
RatVec: A General Approach for
Low-dimensional Distributed Vector
Representations via Rational Kernels

Eduardo Brito1,2, Bogdan Georgiev1,2, Daniel Domingo-Fernández1,3,4, Charles
Tapley Hoyt1,3,4, and Christian Bauckhage1,2,4

1 Fraunhofer Center for Machine Learning, Germany
eduardo.alfredo.brito.chacon@iais.fraunhofer.de

2 Fraunhofer IAIS, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
3 Fraunhofer SCAI, Schloss Birlinghoven, 53757 Sankt Augustin, Germany
4 B-IT, University of Bonn, Endenicher Allee 19a, 53115 Bonn, Germany

Abstract. We present a general framework, RatVec, for learning vector
representations of non-numeric entities based on domain-specific sim-
ilarity functions interpreted as rational kernels. We show competitive
performance using k -nearest neighbors in the protein family classifica-
tion task and in Dutch spelling correction. To promote re-usability and
extensibility, we have made our code and pre-trained models available at
https://github.com/ratvec.

Keywords: Representation Learning· Kernel Principal Component Anal-
ysis· Bioinformatics· Natural Language Processing

1 Introduction

The success of distributed vector representations in natural language processing
(NLP) tasks has motivated their use for other areas such as biological sequence
analysis [1]. Most of them rely on the distributional hypothesis [8]: ”words that
appear in similar context are similar”. We aim to relax this constraint with a
general framework to learn vector representations of non-numeric entities includ-
ing text, DNA sequences, and protein sequences based on similarity functions
that can be expressed as rational kernels [5]. Supported by the robust theo-
retical framework behind rational kernels, we obtain vector representations via
kernel PCA (KPCA) [11] that, together with a simple k nearest neighbors (kNN)
classifier, constitute an efficient and explainable classification pipeline showing
competitive performance in two different tasks: protein family classification and
Dutch spelling correction.

Copyright c©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 E. Brito et al.

Fig. 1. Visualization of learned vectors for two different protein families using bigram
similarity and a representative vocabulary of 1,000 sequences. A clear separation can
be observed by only using the first three components of the vectors. Best seen in color.

2 Related Work

Our approach extends our previous work on KPCA embeddings, where we studied
vector representations for words and DNA sequences via KPCA replacing the dot
product by a specific similarity function [3]. There are also a myriad of previous
kernel methods for NLP tasks such as text classification [6,10] and named entity
recognition [7]. However, they are either restricted to a specific kernel function
(i.e. to a concept of similarity) or lack in explicit vector representations.

3 Approach

Let X be a dataset consisting of n elements, to which we will further refer as
the full vocabulary ; and k a rational kernel (a particular similarity function).
Computing a kernel matrix K from X may be computationally prohibitive for
large datasets due to its time and space complexity (O(n2)). Hence, we select
only the m elements considered ”most representative” (in a domain-specific for-
mulation) from X to construct our representative vocabulary V and compute a
kernel matrix KV from all element pairs from V . After centering and diagonal-
izing KV, we construct our projection matrix PV . This is required to generate
m-dimensional representations for the full vocabulary. In a last step, we assign
the first d ≤ m components of each computed vector to each full vocabulary
element. There are the resulting d-dimensional vector representations obtained
with our approach. When k is suitable for the task, d being of a lower order of
magnitude than m can lead to optimal results, as we will see in Section 4.1. The
choice of m can be adjusted to fit the computational resources of the user.

The produced representations tend to cluster naturally according to the
domain-specific concept of similarity applied by the selected rational kernel, as
we can see in Fig. 1. This has two main advantages:

1. A simple kNN classifier (eventually 1NN) can suffice for classification tasks.
2. Learning the vector representations and kNN constitute an explainable clas-

sification pipeline: an entity is assigned to a particular class because it is
similar to the labeled entities used to train the classifier.



RatVec 3

Table 1. Accuracy of RatVec in different subdatasets compared to BioVec [1]

Dataset BioVec (baseline) RatVec (bigram sim.) RatVec (trigram sim.)

Top 1,000 families 0.94 0.94 0.91
Top 2,000 families 0.93 0.93 0.91
Top 3,000 families 0.92 0.93 0.91
Top 4,000 families 0.91 0.93 0.91
All families 0.93 0.93 0.91

Table 2. Accuracy of BioVec representations with a SVM [1] and a kNN classifier

Top 1000 families Top 2000 families Top 3000 families Top 4000 families All families
SVM 1NN SVM 1NN SVM 1NN SVM 1NN SVM 1NN

0.94 0.94 0.93 0.94 0.92 0.93 0.91 0.93 0.93 0.93

4 Experimental Results

4.1 Protein Family Classification

In this task, we classify protein sequences to their corresponding families with the
same Swiss-Prot dataset as in [1], containing 7,027 protein families and 324,018
protein sequences5. The system is evaluated for each protein family by 10-fold
cross-validation on a balanced dataset consisting of all amino acid sequences of
the family and as many randomly sampled sequences from all other families.

We produced protein representations with 25 dimensions applying our ap-
proach with bigram and trigram similarity and trained a nearest neighbor clas-
sifier (1NN). We generated our representative vocabulary by taking the shortest
sequence of the 1,000 most frequent protein families. We evaluated this pipeline
in the same setting as [1]. We report the weighted average accuracy results in Ta-
ble 1. Also, the results of the evaluation limited to subsets of the full dataset are
presented (e.g. sequences belonging to the 1,000 most frequent protein families).

The results from Table 1 show that our approach with the bigram similarity
reaches the same accuracy as the baseline and or even outperforms it when we
restrict the dataset to the first 3,000 or 4,000 most frequent protein families.
Considering that the reported BioVec representations are four times longer than
ours, our approach to encode proteins seems to be more efficient.

In contrast to [1], we do not train any support-vector machine (SVM) but
a 1NN classifier. To assess the impact of the different classification algorithm,
we evaluated a pretrained BioVec model 6 with our setup. The results (Table
2), showing that 1NN is more suitable than SVMs for this task, are in line
with our previous experiments on classification tasks using distributed vector
representations, where simple algorithms such as kNN and logistic regression
outperform more complex ones such as random forests or neural networks [3,4].

5 http://dx.doi.org/10.7910/DVN/JMFHTN
6 https://github.com/kyu999/biovec



4 E. Brito et al.

Table 3. Results of our system compared to Valkuil (CLIN28 shared task baseline) in
terms of successful corrections (TP), wrong corrections (FN), and accuracy [2]a.

Capitaliz. Non-word Red. punct Mis. punct Archaic Total
(165 errors) (62 errors) (53 errors) (18 errors) (5 errors) (303 errors)

System TP FN Acc. TP FN Acc. TP FN Acc. TP FN Acc. TP FN Acc. TP FN Acc.

Valkuil 0 0 - 21 0 1.0 0 3 0.0 1 0 1.0 0 0 - 22 3 0.88
RatVec 105 12 0.90 24 15 0.62 8 5 0.62 3 3 0.50 1 0 1.0 141 35 0.80
a https://github.com/LanguageMachines/CLIN28 ST spelling correction

4.2 Dutch Spelling Correction

We also evaluated our approach by participating in the CLIN28 shared task,
where our system obtained the best F1 score among the competing teams [2]. The
task focused on correcting errors in extracts from Dutch Wikipedia pages. We
used an older implementation of our approach that we keep for reproducibility7.

Spell checkers involve two steps: misspelling detection and correction. The
latter generally requires ranking a set of correction candidates. Generating them
implies finding all valid words differing from the detected misspelling less than a
determined edit distance, which is mostly set to 1 for real-world applications to
limit computation time [12]. We avoid this strong constraint with our approach.

In our RatVec framework, our full vocabulary is wdutch, a word list from the
OpenTaal project, from which the 3000 most frequent words form our represen-
tative vocabulary. The applied rational kernel is the composition of the bigram
similarity [9] with the homogeneous polynomial kernel of degree 2. We generated
a vector representation for each full vocabulary word with 2000 dimensions.

Once a misspelling is detected, we compute its RatVec representation and
search for the closest precomputed vector. Its related word (its nearest neighbor)
is our correction to the misspelling. Formally, this is equivalent to training a 1NN
classifier where each valid word is assigned a different label.

Our RatVec framework is only relevant during the correction phase for spelling
mistakes that are related to the word form. Hence, we restrict our analysis to
the correction results on the five error categories where the word form is rele-
vant, namely those displayed in Table 3. Although the baseline system Valkuil
achieves a better average accuracy than our approach for the analyzed mis-
spellings, RatVec outperforms Valkuil in some categories where it completely
fails (redundant punctuation errors) or where it cannot be even evaluated be-
cause it failed to detect any error (capitalization and archaic spelling errors).
From these results, we interpret that our word vectors encode word forms in a
suitable way so that similar words can be retrieved.

5 Conclusion and Future Work

We showed that our approach involving rational kernels on KPCA for vector
space embeddings provides rich representations for two different kinds of en-

7 https://github.com/fraunhofer-iais/kpca embeddings



RatVec 5

tities: proteins and words. In the first application, we presented how to learn
protein vectors from amino acid sequences and how to apply them to predict
their protein family. In the second, we learned word representations that encode
word form information so that they can be applied to correct misspellings once
these are detected. In both tasks, our results are comparable to state-of-the-art
approaches. Thanks to the simplicity of kNN classifiers and the interpretable
similarity concept we apply to generate the vector representations, our approach
may be advantageous for some real-world applications compared to more com-
plex machine learning models such as deep neural networks.

In future work, we will explore possibilities of learning optimal similarity
metrics (modeled as transducers) that, incorporated in our presented approach,
solve a particular task.

References

1. Asgari, E., Mofrad, M.R.: Continuous distributed representation of biological se-
quences for deep proteomics and genomics. PloS one 10(11), e0141287 (2015)

2. Beeksma, M., van Gompel, M., Kunneman, F., Onrust, L., Regnerus, B., Vinke,
D., Brito, E., Bauckhage, C., Sifa, R.: Detecting and correcting spelling errors in
high-quality dutch wikipedia text. Computational Linguistics in the Netherlands
Journal 8, 122–137 (2018)

3. Brito, E., Sifa, R., Bauckhage, C.: KPCA embeddings: an unsupervised approach
to learn vector representations of finite domain sequences. In: LWDA. pp. 87–96
(2017)

4. Brito, E., Sifa, R., Cvejoski, K., Ojeda, C., Bauckhage, C.: Towards German word
embeddings: A use case with predictive sentiment analysis. In: Data Science–
Analytics and Applications, pp. 59–62. Springer (2017)

5. Cortes, C., Haffner, P., Mohri, M.: Rational kernels: Theory and algorithms. Jour-
nal of Machine Learning Research 5, 1035–1062 (Dec 2004)

6. Cristianini, N., Shawe-Taylor, J., Lodhi, H.: Latent semantic kernels. Journal of
Intelligent Information Systems 18(2-3), 127–152 (2002)

7. Giuliano, C.: Fine-grained classification of named entities exploiting latent seman-
tic kernels. In: Proceedings of the Thirteenth Conference on Computational Nat-
ural Language Learning. pp. 201–209. Association for Computational Linguistics
(2009)

8. Harris, Z.S.: Distributional structure. Word 10(2-3), 146–162 (1954)
9. Kondrak, G.: N-gram similarity and distance. In: Int. Symp. on String Processing

and Information Retrieval. pp. 115–126. Springer (2005)
10. Lodhi, H., Saunders, C., Shawe-Taylor, J., Cristianini, N., Watkins, C.: Text clas-

sification using string kernels. Journal of Machine Learning Research 2(Feb), 419–
444 (2002)

11. Schölkopf, B., Smola, A., Müller, K.R.: Kernel principal component analysis. In:
International conference on artificial neural networks. pp. 583–588. Springer (1997)

12. Tijhuis, L.: Context-based spelling correction for the Dutch language: Applied on
spelling errors extracted from the Dutch wikipedia revision history (2014)


