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Abstract

Explainability techniques are important to understanding ma-
chine learning models used in decision critical settings. We
explore how pattern recognition techniques ought to couple
requisite transparency with predictive power. By leveraging
medical data with the task of predicting the onset of sepsis,
we expose the most important features for the model predic-
tion. We uncover how important training points and consen-
sus feature attributions vary over the learning process of these
models. We then pose a counterfactual question to explore
trained predictors in the medical domain.

Overview
As machine learning becomes pervasive, transparency and
intelligibility of underlying machine learning models pre-
cedes adoption of these technologies (Doshi-Velez and Kim
2017; Lipton 2016). Recent machine learning interpretabil-
ity techniques fall under either gradient-based methods that
compute the gradient of the output with respect to the in-
put, treating gradient flow as a saliency map (Shrikumar,
Greenside, and Kundaje 2017; Sundararajan, Taly, and Yan
2017), or perturbation-based methods that approximate a
complex model using a locally additive model, thus ex-
plaining the difference between test output-input pair and
some reference output-input pair (Lundberg and Lee 2017;
Ribeiro, Singh, and Guestrin 2016). While gradient-based
techniques like (Shrikumar, Greenside, and Kundaje 2017)
consider infinitesimal changes to the decision surface and
then take the first-order term in the Taylor expansion as
the additive explanatory model, perturbation-based additive
models consider the difference between an input and ref-
erence vector. There have also been approaches that assign
attributions to features with more complex counterfactuals
than that discussed above for gradients (Kusner et al. 2017;
Datta, Sen, and Zick 2016).

There is also a burgeoning line of research in using
deep learning for medical diagnostics (Choi et al. 2016;
Caruana et al. 2015; Rajkomar et al. 2018). Starting with
tabular data (where each feature is semantically meaning-
ful) from the medical domain (Purushotham et al. 2017),
we fuse the aforementioned interpretability techniques into
these nascent medical diagnostic models.

We note that medical professionals and doctors undergo
rigorous training to learn how to determine the outcome for

a given patient. This training mandates doctors learn how to
proactively search for particular risk predictors upon seeing
a patient; for example, a cardiologist learns to look at past
patients to determine if a patient has a given valve disease.
Doctors are not only trained to identify which attributes of
a patients (vital signs, personal information, family history,
etc.) deem the patient at risk for a particular disease or out-
come, but also develop a intuition from past patients based
on years of experience; for example, if a doctor treats a rare
disease was seen over a decade ago, that patient can be ex-
tremely vital to a doctors diagnosis engine when attributes
alone are uninformative about how to proceed. The doctor
treats the patient from ten years ago as an anchor for fu-
ture patients with similar symptoms. Over time, the doctor
learns a larger set of diagnosis he or she feels comfortable
with diagnosing: this growth of a doctor describes a power-
ful narrative that uncovers how a doctor reasons overtime.

Dataset
The MIMIC-III (Medical Information Mart for Intensive
Care III) is a large electronic health record dataset compro-
mised of health related data of over 40,000 patients who
were admitted to the the critical care units of Beth Israel
Deaconess Medical Center between the years 2001 and 2012
(Johnson et al. 2016). MIMIC-III consists of demograph-
ics, vital sign measurements, lab test results, medications,
procedures, caregiver notes, imaging reports, and mortality
of the ICU patients. Using MIMIC-III dataset, we extracted
seventeen real-valued features deemed critical in the sepsis
diagnosis task as per (Purushotham et al. 2018). These are
the processed features we extracted for every sepsis diag-
nosis (a binary variable indicating the presence of sepsis):
Glasgow Coma Scale, Systolic Blood Pressure, Heart Rate,
Body Temperature, Pao2 / Fio2 ratio, Urine Output, Serum
Urea Nitrogen Level, White Blood Cells Count, Serum Bi-
carbonate Level, Sodium Level, Potassium Level, Bilirubin
Level, Age, Acquired Immunodeficiency Syndrome, Hema-
tologic Malignancy, Metastatic Cancer, Admission Type.

Approach
Once we train a predictor, f , on the aforementioned dataset,
we use the attribution aggregation approach, AVA, proposed
in (Bhatt, Ravikumar, and Moura 2019) to concurrently find



influential patients and the features that were important to
sepsis diagnoses in the test set. First let us introduce some
notation. Let x ∈ Rd be a datapoint’s feature vector where
the xi ∈ R is a specific feature of this datapoint. Let
D = {x(j)}Nj=1 represent the training datapoints, where
D ∈ Rd×N is the entire training set in matrix form with
Di,j = x

(j)
i . Let f be the learned predictor we wish to ex-

plain. Using the tractable approximation derived in (Koh and
Liang 2017), we define the influence weight, ρj of training
point, x(j), on a test point, xtest as:

ρj = Iup,loss(x
(j), xtest) =

d

dε
L(fε,x(j) , xtest)

∣∣
ε=0

Next, we find the feature attribution of xtest via an expla-
nation function g. Suppose we let g be a Shapley Value attri-
bution from classical game theory and from (Lundberg and
Lee 2017), then we find that attribution of the ith feature of
point x is given by the Shapley value, which is the sum of the
contributions to f for the ith feature in all possible subsets
S of the features F given by, where R =

(
|S|!(|F |−|S|−1)!

|F |!

)
:

gi(x) =
∑

S⊆F\{i}

R(fS∪{i}(xS∪{i})− fS(xS))

If we let g be be gradient-based attribution from (Sundarara-
jan, Taly, and Yan 2017), we find that attribution of the ith
feature of point x is given by the gradient of f(x) along the
ith dimension of x with respect to a baseline x̄.

gi(x) = (xi − x̄i)
∫ 1

α=0

∂f(x̄+ α(x− x̄))

∂xi
dα

Using the aggregation methodology from AVA, we aggre-
gate the attributions for past patients (training set) to explain
model predictions for new patients (test set). For a given test
set example, we provide an aggregate feature attribution to
explain why the given prediction was made. Aggregate fea-
ture attribution can be found via the weighted variants of
AVA from the original paper or via rank aggregation tech-
niques like Borda Count and Markov Chain aggregation. We
then provide the most important patient from the previously
seen patients. We find this important patient, ximp, as fol-
lows.

ximp = arg max
x(j)∈D

ρj

We are interested in how over time different training points
become more or less influential to the retrained predictor. To
be concrete, to make a prediction on Day 10, the doctor can
use a patient she saw on Day 5. After ”retraining” her inter-
nal predictor that day, she can now use the patients from Day
10 to explain and predict patients on subsequent days. The
influential anchors in the training data change as a function
of time; therefore, model explanations capture how different
patients serve as anchors based on the exhaustiveness of the
predictor’s training set. We are also interested in understand-
ing how the predictor deals with unknown unknowns that lie
in an uncharted portion of the feature space. The predictor
might not be confident about its predictions in a given re-
gion, but as more training data is added, the predictor may

be able to learn about a particular region unbeknownst to it a
few time steps ago. Note: we do NOT make any assumptions
about the model class of f . We assume black box access to
the predictor we wish to explain.

Experimentation
We first create different candidate feed-forward models to be
explained and then train them on the aforementioned sepsis
data set. We varied the depth of the models from 1 to 3 hid-
den layers, with ReLU or Sigmoid activations, trained with
the ADAM optimizer and cross-entropy loss. To explain the
model, we use SHAP, IG, and various proposed techniques
(WSHAP is the AVA weighted SHAP technique, WIG is the
AVA weighted IG technique, MIG is Markovian aggrega-
tion with IG attribution, MSHAP is Markovian aggregation
with SHAP attribution, BIG is Borda aggregation with IG
attribution, BSHAP is Borda aggregation with SHAP attribu-
tion). We report recall of a decision tree’s gold set averaged
over all the test instances of the sepsis dataset in Table 1, as
done in (Ribeiro, Singh, and Guestrin 2016). For these ex-
periments, we fix k to be five, use the mean values of the
training input as the region of perturbation for SHAP, and
use the aforementioned greedy technique to determine m to
be five. Note random attribution will recall m/d, where d is
the total number of features; for these experiments, random
attribution will have a recall of 13%.

m-Sensitivity
We also run experiments where we analyze how gold set re-
call changes as a function of m, the size of a gold set. If
m = d, then all attribution techniques, including random,
will have 100% recall. In Figure 1, we see that all attribu-
tions (other than random) recall a high percentage of the im-
portant features. As such for all following experiments we
set m to 5.

Expectation over Explanations
We cannot declare the absolute feature attribution for any
arbitrary test point. We therefore aim to see how our meth-
ods perform in expectation by iterating 1000 times to find a
probability distribution over the rank of the explanation al-
gorithms. We used gold set recall to rank every method on
every iteration, keep the ordinal position of each method,
and iterate. For every iteration, we sample 100 points at ran-
dom with replacement: we find explanations for those points
using every single method in question. After 1000 itera-
tions, we can then say with 55% probability weighted ag-
gregation with SHAP attribution yields the best explanation
(in the first position) and with 44% probability Markovian
aggregation with SHAP attribution yields the best explana-
tion. Interestingly, Markovian aggregation with SHAP attri-
bution appears in the top two positions 99.5% of the time,
while weighted aggregation with SHAP attribution appears
only 94.3% of the time. A graph of the distribution for each
method can be found in Figure 2.

For every iteration of every method, we can also keep
track of the position of each feature. This gives us a prob-
ability distribution of rankings for each feature, which gives



MODEL ACCURACY SHAP IG WSHAP WIG BSHAP BIG MSHAP MIG

1-SIGMOID 85.3 60 29 68 37 65 26 67 31
1-RELU 82.8 62 33 69 47 65 37 69 38
2-SIGMOID 86.7 61 34 75 41 73 75 76 40
2-RELU 87.2 55 35 64 35 60 30 62 33
3-SIGMOID 83 64 31 68 41 67 29 71 31
3-RELU 87 55 38 65 48 57 44 64 43

Table 1: Gold set recall on important features from an interpretable classifier to explain models trained on the sepsis dataset

(a)

(b)

Figure 1: m-Sensitivity for the sepsis dataset for different
models trained with the ADAM optimizer (a) recall for 2
Hidden Layer Sigmoid model (b) recall for 2 Hidden Layer
ReLU model

us better insight into how important features are in expecta-
tion. In Figure 3, we find that sofa and sepsis cdc appear in
the top position of importance among all explanations most
often: this is expected because both are highly correlated
with the onset of sepsis. Simultaneously, as a sanity check,
we find the race (e.g. hispanic) does not matter (appears at
a lower rank) in expectation for all explanations; therefore,
the top model learns not to correlate race and sepsis.

Counterfactual Intuition
It is instructive to consider the counterfactual entailed in
temporal explanations. Feature attribution techniques like
(Sundararajan, Taly, and Yan 2017) calculate attribution by
finding the partial derivative of the output with respect to
every input feature (Ancona et al. 2018). One perspective of
this is as a counterfactual of how perturbing the j-th input
infinitesimally would perturb the learnt predictor f . Indeed,
such counterfactual intuition allows humans to intuit about

Figure 2: Representative Distribution of Methods Ranks

Figure 3: Feature rank distribution for race hispanic, sep-
sis cdc, and sofa (left to right)



the impact of a cause by having the baseline be the absence
of the cause: from here, humans can tell the importance of
a cause by seeing how the output changes in the causes’ ab-
sence. Influence functions from (Koh and Liang 2017) con-
sider the counterfactual of how upweighting a training data
point x infinitesimally will affect the loss at a test point xtest.

The counterfactual posed by temporal explanations is as
follows: what training point (past patients) perturbations
which when used to train the predictor (doctor) would influ-
ence the test prediction (current patient) the most. Suppose
we perturb a training point (past patient) as zδ = z + δ, and
we denote the predictor obtained by upweighting substitut-
ing the training data point x by xδ and moreover upweight-
ing this by some constant ε as f̂ε,xδ,−x. Then the counterfac-
tual mentioned above at a test point xtest, would compute:

∇δ
d

dε
L(fε,xδ,−x, xtest)

∣∣
ε=0

∣∣
δ=0

.

We “freeze” the predictor function, since we only have
black box access to the model, and ask: given influential
training points, what would be the change to the frozen and
trained predictor as we perturb those training points. This
counterfactual allows us to create explanations that capture
global patterns in the local neighborhood of the test point:
this allows users to better audit the global trends of a model
whilst still having the fidelity of local explanations. Essen-
tially, we can explore what would happen if a doctor had
seen a different patient at time step t − 1 who would have
expanded the doctor (that is, the predictor’s understanding
of the feature space), would the doctor have made a differ-
ent prediction at time step t? Such an understanding would
not only debug the predictors learned from real data but also
ensure diagnostic models align with doctor intuition.
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