
SRSPG: A Plugin-based Spark Framework for
Large-scale RDF Streams Processing on GPU

Tenglong Ren, Guozheng Rao, Xiaowang Zhang?, and Zhiyong Feng

College of Intelligence and Computing, Tianjin University, Tianjin, China
Tianjin Key Laboratory of Cognitive Computing and Application, Tianjin, China

? Corresponding author: xiaowangzhang@tju.edu.cn

Abstract. In this paper, we propose a plugin-based Spark framework
(SRSPG) for large-scale RDF streams processing on GPU. Within this
framework, We convert RDF streams to a RDF graph in a unified and
simple way. Then we can apply various SPARQL query engines to process
continuous queries and utilize GPU to accelerate queries. Computation
Module provides a Spark-based Join algorithm utilizing GPU for par-
allel joining, obtaining the final results. Besides, we provide Compute
Resource Management to balance the scheduling and task execution be-
tween GPU and memory resources. Finally, we evaluate our work bulit
on gStore and RDF-3X on the LUBM benchmark. The experimental re-
sults show that SRSPG is effective for real-time processing of large-scale
RDF streams.

1 Introduction

RDF streams, as a new type of dynamic dataset, can model real-time information
in traffic monitoring, intelligent city and other fields. Real-time processing of
large-scale RDF streams has become an important research topic nowadays.
What is more, most of the existing RSP(RDF Steam Processing) systems are
centralized, such as C-SPARQL [2], CQELS [4], EP-SPARQL [1]. These engines
can not process large-scale RDF streams. A framework PRSP [5, 3] is presented
to process continuous queries on large-scale RDF streams by exploiting various
SPARQL query engines in a unified way.

Apache Spark is a fast computing engine designed for large-scale data pro-
cessing. The intermediate results are stored in memory, so that large-scale data
can be processed better. Graphics Processing Units(GPUs) is an efficient parallel
processing way, which is widely applied and provides a higher level of speedup by
executing multiple threads synchronously. However, there are few parallel com-
puting systems based on GPU and Spark to process large-scale RDF streams.
In addition, the scheduling mechanism of Spark and the task of GPU have to be
taken into account.

* Copyright 2019 for this paper by its authors. Use permitted under Creative Commons
License Attribution 4.0 International (CC BY 4.0).

In our work, we propose a plugin-based Spark framework for large-scale RD-
F streams processing on GPU. In order to make full use of computing power
of GPU, we add Query Split module and Computation Module. The Query S-
plit decomposes the SPARQL queries. Computation module is used to compute
the intermediate results through on GPU. We evaluate our experiments on the
benchmark LUBM. The experimental results show that our framework is effec-
tive and efficient.

2 Overview of SRSPG

The framework of SRSPG consists of the following six main parts: Syntax Trans-
lator, Data Transformer, Query Trigger, Query Split, SPARQL API, and Com-
putation Module shown in Figure 1.

Data

Transformer

Syntax

Translator

RDF

Stream(S)

Continuous

Query(Q)

Query

Trigger

Query

Split

Window

Selector

SPARQL

API

RDF Graph Spark-based

Parallel Join

Compute Resource

Management

Results

SubQ1

SubQm

...
GPU

1

GPU

2
GPU

k

...

SPARQL Engines

Computation Module

Fig. 1. The framework of SRSPG.

Syntax Translator The module of Syntax Translator translates continuous
queries into unified queries. The translated query is sent to Query Trigger
module.

Query Trigger The part of Query Trigger receives the unified queries, splitting
them into two parts: ρ(Q) and window selector. ρ(Q), as the core SPARQL
query, is pushed into SPARQL API and Query Split module. Window selec-
tor is in the form of a 6-tuple which are encapsulated into a management
subsets and sent to Data Transformer. Let p = [S, α, β, γ, tf, ρ(Q)] where S
is the RDF stream to be processed; α represents the window size; β is the
updating time of windows; γ is the updating latency of windows; tf is used
to determine whether RDF streams are processed. ρ(Q) is the core SPARQL
query.

Data Transformer This module transforms RDF streams to capture snap-
shots based on window selector obtained from Query Trigger, and converting
these snapshots to RDF graphs. We convert RDF streams into continuous
window data by Esper or other DSMS. Finally, the RDF graphs are sent to
SPARQL API.

SPARQL API SRSPG provides SPARQL API for users, which makes it pos-
sible for SPARQL engines (centralized and distributed) to process RDF
streams.

Query Split Query Split module decomposes queries into some subqueries based
on the weight of predicates. We assign weights to predicates when loading
RDF data. The higher the frequency of predicates in RDF graph, the greater
the weight and the greater the impact on query results.

SELECT ？X WHERE{

TP1 : ?X likes ?Y.

TP2 : ?Y lives ?W.

 TP3 : ?W located ?S.}

100

10

30

SELECT ？X WHERE{

TP1 : ?X likes ?Y.

TP2 : ?Y lives ?W.

 TP3 : ?W located ?S.}

100

10

30

TP2: ?Y lives ?W 10 TP3: ?W located ?S 30

TP1: ?X likes ?Y 100

solution

TP2: ?Y lives ?W 10 TP3: ?W located ?S 30

TP1: ?X likes ?Y 100

solution

Fig. 2. An example of SPARQL query splitting.

Computation Module The module of Computation Module proposes Join
parallel algorithm based on Spark, utilizing GPU for parallel joining. The
tasks can be disassembled into some streams. Spark supports multi-threaded
computing, while GPUs are usually serial. The situation leads to contention
for GPU resources among threads. So we present Compute Resource Man-
agement to balance the scheduling and task execution of GPU, GPU and
memory resources.

3 Experiments and Evaluations

Our experiments are evaluated on server equipped with a 4 CPUs with 6 cores
and 64GB memory, a NVIDIA GTX590 GPU, which has 24GB device memory
and is clocked at 1.35GHz. The version of operating system is Ubuntu 14.04. In
order to support GPU on YARN, we use version 3.1.2. We use RDF-GPU and
gStore-GPU by employing RDF-3X and gStore within SRSPG. Our experiments
utilized LUBM dataset.

The experiments uses the standard query Q1 and Q2 provided by LUBM.
Figure 3 shows that when S = 240s and SET = 235s, SRSPG uses GPU, the
query time of stream data decreases, gStore improves the speed by more than
two times than RDF-3X. When the data size is small, GPU acceleration is not
obvious, mainly due to data communication and transmission time problems.
The larger the data scale, the better the acceleration effect.

105105

10
4

10
4

T
im

es

200
Data size

(a) query response time of Q1

300 400 500 600

10
4.5

10
4

10
4

Ti
m

es

200
Data size

(b) query response time of Q2

300 400 500 600

RDF-GPU

gStore

RDF-GPU

gStore

RDF-3XRDF-3X

gStore-GPU

RDF-GPU

gStore

RDF-3X

gStore-GPU

RDF-GPU

gStore

RDF-GPU

gStore

RDF-3XRDF-3X

gStore-GPU

RDF-GPU

gStore

RDF-3X

gStore-GPU

Fig. 3. Querying time in different engines under GPU and CPU.

4 Conclusions

In this paper, we proposed a plugin-based Spark framework for real-time large-
scale RDF streams processing on GPU in an efficient and simply way. In the
future, we will take advantage of more novel computing hardware to increase
the speed of large-scale RDF streams processing such as FPGA.

5 Acknowledgments

This work is supported by the National Key Research and Development Program
of China (2017YFC0908401) and the National Natural Science Foundation of
China (61672377,61972455). Xiaowang Zhang is supported by the Peiyang Young
Scholars in Tianjin University (2019XRX-0032).

References

1. Anicic D., Fodor P., Rudolph S., and Stojanovic N.: EP-SPARQL: A unifed language
for event processing and stream reasoning. In: Proc. of WWW 2011, pp. 635–644.

2. Barbieri D.F., Braga D., Ceri S., Della Valle E., Grossniklaus M.: Querying RDF
streams with C-SPARQL. SIGMOD Rec., 39(1), 20–26 (2010).

3. Fang H., Zhao B., Zhang X., Yang X.: A united framework for large-scale resource
description framework stream processing. J. Comput. Sci. Technol., 34(4): 762-774
(2019).

4. Le-Phuoc D., Dao-Tran M., Parreira J. X., Hauswirth M.: A native and adaptive
approach for unifed processing of linked streams and linked data. In: Proc. of ISWC
2011, pp.370–388.

5. Li Q., Zhang X., Feng Z.: PRSP: A plugin-based framework for RDF stream pro-
cessing. In: Proc. of WWW 2017 (Poster), pp.815–816.

