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Abstract. While probabilistic models such as Markov random fields can
be highly beneficial for spatio-temporal data, they often suffer from over-
fitting and have limited use in memory-constrained systems. We present
a novel method to compress trained models based on temporal parameter
sharing, which reduces redundancies in the parameters.
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1 Introduction

Our world is constantly changing, and machine learning provides certain insight
into these interesting procedures. Capturing states of a process at different spa-
tial sites results in spatio-temporal datasets, and creates demand for accordingly
tailored and theoretically well-based methods.

Spatio-temporal random field (STRF) models, an extension of the widely in-
vestigated Markov random fields (MRFs), allow to further analyze such processes
with undirected graphical models. STRFs have been experimentally used in traf-
fic routing [2] and network communication [4]. Moreover their use in resource-
constrained environments has been extensively explored [6]. Possibly the biggest
problem of STRFs is the high number of parameters, which increases quadrat-
ically with the data complexity [9,6]. In practice this often limits the model
usability in terms of runtime and storage, and also makes them prone to overfit-
ting. We therefore propose a novel approach to counter these issues by compress-
ing previously trained STRFs. Our method uses parameter sharing, hence the
compression does neither alter the data nor the underlying graphical structure.

Parameter sharing based on quantization was recently used for hard param-
eter tying in MRF training [1], which also tackled the problem of overfitting and
results in less complex models. Our approach is similar, however we use a dif-
ferent quantization based on the spatio-temporal structure of the MRF. Similar
methods have also been established for neural networks [10], with the aim of
reducing the complexity.

Copyright ©2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).
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2 Methodology

Spatio-Temporal Models A MRF represents a process in form of a mul-
tivariate random variable X = (X1,X2, . . . ,Xn), with dependencies between
components being represented via the conditional independence structure (CIS)
G = (V,E). The concept of exponential families [9] allows parametrization via
the edges of G, and optimal parameters can be determined with maximum like-
lihood estimation based on available process data. They resulting model can be
queried to predict the most likely values for unobserved components of a partially
given process state, i.e. to solve the conditional maximum a posteriori problem.

The STRF approach [7] extends the MRF framework for spatio-temporal use
cases. STRF models are based on a spatial CIS G0, which is replicated T times,
i.e. the process is modeled for T different times. The replicas Gt are connected
with temporal edges, the final model has temporal edges for each node and spatial
edge. Such a structure allows temporal reparametrization for compressing and
regularizing the parameters [6]. Our compression approach exploits the temporal
dimension of STRFs further by merging parameters at different spatial sites.

The parameters of any STRF can be subdivided into spatial and temporal
parameter groups, if the replica nodes in G share the same state space. The
temporal edges are then represented by parameters θtemp(vi, vj , t) ∈ Θ which
describe temporal transitions from t to t+1 between replicas of nodes vi, vj ∈ V0.
Each parameter θspat(vi, vj , t) ∈ Θ of a spatial edge describes a state transition
between replicas of vi, vj ∈ V0 at time 1 ≤ t ≤ T . Accordingly each parameter
belongs to a set of parameters Θtemp(vi, vj) or Θspat(vi, vj), which describe the
same transition at different temporal sections of the model. This understanding
is exemplary displayed in Figure 1. We call each set Θspat(vi, vj) or Θtemp(vi, vj)
a parameter series. We denote the number of different parameter series in the
model with st = |Θtemp| and ss = |Θspat|.

Compression of parameter series In most models the parameter series at
different spatial sections will probably show analogies and thus redundancies.
As an example, a street network model might represent crossings which behave
similarly over time. We therefore propose to quantize the set of parameter series,
meaning that each series Θspat(vi, vj) or Θtemp(vi, vj) is replaced by a specified

centroid Θ̃spat(vi, vj) or Θ̃temp(vi, vj). As parameter series are essentially T -
or (T − 1)-dimensional vectors, vector quantization methods such as k-means
clustering [3] can be easily applied for finding good centroids. In a compressed
model, several parameter series share the values of the corresponding centroid
series, hence we name it parameter series cluster sharing (PSCS) compression.

The compression rate r determines the number of temporal and spatial clus-
ter centroids ct and cs that need to be found, depending on the number of original
series r = st+ss

ct+cs
. The space savings s can be computed with s = 1− ct+cs

st+ss
As an

example, a model with st = 1024 different temporal parameter series and no spa-
tial parameters, which are being replaced by ct = 128 clustered centroids, would
be compressed with r = 1024/128 = 8, i.e. a rate of 8:1, 1− (128/1024) = 87.5%
of its original memory space could be saved.
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Fig. 1. Example for a STRF G with spatial graph G0 and T = 3, whose parameters
can be interpreted as parameter series (diagonal edges are not shown).

It is important to understand that our approach does not modify the CIS,
as compression only affects the parameters. This allows nodes in the model to
behave similarly, but does not enforce them to act totally equal. PSCS drastically
decreases memory requirements and thus facilitates the resource-constrained use
of STRFs. It also generalizes the model, which might alleviate overfitting.

3 Experiments

Experimental Settings We chose the INSIGHT Dublin city data for our ex-
periments [5,6]. It was collected in 2013 from Sydney Coordinated Adaptive
Traffic System (SCATS) traffic sensors in Dublin, Ireland. Figure 2 depicts the
placement of sensors in the street network of the city. The dataset features dis-
cretized speed measurements of 2367 SCATS sensors for N = 134 full days, with
T = 12 measurements per day (every two hours). The spatial data dependen-
cies are approximated with help of the Chow-Liu algorithm, i.e. G0 is a tree
with 2366 edges. The resulting STRF structure contains 12 · 2366 spatial and
11 · (2366 · 2 + 2367) temporal edges.

An extensive framework for probabilistic computations with belief propaga-
tion and gradient descent allowed us to work with STRF models1, we slightly
adadapted it to extract the parameter series. Python scripts were run to cluster
the series with scikit-learn’s MiniBatchKMeans implementation2 [8] (the value
k is given by ct and cs).

1 https://randomfields.org/px
2 https://scikit-learn.org/

https://randomfields.org/px
https://scikit-learn.org/
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Table 1. Quantitative results of compressed models at different compression rates

Rate |Θspat| |Θtemp| Savings A1 (± SD) A2 (± SD) A3 (± SD)

1:1 27796 84157 0% 77.46% (± 0.69) 52.79% (± 2.61) 77.54% (± 0.61)

1.25:1 22236 67324 20% 76.18% (± 0.64) 54.20% (± 1.86) 76.30% (± 0.62)

1.67:1 16677 50493 40% 76.24% (± 0.68) 54.14% (± 2.07) 76.26% (± 0.61)

2.5:1 11118 33662 60% 76.21% (± 0.67) 54.14% (± 2.24) 76.28% (± 0.62)

5:1 5559 16831 80% 76.28% (± 0.64) 53.79% (± 2.41) 76.32% (± 0.60)

100:1 277 841 99% 63.86% (± 0.21) 52.11% (± 0.52) 63.86% (± 0.26)

We prepared a 5-fold cross validation, i.e. 20% of the full data was used for
testing in each split, providing averaged results and standard deviation (SD). As
our experiment dataset is fully observed, we artificially concealed 50% of the test
data. The STRF is used to predict the most likely values based on the remaining
observations, and comparison with the originally measurements allows us to
compute the prediction accuracy. We came up with three realistic scenarios why
measurements might be missing: some SCATS sensors break down on single days
(A1), only the beginning of the days are recorded (i.e. future prognosis) (A2),
or all traffic sensors have random malfunctions (A3). Accordingly we prepared
three different versions of the test data, and obtain the accuracy values A1-A3.

Fig. 2. Placement of traffic sensors.

Experimental Results We used
PSCS for compressing the models to
80, 60, 40, 20, and 1% of their origi-
nal size. The quality of the compressed
models in terms of the prediction ac-
curacy is shown in Table 1.

First thing to notice is that our fu-
ture prognosis scenario (A2) has a sig-
nificantly lower accuracy, for which the
lack of local information is the most
plausible explanation. Predicting data
for full break down of some sensors
scores a similar accuracy (A1) to pre-
dicting randomly missing data (A1).
Probably the local spatial information

is more important for predictions then temporally available data.
As expected A1 and A3 decrease with firmer compression (i.e. higher value

of r), however the performance only significantly drops after a rate of 5:1. In
the second scenario (A2) a compression is even able to increase the prediction
accuracy, which might indicate that the original model slightly outfitted the
training data. One can also see that compression increases the robustness of the
model, as the SD is decreases with strong compression.
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4 Conclusion

Our novel PSCS approach allows to compress spatio-temporal Markov models.
The method eliminates parameter redundancies in the STRF, without affecting
the CIS. Our experiments show that even drastically compressed models still
perform well and are even able to outperform the original model, while requiring
way less memory storage.

PSCS also holds potential for future work, which we want to shortly discuss
here. Firstly one could incorporate a-priori knowledge of cluster assignments
into the training routine. With adding a regularizing term one could enforce a
soft temporal parameter series tying. By only training the centroid values (i.e.
parameter sharing instead of regularization) it would also be possible to establish
a hard tying of parameter series, which reduces the complexity during training.
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