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Abstract. The success of AI-based technologies depends crucially on
trustful and clean data. Research in data cleaning has provided a variety
of approaches to address different data quality problems. Most of them
require some prior knowledge about the dataset in order to select and
configure the approach correctly. We argue that for unknown datasets,
it is unrealistic to know the data quality problems upfront and to for-
mulate all necessary quality constraints in one shot. Pragmatically, the
user solves data quality problems by implementing an iterative cleaning
process. This incremental approach poses the challenge of identifying the
right sequence of cleaning routines and their configurations. In this paper,
we highlight our work in progress towards building a cleaning workflow
orchestrator that learns from cleaning tasks in the past and proposes
promising cleaning workflows for a new dataset. To this end, we high-
light new approaches for selecting the most promising error detection
routines, aggregating their outputs, and explaining the final results.

Keywords: Data Cleaning Workflows · Machine Learning · Data Pro-
filing.

1 Data Cleaning: The Usage Gaps

Deriving value from AI- and machine learning-based technologies crucially de-
pends on the quality of the underlying data [17]. Research in data cleaning
has provided a variety of tools and approaches to address different data qual-
ity problems [6, 22, 11, 32, 18]. Nevertheless, in real-world applications, human
agents utilize handcrafted scripts to curate their datasets [28, 11]. Underlying
problems that impede the application of thoroughly researched cleaning algo-
rithms are as follows:

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0).



2 M. Mahdavi et al.

No one-size-fits-all solution. Research on data cleaning solves well-defined
data quality problems that often do not generalize to all problems of a real-
world dataset. In particular, data quality problems are exposed with regard
to a specific context, such as rules, dictionaries, patterns, and distributions.
Current solutions only focus on only one of the contexts above [1].

Iterative data cleaning. Oftentimes, one has to perform multiple rounds of
cleaning and wrangling until the data reaches a satisfactory state [27]. More-
over, some data quality problems are hidden in a way that they can only
be exposed after some iterations of certain cleaning or transformation pro-
cedures. For example, missing value imputation facilitates the discovery of
outliers in a dataset [8].

Trial-and-error parametrization. Current techniques require user-defined
algorithm parameters, such as rules or thresholds, which are not straightfor-
ward to select by a data practitioner [26]. Often, the user has to figure these
parameters out during a trial-and-error process that adds more cycles to the
iterative process of data cleaning.

In this paper, we report on the conducted research and the ongoing work
towards a framework that leverages machine learning and data profiling tech-
niques to build a cleaning workflow orchestrator for a dataset. In particular, we
are working towards a solution that

– uses similarities of current cleaning tasks with previous cleaning tasks to
assess the possible gain of a certain tool on a new dataset (Section 2.1).

– enables users to aggregate the results of stand-alone cleaning strategies in a
holistic manner (Section 2.2).

– featurizes data values to better explain the context of a data error and en-
able an active learning approach to sample more promising data values for
labeling (Section 2.3).

Next, we will describe the overall architecture of our vision and shed light on
some of our intermediate results, some of which have been already published [29,
15, 16].

2 Machine Learning-Driven Cleaning Pipelines

We consider a data science use case where data analytics and data preparation
are carried out on a frequent basis, accumulating a history of data cleaning tasks
from the past that can be logged for later analysis [13]. Furthermore, we assume
that the data scientists are in possession of multiple cleaning algorithms or rou-
tines. While in our experiments, we are considering off-the-shelf data cleaning
prototypes from research, any sort of custom cleaning script can be considered
as an individual cleaning solution or algorithm.

Figure 1 illustrates the overall architecture of the proposed system. The first
task is to identify metadata that describes the quality problems of a dataset.
Thus, given a new dataset, the Dataset Profiler component creates a profile
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Fig. 1. Generation of data cleaning workflows includes three main steps: (1) profiling
data, (2) detecting errors by identifying the most promising tools and aggregating
them, and (3) generating dataset-specific cleaning workflows.

by extracting relevant metadata (Step 1). This profile summarizes the content,
structure, and the dirtiness of the dataset into statistics and distributions. The
Error Detection Engine leverages the metadata to compare the similarity of the
new dataset to the previously cleaned datasets in the Workflow Repository (Step
2). The Tool Selector uses this metadata to identify the most promising error
detection strategies, whose estimated performance is high enough. We will detail
this step in Section 2.1. The Error Detection Engine then runs the promising
error detection strategies on the new dataset to identify potential data quality
problems. The profile of the new dataset is then enriched by adding information
related to the strategies’ output, such as the output size. Based on the enriched
profile of the data, the set of potential cleaning algorithms can be refined. Fur-
thermore, the Tool Aggregator uses the enriched dataset profile to aggregate the
output of the promising error detection strategies into one final output. We will
detail this step in Section 2.2. The User is involved in the process once the initial
profiling and detection phase is over. The first task of the user is to annotate a
sample of the detected errors. Leveraging a feature representation that describes
each data cell, our machine learning approach propagates the user labels to other
similar data values with a similar set of feature values. The generated metadata,
the error detection results, and the annotations will be used by the Orchestrator
to generate a dataset-specific cleaning workflow (Step 3). Currently, we focus on
workflows as sequences of cleaning routines. More complex control flow elements,
such as branches, are future work. Finally, the executed cleaning workflow can
be stored in the workflow repository. In the following, we discuss insights that
we have gained so far working on this project.
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2.1 Configuration-Free Tool Selection

Existing data cleaning solutions are usually tailored towards one specific type
of data errors, such as outliers, syntactic pattern violations, or missing values.
However, cleaning the dataset might require a combination of such solutions [1].
Although the number of available data cleaning routines is limited, there is a vast
space of possible configurations for each algorithm. To address this challenge, we
propose an automated approach for configuring the error detection algorithms
and estimating their F1 score on a new dataset [15].

To select the proper set of cleaning routines, we use the similarity between
the current task and previous data cleaning tasks. For a dataset at hand, we
need to select cleaning routines that have successfully cleaned similar datasets
in the past. The key challenge here is to define a similarity metric that encodes
the data quality of datasets.

We have created a dirtiness profile based on data profiling features [2].
These features cover content-describing metadata, such as value distribution,
and structure-describing metadata, such as character distribution [15]. We com-
pare the similarity of datasets through these metadata to filter out irrelevant
error detection algorithms and configurations that had poor accuracy on the
previous similar datasets [15]. Next, we run the selected error detection routines
on the new dataset to compute the second group of metadata that are based on
the output of the error detection routines. The raw output of a tool on a dataset
harbors relevant information, such as the output size and its overlap with the
output of other tools. The dirtiness profile of the dataset will be enriched with
these metadata as well. Finally, the regression models estimate the F1 score of
the selected error detection routines based on the similarity of the final dirtiness
profile of the dataset to the previous datasets.

To anecdotally show that the approach is promising, we evaluate our perfor-
mance estimator on 11 diverse datasets: Hospital [25], Flights [25], Rayyan [20],
IT [1], Beers [10] are our real-world datasets that have been cleaned manu-
ally, and Salaries [29], Address [1], Movies [7], Restaurants [7], Soccer [3], and
Tax [3] are our synthetic datasets. We also have 15 error detection strategies
generated by configuring 7 entirely different error detection tools: NADEEF [6],
OpenRefine [28], and KATARA [5] are our rule, pattern, and knowledge base
violation detection systems, respectively, and Histogram, Gaussian, Gaussian
Mixture, and Partitioned Histogram Modeling are our outlier detection strate-
gies [22]. We apply the leave-one-out methodology to evaluate our approach.
Each time, we consider one of the datasets as the new arriving dataset and the
rest of datasets as the historical training datasets. So, our performance estimator
trains regression models to learn the relationships between profile components
and F1 scores of all 15 error detection strategies and estimates the corresponding
F1 score for the new dataset. Our prototype is available online3.

Figure 2 shows the results of our experiments. We use mean squared error
(MSE) to evaluate the quality of the estimated performance of these strategies.

3 https://github.com/bigdama/reds



Towards Automated Data Cleaning Workflows 5

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7
·10−2

Number of Training Dirtiness Profiles

M
ea

n
S

q
u

ar
ed

E
rr

or

(a) Repository Size

0 1 2 3 4 5
0

1

2

3

4

5

6

7
·10−2

Sampling Rate (%)

M
ea

n
S

q
u

ar
ed

E
rr

or

Precision-Based Ordering [1]
Our Unsupervised Estimator

(b) Required User Labels

Fig. 2. MSE in estimating the F1 score of error detection algorithms. (a) The MSE
decreases with the size of the cleaning workflow repository. (b) Our unsupervised per-
formance estimator approach predicts the F1 score of the algorithms more accurately
than the semi-supervised baseline [1].

The first experiment (a) shows how the number of existing training datasets
within the repository influences the estimation accuracy of our proposed solu-
tion. Each point in the graph reports the average mean and standard deviation of
5 independent runs on estimating the performance of each of the 15 tools. As de-
picted, the MSE significantly decreases with the size of the workflow repository.
The second experiment (b) shows that our unsupervised performance estimator
approach provides more accurate estimations than the precision-based ordering
approach [1] that requires additional user labels.

The described approach required manual configuration of each tool per
dataset. In fact, it is possible to relieve the user also from the configuration
task using our dirtiness profile-based approach. Our novel system Raha [16] first
generates a range of possible configurations for each tool independent of the
dataset. Based on the similarity of the new dataset to historical datasets, Raha
filters out irrelevant error detection strategies for each column of the new dataset
at hand.

2.2 Aggregating Error Detection Results

Although the prevalence of specific error types suggests a ranking of error detec-
tion algorithms for a dataset at hand, we cannot limit the error detection effort
to only running one single approach [27]. Having access to various data clean-
ing solutions implicates an effective aggregation of the error detection results,
which we consider as a classification problem [29]. To holistically combine er-
ror detection methods, we use state-of-the-art ensemble learning algorithms [34]
while leveraging the dataset’s metadata. We train an error detection classifier
by creating a feature representation based on the error detection results from
the different data cleaning systems and additional metadata [29].

We use the ensemble learning method stacking [31] to learn the error classifi-
cation model. Stacking is an approach for training a meta-learner by combining
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Algorithms P R F1

Wrangler [11] 0.41 0.14 0.21
Nadeef (Dedup) [6] 0.32 0.11 0.17

Individual
Cleaning Strategies

Outlier detection (Histograms) [22] 0.28 0.01 0.02

Outlier detection (Gaussian) [22] 0.32 0.18 0.23
Nadeef (FD) [6] 0.52 0.18 0.27

Majority wins 0.59 0.02 0.03
Aggregators Union all 0.37 0.47 0.42

Precision-based ordering (with δ=0.1) [1] 0.36 0.46 0.40

Our Approach Stacking with metadata 0.56 0.91 0.69

Table 1. Precision (P), Recall (R), and F1 scores of individual error detection algo-
rithms and aggregators on the Address dataset. The Stacking approach exposes the
benefits of accumulating metadata into the aggregation of individual cleaning strate-
gies: our approach achieves 0.91 Recall as a result of augmenting the systems results
with the datasets metadata.

multiple first-level models for error detection. The main idea is to train the first-
level learners on the same training dataset, and then generate a new training
dataset for the meta-learner. The outputs of the first-level learners constitute
the input for training the meta-learning model. In our initial prototype, we train
three different first-level classifiers on the same feature vector: a neural network
with one hidden layer, a decision tree, and a naive Bayes classifier. Each of these
models classifies dataset cells as erroneous or correct. The meta-classifier, logistic
regression, is trained then on the produced output of the first-level classifiers.

Table 1 shows the performance scores of our ensemble learning aggregation
based on Stacking in comparison to individual error detection strategies from
the literature as well as standard aggregators, such as Majority Wins, Union
All, and Precision Based Ordering [1]. The experiments were performed on the
above-mentioned Address dataset, which contains misspelled or missing values,
and field separation violations, resulting in 36% of errors in the whole dataset.
Our prototype is available online4.

As metadata provides signals on individual values and inter-column relation-
ships, they support the four major types of error detection strategies: pattern
violation detection, rule violation detection, outlier detection, and duplicate-based
error detection [1]. To improve the performance of error classification, we incor-
porate metadata, such as data type affiliation, attribute domain, frequency, null
values, and multi-column dependencies, into our learning algorithms. Initially,
the classifiers are trained on the feature vectors that comprise the output of
individual error detection algorithms and the metadata information. Operating
on the augmented feature vector explains why the stacking learning approach
results in a higher recall, i.e., 0.91%, compared to the sum of the recalls of the
individual error detection methods. Using the metadata, the classifier leverages
more information to classify the dataset cells. This experiment demonstrates that

4 http://bit.ly/systems-aggregation
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Fig. 3. A trained decision tree to explain the errors of the attribute Arrival.

metadata-driven holistic aggregation of error detection results captures more er-
rors in the dataset than off-the-shelf error detection system and aggregation
methods from the literature [1].

Our stacking method requires labeled data up to 1% of the dataset size.
Currently, we are working towards a new active learning strategy to further
reduce the labeling effort [19].

2.3 Error Explanation

State-of-the-art machine learning-based error detection methods, as described in
previous sections, achieve very high detection accuracy. However, the user might
not only be interested in a high accuracy but she might also be interested in the
underlying cause of the corresponding errors and their context. For instance, in
case of a field separation issue, outlier detection methods, syntax checkers, and
functional dependency violation detection methods might detect that there is
indeed an error. Nonetheless, none of these methods tells the user that the error
is related to a field separation issue that can be resolved by a specific strategy.
As a first step to address this problem, we propose to leverage the extensive
work on feature engineering for error detection where features cover information
on the attribute, tuple, and dataset level for each data cell, as discussed in
the aforementioned sections. This way, we train a classification model, such as
a decision tree, to fit the error detection result that the user is interested in
exploring. This classification model provides the user with those features that
correlate with the corresponding error and therefore gives the user an idea of the
context that this error occurs in. Figure 3 shows an example of this approach on
Flights data. The trained model has learned that the underlying syntax pattern
for Arrival requires less than 11 characters. This insight hints that Arrival has
a formatting issue. Furthermore, it found that the source C is unreliable with
respect to the Arrival entries and in fact, the source C is the actual error cause.

3 Related Work

There has already been a large body of work on data cleaning [4, 6, 23, 5]. Indi-
vidual subsystems can be plugged as potential subsystems into our estimation
and aggregation framework.

Rule-based data cleaning. There is already extensive research conducted on
rule-based data cleaning [24]. The Holistic data cleaning method is developed
based on denial constraints [4]. This approach considers the generalization of
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functional dependencies by translating them into denial constraints. A general-
ization of functional dependencies was also proposed by the Llunatic system [9].
The Nadeef system [6] treats data quality rules holistically by providing an
interface for implementing denial constraints and other user-defined functions.
Another line of research employs metric functional dependencies and proposes
a strategy to choose high-quality minimal repairs [23]. The Katara system [5]
is a knowledge base and crowd-driven data cleaning system. It aligns a dataset
with available knowledge bases to identify correct and incorrect data values
and to suggest top-k possible repairs for incorrect data. Our approach consid-
ers variations of the aforementioned traditional cleaning strategies as potential
subsystems that can be aggregated inside a generated workflow.

Machine learning-based data cleaning. There is an increasing trend of
utilizing machine learning approaches for data integration and curation tasks.
The HoloClean system combines qualitative and quantitative repair signals
in a statistical model that allows it to repair erroneous data values [25]. How-
ever, HoloClean requires manual hyperparameter optimization and follows a
one-shot aggregation strategy. GDR uses active learning to choose the correct
update suggested by user-defined functional dependencies [33]. Continuous data
cleaning leverages classification to trade off repairing constraints against repair-
ing the data [30]. Ideally, it is desirable to adopt these approaches for a more
general cleaning pipeline beyond rule-based data cleaning. Other systems, such
as SCARE [32] and ERACER [18] leverage probabilistic models to repair data
and assume that all errors can be corrected without human involvement. Finally,
ActiveClean cleans the training data for a machine learning application and
requires the user to specify how to clean and how to featurize the dataset [14].
In our work, we apply machine learning techniques to build a cleaning workflow
orchestrator that learns from cleaning tasks in the past and proposes effective
cleaning workflows for a new dataset.

4 Conclusion and Future Directions

We presented our vision and initial steps for supporting the user in building com-
plex pipelines of automated data cleaning tools. Using various machine learning
techniques, we aim at leveraging knowledge about cleaning tasks from the past
and data profiling to propose cleaning workflow for a new dataset. So far, we
are able to estimate the effectiveness of error detection workflows on a dataset
and to aggregate error detection results effectively. Also, we have developed a
feature representation that enables effective active learning for error detection.
Yet, there are some challenging research directions ahead of us:
Understanding metadata. Our experiments show the benefits of incorporat-
ing metadata for various tasks. A principled connection between instances of
both concepts, metadata and data quality, is yet to be established. For exam-
ple, the profiling result about null values is an indicator for the completeness
of a dataset. However, to detect disguised missing values [21], we would need
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different metadata [2]. It is thus essential to establish relationships between the
metadata and data quality problems, and use them for data cleaning routines.
Learning to transform data values. We plan to extend our active learning-
based example-driven approach from error detection to correction. For instance,
we can treat error correction as a translation task that translates erroneous
cells to correct cells. Following this idea, we can leverage current advances in
statistical machine translation [12].
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