
Towards a Concurrent Approximate Description Logic
Reasoner

Raj Kamal Yadav1, Gunjan Singh1, Raghava Mutharaju1, Sumit Bhatia2

1 Knowledgeable Computing and Reasoning Lab, IIIT-Delhi, India
{raj16076,gunjans,raghava.mutharaju}@iiitd.ac.in

2 IBM Research AI, Delhi, India
sumitbhatia@in.ibm.com

1 Introduction

Ontologies are used in a variety of applications in domains such as healthcare, geo-
science, IoT, and e-commerce. Many commonly used ontologies are manually con-
structed, and may not be large in size but could be very expressive. With the advances
in automated knowledge base construction and ontology learning [2], it is becoming
increasingly common to build very large ontologies. OWL 2 knowledge representation
language, a W3C standard, provides several profiles such as OWL 2 Full, OWL 2 DL,
OWL 2 EL, OWL 2 QL, and OWL 2 RL that vary in terms of their expressivity, and
hence, the complexity of reasoning. While there are several existing reasoners [1] for
different OWL profiles, including OWL 2 DL, they generally do not scale well for large
ontologies and even medium-sized ontologies in the OWL 2 DL profile.

Approximate reasoning [5] offers an attractive alternative in such cases by sacri-
ficing either soundness or completeness in favor of reasoning runtime. Approximate
reasoning is useful in applications where i) response time is crucial, or ii) the reasoning
is performed in a resource-constrained environment, and iii) good enough answers from
the reasoner are sufficient. TrOWL [4], is a well known approximate description logic
reasoner that uses syntactic language weakening for approximating SROIQ TBox ax-
ioms to EL++ axioms. It also makes use of data structures to maintain complement and
cardinality information. While offering significant improvements in reasoning runtime,
TrOWL does not scale well for large ontologies (see Section 2). An alternate way of
reducing the reasoning runtime is to better utilize the computing resources (multi-core,
multi-processor architectures). ELK [3] is one such concurrent rule-based reasoner for
the description logic EL+

⊥. Axioms are assigned to lock-free data structures called con-
texts, and inferences are computed independently and in parallel offering significant
speedup when compared to the state-of-the-art.

In this paper, we describe our ongoing efforts for developing a concurrent, approx-
imate description logic reasoner. We propose to make use of the approximation rules
of TrOWL and the concurrent strategy of ELK to create an efficient and concurrent
approximate reasoner.

2 Efficiency and Scalability of Existing Reasoners

In this section, We compare the runtime performance of TrOWL (an approximate rea-
soner), ELK (a concurrent reasoner), and three other commonly used reasoners (Pellet,
Hermit, and JFact). We use five different ontologies of varying sizes – GALEN (37,696
axioms), GO (107,909 axioms), FMA (126,548 axioms), Anatomy (268,513 axioms),

Copyright 2019 for this paper by its authors. Use permitted under Creative Commons License
Attribution 4.0 International (CC BY 4.0).



2 Yadav et. al.

Anatomy FMA Galen GO SNOMED CT
Copies 1 5 10 1 5 10 1 5 10 1 5 10 1 5 10

ELK (1) 28.23 383.95 1203.28 4.86 37.65 87.37 3.30 11.71 25.63 5.66 32.44 130.30 38.89 254.02 505.97
ELK (5) 10.84 115.01 799.94 3.37 28.23 60.16 1.89 5.77 12.42 3.74 16.97 122.54 20.48 161.63 317.19
ELK (10) 7.44 80.92 621.48 3.2 25.92 67.12 1.75 4.88 10.18 3.68 20.23 121.11 14.89 139.06 261.75
TrOWL-EL 4.34 35.31 79.96 7.99 62.08 212.41 63.91 jh jh 75.5 520.93 1168.5 104.04 1212.15 to
TrOWL-DL 4.47 36.08 85.61 7.14 62.15 205.43 79.26 jh jh 72.95 462.1 1170.59 105.35 1208.82 to
Pellet so so so 580.62 3490.06 to gc gc gc to gc gc 369.49 gc gc
Hermit to to to 21.18 330.2 1178.44 gc gc gc 742.74 to to 1810.86 to to
JFact so so so 410.36 to to gc gc gc to to to to to to

Table 1. Runtime (in seconds) taken by different reasoners for different ontologies. In the table,
so represents Stack Overflow Error due to Heap Queue, to represents Timeout Exception, gc
represents Garbage Collection Overflow and jh respresents Java Heap Space OverFlow errors.

and Snomed (569,701 axioms). In order to further test the reasoners’ scalability, we
created interlinked copies of ontologies where independent copies of the ontologies are
connected with each other. For example, this could lead to axioms such as A1 v B2,
where A1 and B2 are copies of classes A and B in the original ontology. We report
classification times achieved by different reasoners with 1, 5, and 10 interlinked copies
(Table 1). The experiments were performed on an Intel(R) Xeon(R) 2.30GHz x86 64
server with 96GB RAM, 40 CPUs, 20 cores per CPU, and 2 threads per core. The max-
imum Java Heap Space allocated was 24GB and the timeout was set to 3600 seconds.
The source code for replicating our experiments and creating interlinked ontologies is
at https://github.com/kracr/dl-approx-reasoner. We observe from
Table 1 that except for 1 copy of FMA ontology, JFact is not able to complete the rea-
soning tasks with in the specified time (1 hour) using available computing resources.

Ti
m

e 
(s

ec
on

ds
)

0

50

100

150

200

250

300

350

400

Number of Parallel Workers
0 2 4 6 8 10 12 14 16 18 20

Fig. 1. ELK Performance for 8 inter-
linked copies of Snomed using differ-
ent no. of parallel workers

Pellet and Hermit perform slightly better with
successful completion of the tasks for FMA on-
tology, but they also do not scale to other on-
tologies and their larger interlinked variants. Both
the variants of TrOWL successfully complete the
tasks, except for larger variants of Galen (5 and 10
copies) and Snomed (10 copies). ELK on the other
hand is able to successfully complete the tasks for
all the ontologies, and their larger interlinked vari-
ants. Also note that except for Anatomy ontology,
ELK outperforms TrOWL due to its concurrent
architecture. For Anatomy, however, TrOWL outperforms ELK (even with 10 paral-
lel processes). We speculate that this could be attributed to the nature of axioms present
in the ontology and a large number of missing results due to TrOWL being a sound, but
incomplete reasoner. We also note that the runtimes reduce with increasing the number
of parallel workers employed by ELK (shown in parentheses). It was observed during
experiments that large gains in performance could be achieved by increasing the num-
ber of parallel processes, and the gains saturate at about 10 parallel workers (Fig. 2).
These experimental observations provide the motivating evidence for our efforts to-
wards a concurrent approximate description logic reasoner that can scale to large,
expressive ontologies and perform reasoning tasks efficiently in resource constrained
environments.

3 Concurrent Approximate DL Reasoner

We extend the completion rules of ELK reasoner [3] with the complement and cardinal-
ity rules of TrOWL [4], which are 8 in number. These rules are sound but not complete.
We translate these 8 rules into a form that is suitable for parallel processing using ELK



Towards a Concurrent Approximate Description Logic Reasoner 3

style lock-free data-structures. We used ELK notations and translated the 8 complement
and cardinality rules into 10 rules.

Algorithm 1: C.process(expression):
Subsumption
1 C.process(Sub(D)):
2 if C.subs.add(D) then
3 if bottom.negOccurs>0 then
4 for each D2,G with C.subs(D2)and

conCompl(D2, G) and
conEq(D,G) do

5 C.enqueue(add(newSub(bottom)))
// R¬

6 for each G,H with conCompl(D,G) and
conCompl(C,H) do

7 G.enqueue(newSub(H)) // R+
¬

8 if D = bottom and C instanceOf
IdxConjunction and
conCompl(C.secondConj,G) then

9 C.firstConj.enqueue(newSub(G)) //

R−¬
10 if D instanceOf IdxCardinality then
11 D.filler.enqueue(
12 newBackCardLink(
13 D.card,D.role, C)
14 C.enqueue(
15 newForwCardLink(

16 D.card,D.role,D.filler) // R−c
17 for each R,S,E,F with hier(R,S) and

C.backCardLink(i, R,E) and
D.backCardLink(j, S, F ) do

18 E.enqueue(newSub(F )) // Rc
v

Algorithm 2: C.process(expression):
Existential Links
1 C.process(BackLink(R,E)):
2 if C.backLink.add(R,E) then
3 for each D,R2, S1, S2, S with

C.forwCardLink(i, R2, D) and
roleComp(S1, S2, S) and hier(R,S1)
and hier(R2, S2) do

4 D.enqueue(newBackLink(S,E))
5 E.enqueue(newForwLink(S,D))

// Rc
o2

6 C.process(ForwLink(R,E)):
7 if C.forwLink.add(R,E) then
8 for each E,R1, S1, S2, S with

C.backCardLink(j, R1, E) and
roleComp(S1, S2, S) and hier(R1, S1)
and hier(R,S2) do

9 D.enqueue(newBackLink(S,E))
10 E.enqueue(newForwLink(S,D))

// Rc
o2

Algorithm 3: C.process(expression):
Cardinality Links
1 C.process(BackCardLink(i, R,E)):
2 if C.backCardLink.add(i, R,E) then
3 if C.subs.contains(bottom)

then
4 E.enqueue(newSub(bottom))

// R⊥c
5 for each D,F,S with C.subs(D)

and negCard(i, S,D) and
hier(R,S) do

6 E.enqueue(newSub(F ))

// R+
c

7 for each D,R2, S1, S2, S with
C.forwLink(R2, D) and
roleComp(S1, S2, S) and
hier(R,S1) and
hier(R2, S2) do

8 D.enqueue(newBackLink(S,E))

9 E.enqueue(newForwLink(S,D))
// Rc

o1

10 for eachD,R2, S1, S2, S with
C.forwCardLink(j, R2, D)
and roleComp(S1, S2, S) and
hier(R,S1) and
hier(R2, S2) do

11 D.enqueue(newBackLink(S,E))

12 E.enqueue(newForwLink(S,D))
// Rc

o3

13 C.enqueue(Init);
14 C.process(ForwCardLink(i, R,D)):
15 if C.forwCardLink.add(i, R,D) then
16 for each E,R1, S1, S2, S with

C.backLink(R1, E) and
roleComp(S1, S2, S) and
hier(R1, S1) and
hier(R,S2) do

17 D.enqueue(newBackLink(S,E))

18 E.enqueue(newForwLink(S,D))
// Rc

o1

19 for each E,R1, S1, S2, S with
C.backCardLink(j, R1, E)
and roleComp(S1, S2, S) and
hier(R1, S1) andhier(R,S2)
do

20 D.enqueue(newBackLink(S,E))

21 E.enqueue(newForwLink(S,D))
// Rc

o3

From among these 8 rules, one of the rules (R13 from [4]) is split into two rules
(R−c and R+

c ) and the rule involving ⊥ (R⊥c ) has been added. Since the rules are from
TrOWL but are recast into ELK style inference rules, the tractability and soundness
proofs from TrOWL can be carried over as well (but we will not show them here due to
lack of space). These 10 rules are given below.
R¬ CvD CvE

Cv⊥ : D≡¬E
⊥ occurs negatively inO R+

¬
CvD
¬Dv¬C R−¬

CuDv⊥
Cv¬D

Rvc
AvB X

i,R−→A Y
j,S−→B

XvY : Rv?
OS R⊥c

E
i,R−→C Cv⊥
Ev⊥ R−c

EviR.C

E
i,R−→C



4 Yadav et. al.

R+
c

E
i,R−−→C CvD

EviS.D : Rv?
OS

iS.D occurs negatively inO Rc1
o

E
i,R−→C C

R2−−→D

E
S−→D

:
Rv?
OS1

R2v?
OS2

S1◦S2vS∈O

Rc2
o

E
R−→C C

i,R2−−−→D

E
S−→D

:
Rv?
OS1

R2v?
OS2

S1◦S2vS∈O
Rc3

o
E

i,R−→C C
j,R2−−−→D

E
S−→D

:
Rv?
OS1

R2v?
OS2

S1◦S2vS∈O

For efficient look-up of side conditions of inference rules, different look-up tables
are constructed. For example, negConjs holds conjuncts of the form C u D. For the
complement and cardinality rules, we added two additional look-up tables, conCompl
and negCard. conCompl consists of pairs 〈A,¬A〉 for each concept A in the ontol-
ogy. negCard holds information about qualified cardinality expressions in the form
of tuple 〈i, S,D, iS.D〉. For concurrent execution, contexts are assigned to each class
expression on the basis of the inference rules. Every context c has a separate queue
c.Todo and a set c.Closure which helps in achieving concurrency without using locks.
c.Todo holds expressions that are yet to be processed and are initialized with the axioms
from the input ontology. c.Closure holds all the processed expressions to which infer-
ence rules have already been applied. The expressions in c.Todo are represented with
the corresponding number of parameters (Sub(D), BackLink(R,E), ForwLink(R,C),
BackCardLink(R,E), ForwCardLink(R,C)), whereas the expressions in Closure are
represented using tables for the respective types of expression (D ∈ C.subs, 〈R,E〉 ∈
C.backLinks, 〈R,C〉 ∈ E, forwLinks 〈i, R,E〉 ∈C.backCardLinks, 〈i, R,C〉 ∈ E.forw-
CardLinks). Note that two links (Back and Forw) are being used for both Existential
and Cardinality because let’s say we have expression E

R−→ C; this expression would be
added to both contexts E and C and similarly for cardinality E

i,R−→ C (unlike expres-
sion of the form C v D which will be added to context C only). Adding an expression
to contexts activates it and each item is taken by some worker (thread) for execution.

The pseudocode for the 10 rules of complement and cardinality are given in Algo-
rithms 1, 2, and 3. When a worker takes an expression from c.Todo, c.process(expression)
is called and depending on the type of that expression, one method from Algorithm 1,
2, or 3 is executed. On calling c.process(expression), expression is added to its cor-
responding c.closure and inferences are performed between elements of c.closure by
applying inference rules given in the method body. Also, other than the expressions
from c.closure, data structures such as concIncs, roleComps, conCompl, negCard, hier
etc are used for efficient look-up of side conditions. Note that here we have given only
additional rules in each method body but inferences would be drawn using these new
rules and the original rules provided in ELK. We are currently implementing the pro-
posed algorithms and modifications and plan to make the implementation available for
the community to use and build upon.

References
1. Antoniou, G., et al.: A Survey of Large-Scale Reasoning on the Web of Data. The Knowledge

Engineering Review 33. https://doi.org/10.1017/S0269888918000255
2. Asim, M.N., Wasim, M., Khan, M.U.G., Mahmood, W., Abbasi, H.M.: A survey of ontology

learning techniques and applications. Database 2018 (2018)
3. Kazakov, Y., Krötzsch, M., Simančı́k, F.: The Incredible ELK: From Polynomial Procedures to

Efficient Reasoning with EL ontologies. Journal of Automated Reasoning 53(1), 1–61 (2014)
4. Ren, Y., Pan, J.Z., Zhao, Y.: Soundness Preserving Approximation for TBox Reasoning. In:

AAAI. pp. 351–356 (2010)
5. Rudolph, S., Tserendorj, T., Hitzler, P.: What Is Approximate Reasoning? In: Web Reasoning

and Rule Systems. pp. 150–164. Lecture Notes in Computer Science (2008)


