number of successful
attempts to change data with
no or low privileges.

Database /
Data store

Information
Disclosure
of a Process

Timing
Code time execution can
reveal confidential
information.

Design for cryptography
to take constant time.

Monitoring execution time and
control variability.

Software
components
to solve tasks
requiring secrecy.

which entity information is transmitted or data stores in
which the information is stored;

• data flows in DFDs with the corresponding network
channels;

• data stores in DFDs with the corresponding databases or
data stores used in the system architecture; and

• processes in DFDs with the corresponding software
components executing tasks related to those processes,
specially when these tasks entail some level of secrecy.

More formally, we define a set of DFDs, which represent a
functional description of the system, D = {D1, D2, . . . , Dn},
as a set of graphs Di = (DVi, DEi), where DVi =
{e1, . . . , em} are the elements in the DFD representing el-
ements of the system architecture at the functional level. Each
element ei can be an external entity, data store or a process.
DEi = {f1, . . . , fk} represents the data flows connecting
elements in DVi. We define a graph A = {VA, EA} where
VA = {c1, . . . , cm} represent the architectural components at
the technical level represented in a model such as those created
by GeneSIS and EA = {l1, . . . , lk} represents the connections
between any two components (ci, cj) in the system architec-
ture. Note that components can be both software or hardware
components. We define a mapping between the two models
Di and A as a function M : DVi ∪DEi → VA ∪ EA.

2) Exploiting model mappings: once the mapping is estab-
lished, then a final step is necessary to link metrics, such as

those presented as examples in Table II, to the related risks
or mitigation actions defined in S3 and S4. Following the risk
methodology presented above, we will obtain instances for
the rest of classes in the diagram in Figure 4, including risks
and mitigation actions. Once the risk model is developed for
each DFD, we propose two ways to exploit the established
mappings to enable continuous risk management:

• Automatic likelihood recalculation: during risk assess-
ment in S3, an initial likelihood and consequence values
are determined for each risk. However, a basic principle
for continuous risk management is that conditions in our
system may change as time goes by. Let e be an element
in a DFD Di, e ∈ DVi ∪ DEi, considered an asset
in the risk management process. In S3, we define risks
r1, . . . , rj associated to e. Given a system architecture
defined through a model A = {VA, EA}, we define a set
of metrics mc

1, . . . ,m
c
h for each component c ∈ VA∪EA.

Automatic likelihood recalculation involves defining a
function f for each risk r related to each asset e such
that c = M(e) and f(mc

1, . . . ,m
c
h) provides a new value

for the likelihood or risk r. With this, we connect the
metrics defined for the architectural components and use
them to calculate the likelihood of risks connected to
elements of the functional description of a system, in the
corresponding DFD.

• Treatment effectiveness control: a parallel approach to
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enable continuous risk management, involves the defi-
nition of a function g for each r related to an asset
e ∈ DVi ∪DEi such that c = M(e) and g(mc

1, . . . ,m
c
h)

represents a KPI that needs to be satisfied for a risk to be
considered effectively mitigated. If g exceeds a particular
threshold, then a warning needs to be issued for the risk
plan including mitigation actions to be reviewed.

VI. CONCLUSIONS

Handling privacy-related risks is not well understood in
the IoT context. There is a lack of mechanism to collect
meaningful evidences and continuously monitor these risks.
We need to find the intersection between data protection
challenges and the enabling of TSIS. We have presented a first
step towards the enactment of continuous privacy-related risk
control for TSIS, leveraging the link offered by LINDDUN
between privacy and security threat categories and combining
functional and architectural models. As future work, we need
to establish a stronger connection between privacy threat
models like LINDDUN and the actual requirements imposed
by GDPR, as current threat models were devised before GDPR
and they may not fully cover all derived requirements. In par-
ticular, the relationship between data subject rights and GDPR
principles and LINDDUN categories is unclear. Besides, we
need to understand how other privacy-related evidences can
be collected beyond those collected for security purposes. In
particular in TSIS, where complex and distributed systems
increase system weaknesses and the attack surface.
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