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     Abstract 
In Cultural Systems there are many ways to collect and 

distribute problem solving knowledge within social 

networks. Such mechanisms include games, auctions, and 

various voting mechanisms. Here, a new auction 

mechanism, Common Value Auctions, is presented. In this 

paper Common Value Auctions are used to distribute 

problem solving knowledge within a given model of social 

systems. These mechanisms are compared with the other 

distribution mechanisms in the solution of dynamic real-

valued optimization problems.  Specifically, their relative 

abilities to support the robustness and resilience of Cultural 

Systems in environments that vary in their dynamic 

complexity from static to chaotic are assessed. The Cultural 

Algorithms Toolkit (CAT) is used as a vehicle to generate 

real-valued dynamic problem landscapes of varying 

complexities. The results show that using the Common 

Value Auction in CAT4 has significant improvements over 

Weighted Voting methods (CAT2) in terms of both 

robustness and resilience across complexities that range 

from static to chaotic.     

Keywords—cultural algorithm, sustainability, evolutionary 
algorithm, common value auction, robustness, resilience. 

I.  INTRODUCTION 
     Cultural systems provide a framework for human 
existence. One key observation that can be made is that 
certain cultures are more sustainable over time than 
others. Robustness and reliance are key factors behind 
the sustainability of cultural systems. These two 
factors are needed, so the system can handle a wide 
range of inputs/ perturbations while maintaining its 
integrity, structure, and reducing the severity of the 
impact that these perturbations can have on a system.  
Robustness is the property of a complex system to 
withstand the impact of a dynamic change or 
perturbation in its environment. Like a boxer in the 
ring, robustness is the quality of a system to endure a 
series of blows but still continue to function at a certain 
level or above. Resilience on the other hand is the 
ability of the system to adapt to the dynamics of its 

environment so that it can maintain or improve its 
performance over time [1]. 
      A cultural system will devote some of its resources 
to each of these two properties. If too many resources 
are devoted to robustness in the short term, it may 
impact its ability to be resilient in the long term and 
vice versa. So there needs to be a balance between the 
two in order for a system to be sustainable over the 
long term.  

     One key aspect of a Cultural System is how 
information can be distributed throughout its social 
networks in order to support both robustness and 
resilience. In this paper, the impact that various 
knowledge distribution mechanisms in a system will 
have on the systems robustness and resilience will be 
assessed. These mechanisms include voting schemes, 
auctions, games, and pure random processes. They 
will be studied through the lens of a computational 
model of cultural evolution, Cultural Algorithms. 

      In the next section the basic knowledge 
distribution mechanisms currently available for 
Cultural Algorithms are discussed. In section III the 
new knowledge distribution mechanism, Common 
Value Auction, is described. Section IV describes the 
dynamic landscape in which the performance of the 
new mechanism will be assessed. Section V provides 
a description of the experimental framework through 
which the sustainability of the Cultural Algorithm 
systems will be assessed. In the following section the 
performance of Common Value Auctions will be 
assessed in terms of the systems relative sustainability. 
Section VII presents the conclusions and suggestions 
for future work. 
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   II.  KNOWLEDGE DISTRIBUTION 

MECHANISMS IN CULTURAL 

ALGOGRITHMS 

 The Cultural Algorithm (CA) was introduced by 
Reynolds [2] as a computational model of Cultural 
Systems and their Evolution. It has been applied to 
many practical applications since then, one of which 
is: modeling the origins of agriculture in the valley of 
Oaxaca, Mexico [3]. In addition, CAs have been 
applied to concept learning [4], decision trees [5], 
software testing [6] and other hybrid approaches [7].  

 

 

Fig. 1  Cultural Algorithm s framework [3] 

As shown in Figure 1, the CA is a knowledge 
intensive evolutionary framework. First, the 
individuals in the population space are evaluated in 
terms of their performance in a problem space. Next, 
a subset of individuals is selected via the acceptance 
function and their performance is uploaded into the 
Belief Space which is a network of Knowledge 
Sources (KS). After updating the Belief Space 
network, the KS’s can direct the next generation of 
individuals in the population space via the influence 
function. The knowledge sources (KS) utilize a variety 
of distribution mechanisms in order to circulate their 
influences among the individual agents in the 
population space. 

 

Fig. 2. The big picture for all Knowledge Distribution Mechanisms 
that utilize the CA. 

Previous mechanisms have utilized CAs to 
distribute the influence of the KS over the individuals 

in the population space. Fig. 2  shows the different 
knowledge distribution mechanisms. It is important to 
note that the amount of information that a distribution 
algorithm knows about a problem solution the 
fidelity), increases from left to right [8]. 

The first mechanism was called the Marginal 
Value Approach by Peng [9]. Every individual was 
controlled or directed by one KS in each generation.  
Peng in her approach [10], integrated the five KSs in 
the belief space into a single influence function as 
shown in Fig. 3.  Peng used a random process based on 
their relative performance to select a KS to influence 
an individual.  A KS roulette wheel, with proportional 
areas, based on relative performance, allows for an 
informed random selection process.  However, Peng 
did not account for the influence among neighbors of 
a social network. 

 

Fig. 3. Integration of multiple KSs [10] 

Next, Ali and Reynolds [11], [12]  developed a 
majority win approach. In their approach the influence 
of the neighbors is considered when selecting a 
KS.  The social fabric is the connection between the 
individuals in a population. A conflict resolution 
process allows individuals to select the KS by which 
they are influenced, if their neighbors are influenced 
by one or more different ones. First, each individual 
was assigned a direct influence based upon the relative 
performance of the KSs using a roulette wheel as 
suggested above by Peng. Next, Ali used a conflict 
resolution strategy based on majority win in order to 
calculate the controlling knowledge source for each 
individual. They summed up the direct influence of the 
adjacent individuals in the social fabric and those of its 
current neighborhood. After that, the KS with the 
majority of the votes won the influence over this 
individual in that generation of the systems. 

Another approach is the Weighted Majority Win 
proposed by Che [8]. Che used the average fitness of 
each KS to determine how much weight this KS 
deserves in the vote. The key to determining the 
weight for each KS is the average fitness value of the 
individuals that have recently been influenced by the 
knowledge source in the population. Figure 4 gives an 
example of the weighted voting process. The 



 
 

individual, A0, has information about five competing 
KSs. They are represented in the figure as follows: S: 
Situational, D: Domain, H: History, T: Topographical, 
N: Normative. AO: represents the individual. The 
number of votes for each KS is given as x (number of 
votes). For Situational it is x3, or 3 individuals have it 
as a direct influence. The weight along each arc is the 
normalized relative performance for each KS.  

 

Fig. 4. Weighted Majority win in belief space through the social 
network [8] 

In Fig. 4, the winning KS is the Domain KS, even 
though it does not have the most votes (votes=2). 
However, (D) does have the greater weight, which is 
the key factor in the weighted-majority win approach. 
Che has used many network topologies in his system 
including LBest, Square, Hexagon, Octagon, Hex-
decagon, and Gbest. In addition to that he has also 
tested his system on different problem complexity 
levels [13].  As a result, Che concluded that when the 
performance function is of higher fidelity, the 
weighted approach can spread new information faster 
through a population than the majority win approach.  

When the signal strength of information about the 
problem becomes even stronger, the auction approach 
can be effectively employed to find a 
solution.  Kinnaird-Heether and Reynolds’ [14], [15] 
embedded auction mechanisms into a CA. The new 
version was called CAT3.   In CAT3, the production 
of the bidding tokens is the starting point. The process 
starts by producing bidding tokens and uses them to 
form biddings wheels for each KS. These tokens are 
generated by listing all of the individuals that were 
recently influenced by a KS over a given previous time 
window, t.. The individual’s fitness values are the 
bidding tokens and are normalized so that each 
previous result takes up a relative proportion of the 
token bidding wheel. The bid of a KS corresponds to 
the performance associated with the result of spinning 
the bidding wheel. Since the KS’s do not have specific 
common knowledge about the location of the 
individual in the population network, the process must 
be stochastic based upon past performances.  

As with the previous mechanisms the process for a 
generation starts with the assignment of a knowledge 
source to each individual as their direct influence. The 
next step is the selection of the bidders, those KS’s 
who will be participating in the auction, from the KSs 
list. The KS’s compete to influence each individual 
(x). The algorithm currently only allows the 
immediate adjacent neighbors of the individual (x) to 
participate in the auction. The actual auction takes 
place as shown in Fig. 5, where the system requests the 
selected bidders to submit their bidding values. Each 
selected KS will spin its correspondent wheel to get 
the bidding value. Finally, the auction system will 
determine the winner and assign the winner KS to 
influence individual (x) It may take several iterations 
to do so as shown in Fig. 5. 

 

Fig 5. Conducting the Auction [14].      

In the auction mechanisms above the bidders did not 
know anything about the properties of the individuals 
upon which they were making bids. Those properties 
can be the location in the network, the number of 
immediate neighbors, and the strength of their 
connections, what knowledge sources have influenced 
it in the past, among others. In the next section an 
approach, the Common Value Auction, is discussed. 
This approach provides a common set of parameters 
that are available to all bidders. These parameters can 
be used to condition the bids made by the participants.  

III.   THE COMMON VALUE AUCTION    

DISTRIBUTION MECHANISM 
The new mechanism, Common Value Auction 

Toolkit (CAT 4) is an extension of CAT3.  CAT4  
propagates the influence using the Common Value 
knowledge. The Common Value knowledge is a set of 
parameters that every KS can know about the 
individuals in the social network. These include the 
individual’s location in the network and the KS(s) that 



 
 

influenced the individual in the past previous 
approaches.     

The first step is to build the KS wheel (one wheel 
for all KSs), by normalizing the KS average score, 
where every KS will have a wheel’s share that reflects 
its average (score). Each KS will have a portion of the 
wheel that reflects the average performance of those 
individuals who have been influenced by the 
correspondent KS. Next the algorithm assigns a direct 
influencer KS randomly using the roulette wheel 
approach discussed previously to each individual in 
the population. This step is the same as that for all 
other mechanisms discussed so far. 

In the second step each KS constructs a bidding 
strategy wheel that will be used later to determine their 
bidding decision on a specific individual. This is done 
by selecting a subset of recent individual performances 
directed by that KS over a given past time window. A 
wheel is constructed such that each score comprises an 
area that is proportional to its contribution to the total 
score of the subset for the KS. In addition, a set of rules 
is selected to determine whether the KS will bid on an 
individual based upon common value knowledge 
about the location of the individual in the social fabric. 

Next, the direct influence for each individual in the 
population is compared against those of its neighbors, 
here, just the directly adjacent neighbors are used. If 
the direct influence of an individual agrees with those 
of all of its neighbors, its direct influence is then 
chosen to guide it during that generation. Otherwise an 
auction is conducted between those KS’s who directly 
influence that individual and its neighbors. 

In order to do this the bidding strategy for each of 
the competing KSs is checked to see if it will bid on 
that individual based upon the common value 
information. The rule set associated with the KS is 
checked to see if taken together they support a bid on 
the current individual. This “expert system” can 
technically be comprised of many rules. For the 
experiments here, the same one rule is used for all KSs. 
To do so, the following distributing mechanism based 
upon just one subset of common values, the extent to 
which the individual and its neighbors have been 
influence by the KS in the past: 

If KS[j] has influenced individual (i) in the 
past m generation or  

If KS[j] is influencing currently the 
neighbors of individual  

Then increase the bidding value by a bonus       
as shown in the equation below:  

Bidding value= KS’s bidding value + 0.5 
(Boost) (1) 

This is where the Common Value information is 
used to determine the winner. We simply give 

incentive for the KS that influenced the individual in 
the past and for those KSs that were able to influence 
the individual’s neighbors.   

In the fourth step, the influencers that satisfy their 
bidding rules are then chosen to participate in the 
auction. The bidding wheel is spun for each to 
determine their bid. In the experiments conducted here 
each KS had a bidding wheel comprised of a single 
average value for the performance of the selected 
subset in order simplify computations at this stage. 

In the fifth step, the bidding strategy rules that are 
satisfied for a KS are then applied to the bid as shown 
in the rule above to give a final bid for that KS. The 
bids are then compared with each other and the winner 
is selected to control the individual for that generation. 
If there are no bidders, then the direct influencer of the 
individual is retained. This redistribution process is 
then repeated for all individuals in the network. 

Fig 6 covers the big picture of CAT4. First, the KS 
roulette wheel is spun to generate the direct influencer 
for each individual. If one or more of the individual’s 
neighbors possess a different KS then each decides 
whether it wishes to bid for that individual using the 
common value information about individual. The 
selection process is governed by a rule-based expert 
system associated with each KS. The selected KSs 
then participate in the bidding for the auction as 
described above.  

 

Fig. 6. Big picture of CAT4 Algorithms 



 
 

IV. THE DYNAMIC PERFORMANCE ENVIRONMENT: 

THE CONES WORLD 
To analyze the results and test the performance on 

the different levels of complexity, a robust problem 
generator (Cones World) was used in both CAT2 and 
CAT4. The Cones world framework was inspired by 
the work of Morrison and De Jong [16]. This tool has 
the ability to generate dynamic problem environment 
over various landscape complexities. A given cone 
world configuration can be described as follows:             

f(⟨x1,x
2
,…,x

n
⟩)= max

j=1,k
(Hj-Rj∙√∑ (xi-Cj,i)

2n
i=1 )    (1) 

Where: K: the number of the Cones. Hj: the cone 
height, Rj: the cone slope, N: the dimensionality. Cj, i: 
Coordinates of the cone j in dimension i., (Xi, Yi): 
determine the location of the cones on the landscape. 
The values for the cone height, slope, and coordinates 
can be assigned randomly through the problem 
generator or logistic function. However, the values 
would be selected from the ranges below: 

Hj ∈ (Hbase, Hbase +Hrange); Rj ∈ (Rbase, Rbase 
+Rrange); and Cj,i ∈ (-1,1).  

The Max function here is used to handle the 
combination of the cones when they overlap. For 
example, if two cones overlap, the Max function will 
choose the height of the combined cone to be the 
height of the highest cone for the two overlapped 
cones. Fig 7 shows how the landscape looks like with 
the following parameters:  k = 15, Hbase = 1, Hrange 
= 9, Rbase = 8, and Rrange = 12.  To determine the 
dynamic changes of the system Morrison and De Jong 
used the logistics function below:  

Yi = A ∗ Yi−1 ∗ (1 − Yi−1)                               (2) 

A= Constant value, Yi = is value of Y at iteration i.  

 

Fig.7. an Example Landscape In two-dimensional space (n = 2) 
bound by x ∈ (-1.0, 1.0), y ∈ (-1.0, 1.0) with k = 15, H ∈ (1, 20), and 
R ∈ (8, 20) [9]. 

As the value of A increases, the system generates 
more complicated behavior. Figure 8 shows how Y 
will change as a result of A for a sequence of 
landscapes. The x-axis gives the number of 
generations, the z axis gives the A value, and the Y 
axis gives the Y-value produced over the given 
generations for a specific A. Each of the Y trajectories 
is color coded with the A value that produces it. The 
color code is in the legend on the right side of the 
graph. Low values of A produce gradual linear 
changes while high values produce wildly oscillating 
values for Y. In the next section we discuss the 
experimental framework of CAT4. Also, we explain 
how the dynamic environment can affect the learning 
curve of the whole system and consequently the 
produced results. 

 
Fig. 8. The value for Y (on the Y-axis as a function of A (z axis) over 
the number of generations, x axis. The Y curves are color coded with 
A-value that generated them. The color code is on the right. 

V.  DYNAMIC EXPERIMENTAL FRAMEWORK 
In these experiments, the performance of the 

Common Value Auction was compared with the 
Weighted Majority algorithm for three complexity 
levels of A= {1.01, 3.35, and 3.99}. These three A-
Values were selected because they represented a wide 
spectrum of complexities over which to test CAT4 
against. The full list of experimental framework 
parameters are summarized in the table below. The 
types of social fabrics are explained here [17]. 

 

 



 
 

TABLE I.  EXPERIMENTAL FRAMEWORK 
PARAMETERS 

Parameter Name Value 

Complexity Class  1.01, 3.35, and 3.99 

Number of Runs Per 

Complexity 

300 

Number of landscapes 50 

Max. number of generation per 

landscape 

800 

Number of cones 100 

Number of agents 50 

Social fabrics {L-Best, Square, Hexagon,  

Octagon, Sixteengon, Global} 

Max fitness value 20 

Precision of solution 0.001 

  

The key hypothesis to be tested here is whether the 
Common Value Auction mechanism is able to produce 
a more sustainable cultural system than the weighted 
majority voting mechanism. The extent to which this 
is accomplished will be observed in terms of the two 
system’s relative robustness and resilience over the 
course of 40,000 generations for each of the 300 runs 
for the 3 complexity classes. 

Robustness will be assessed in terms of the ability 
of the system to bounce back after each of the 50 
landscape shifts for a given run. The standard 
deviation over the set of 300 runs will provide an 
indicator of the need for each system to bounce back 
from a landscape change. Resilience on the other hand 
will be observed in terms of the extent to which the 
systems are able to adapt to these landscape shifts by 
reducing the time needed to achieve the optimum in 
the next landscape. The systems will then be compared 
in terms of how the complexity of the environment 
impacts their relative sustainability as the 
environmental complexity shifts from static, then to 
cyclic, and finally to chaotic. 

VI.  A COMPARISON OF THE RELATIVE 

SUSTAINABILITY OF THE COMMON VALUE AUCTION 

AND THE MAJORITY WIN KNOWLEDGE 

DISTRIBUTION MECHANISMS 
The main difference between the two algorithms is 

that CAT4 uses information about the individuals 
before the auction starts. The CAT4 algorithm is an 
informative algorithm that provides crucial 
information for the bidders about past behavior of the 
individuals in the population space. This information 
is used to trigger bidding strategies for each of the 
knowledge sources. While many different factors can 

be used to affect bidding strategies, the focus here will 
be in just a single set of factors, the KS previously used 
to influence an individual and its neighbors. The goal 
will be to show that the addition of just this new 
information can make a substantial difference in the 
performance of the cultural system. 

       The first dynamic landscape to be assessed was 
that produced by A=1.0. As seen in the previous 
section, that landscape involves a series of small linear 
shifts in the locations of the cones. Fig. 9 gives the 
standard deviation of the two systems over all three 
environments. For the linear dynamic landscape, the 
two systems each was perturbed by an average of 
around 85 generations for each landscape change. So 
their relative level of robustness is about the same for 
this environment. 

      

 
Fig. 9 CAT4 vs CAT2 standard deviation comparison. 

The relative resilience of each of the two systems 

in the linear landscape is illustrated in Fig. 10 and 11. 

Both systems are able to significantly reduce the 

number of generations needed to find the new 

optimum over time. The CAT4 system was able to 

produce a correlation of (0.662) between the number 

of generations needed to solve the changed landscape 

and landscape number. The corresponding coefficient 

of determination, the percentage of the total variance, 

explained by the correlation is (0.43). CAT2 exhibited 

a coefficient of determination of (0.289). As shown in 

Table II the correlations were significantly different 
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from each other at the (0.05) level of significance. So 

CAT4 was able to do a better job of adapting to the 

changing linear environment than CAT2. 

While CAT4 exhibited a significant level of 
learning within an environment with linear dynamics, 
the next question is how it would adapt to an 
environment in which the changes were non-linear 
from landscape to landscape. A nonlinear shift in cone 
location was produced by the landscape generated for 
A=3.35 as shown in Fig. 8 above. The relative change 
in robustness produced by the shift to a non-linear 
dynamic for the two systems is given in Fig. 12 and 
Fig.13. CAT4 exhibited an approximately 15 
generation increase in terms of its response to a 
perturbation compared to CAT2. That is a significant 
difference in its ability to rebound from a perturbation 
in this environment. On the one hand, a non-linear 
environment required CAT4 to respond more robustly 
than before.  

 
Fig. 10. CAT4 Regression line over 50 runs for complexity A = 1.0 

On the other hand, CAT4 improved on its ability 
to adjust to the change in landscapes as reflected in an 
improved correlation coefficient (0.73) and coefficient 
of determination (54%) as shown in Table II. The 
Weighted Majority system exhibited a much lower 
overall coefficient of determination, (0.17). Again, the 
two systems exhibited a significant difference in 
adaptability over time, but now in a nonlinear 
environment. 

Overall when the environment switched from a 
linear to a non-linear one the CAT4 mechanism 
produced a distinctly more robust and resilient 
behavior than CAT2. The next question is how the two 
systems would adapt to an extremely “chaotic” 
environment that was characterized by the 
superposition of numerous non-linear patterns of 
behavior?  

 

Fig. 11. CAT2 Regression line over 50 runs for complexity A = 1.0 

Since the generating process was deterministic in 
nature, all of the information needed to provide a 
perfect prediction of the environment’s dynamics is 
there, it is just a matter of extracting all of the 
intertwined threads. 
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Fig. 12. CAT4 Regression line over 50 runs for complexity, A=3.35 

As demonstrated in Fig. 14 and 15, the robustness 
of the CAT4 system is still significantly greater than 
that for CAT2. The difference in the number of 
additional generations needed to response to a 
perturbation is now 10. That is down from 15 before, 
but still a significant difference in system robustness. 

In such a chaotic environment learning is less of an 
issue than sustainability. As shown in Table II the two 
systems now exhibit a much lower level of resilience. 
The coefficient of determination for CAT2 is now 
significantly greater than that for CAT4 but notice that 
the relation between the number of generations needed 
to solve the problem is now increasing with increased 
landscape number. The rate of increase is now higher 
for CAT2 than CAT4 which means that its 
performance is more susceptible to degradation in this 

environment. While both system’s behavior is now 
clearly nonlinear, the regression line provides a 
general indicator of the additional stress that is placed 
on each system over time. 

In the first two environments, the systems were not 

only able to survive the perturbations but to adapt to 

them. This produced a strong sense of sustainability. 

Of the two, CAT4 was more able to exploit the 

nonlinear environment. In the chaotic environment the 

theme was less on adaptability but survivability over 

time. Both systems displayed symptoms of stress over 

time. 

 

Fig. 13. CAT2 Regression line over 50 runs for complexity, A = 3.35 
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Fig. 14. CAT4 Regression line over 50 runs for complexity, A = 3.99 

 
Fig. 15. CAT2 Regression line over 50 runs for complexity, A = 3.99  

 

 

TABLE II. COMPARING CAT4 AND CAT2 REGRESSION 
THROUGH DIFFERENT A-VALUES COMPLEXITIES 

 A-

Value 

R CAT4(R2) CAT2(R2) Sig F 

Change 

Static 1.01 0.662 0.438 0.289 0.000 

Periodic 3.35 0.736 0.541 0.170 0.000 

Chaotic  3.99 0.384 0.147 0.212 0.006 

Another way of comparing the two algorithms is to 

compare the standard deviation for average number of 

generation needed to find the solution for given 

problem. The three tables below are showing the 

comparison for the three different complexity values 

{A=.101, 3.35, 3.99}. As showing in Table III, CAT4 

needed less number of generations to find the solution 

for the same number of problems. Except for Octagon 

topology, CAT4 was more efficient than CAT2. 

 

TABLE III: COMPARING THE STANDARD DEVIATION FOR 
CAT2 VS CAT4, A = 1.0 

 

y = 1.4781x + 49.985
R² = 0.1476

0

50

100

150

200

250

300

0 10 20 30 40 50

A
ve

ra
ge

 N
u

m
b

er
 o

f 
G

en
er

at
io

n
s 

N
ee

d
ed

 t
o

 F
in

d
 t

h
e 

O
p

ti
m

u
m

Landscape Number

y = 1.4956x + 50.809
R² = 0.2123

0

50

100

150

200

250

300

-10 10 30 50

A
ve

ra
ge

 N
u

m
b

er
 o

f 
G

en
er

at
io

n
s 

N
ee

d
ed

 t
o

 F
in

d
 t

h
e 

O
p

ti
m

u
m

Landscape Numbers

0

20

40

60

80

100

120

140

160

180

200

A
ve

ra
ge

 n
u

m
b

er
 o

f 
ge

n
er

at
io

n
 n

ee
d

ed
 t

o
 f

in
d

 a
 s

o
lu

ti
o

n

A-Value=1.01

CAT4 Overall STD Dev

CAT2 Overall STD Dev



 
 

When the complexity increases to A=3.35, CAT4 was 

outperformed by CAT2.With the exception of the first 

two topology (L-Best, and Square), CAT2 was more 

efficient. CAT2 needed less number of generations to 

solve the same given problems when compare with 

CAT4. 

TABLE IV: COMPARING THE STANDARD DEVIATION FOR 

CAT2 VS CAT4, A = 3.35 

 

Interestingly for Complexity level A=3.99, When the 

system is in complete chaotic situation, CAT4 

outperform CAT2.  

 

 

 

 

TABLE V: COMPARING THE STANDARD DEVIATION FOR 

CAT2 VS CAT4, A = 3.99 

 

 

VII.  CONCLUSIONS AND FUTURE WORK 
In society, there are many ways to collect and 

distribute problem solving knowledge. Such 
mechanisms include games, auctions, and various 
voting mechanisms. Previous work has focused on 
Independent value auctions. KSs did not have 
knowledge about the individuals on who they were 
bidding and did not have consistent bidding strategies. 
In this paper, Common Value Auctions were 
presented. This framework provided common 
knowledge to all KSs about each individual and 
supported rule based systems that were used to house 
individual KS bidding strategies T 

The experimental results suggest that adding the 
common value auction to the CAs can enhance the 
robustness and the resilience of the algorithm relative 
to the commonly used Weighted Majority vote 
distribution mechanism.  The differences in resilience 
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were significant across a wide range of dynamic 
environments tested, from linear to chaotic. The 
results effectively demonstrate the impact that 
knowledge about social networks can have on the 
sustainability of a Cultural system. 

However, it was clear that as the environment of 
the Cultural Algorithm became increasingly chaotic, 
there was a shift from the need to sustain the culture 
through adaptations to that of survival. The presence 
of additional knowledge in CAT helped in that regard. 
The question remains as to what type of information 
about social networks will be particularly useful in 
guiding complex social systems into even more 
complex global environments. That is the focus of 
future work.  
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