CEUR-WS.org/Vol-2457/1.pdf

Analyzing Throughput for Cyber-Physical
Systems modeled with Synchronous Dataflow

Philippe Glanon, Selma Azaiez, Chokri Mraidha

CEA-LIST Saclay, Gif-sur-yvette, France
surname .name@cea.fr

Abstract. Cyber-Physical System (CPS) is a critical system in which
timing performance is often required. Throughput is a performance indi-
cator of interest when designing a CPS. Analyzing throughput reachable
by a CPS at design-time implies to optimize the behaviour of the sys-
tem in such a way that it may run with an optimal frequency. This
can be achieved by using synchronous dataflow graphs (SDFGs) which
is a formal model of computation that fosters the analysis of systems
where performance is always prominent. In this paper, we discuss on the
throughput estimation for CPS applications modeled with the SDFGs.
In order to evaluate the optimal throughput reachable by a CPS applica-
tion, we use SDFGs to describe computations and communications in the
CPS application and we propose a mathematical formulation of schedul-
ing and mapping decisions in order to deploy the behavioural model of
the CPS onto a platform, which essentially consists of heterogeneous and
distributed resources.

Keywords: Cyber Physical System- Throughput - Synchronous dataflow.

1 Introduction

Cyber-physical systems (CPSs) are distributed systems consisting of parallel and
heterogeneous components (sensors, controllers, actuators.) deeply intertwined
and communicating with each other to sense, to control and to execute physical
processes [10]. In these systems, performance is usually important since their
components execute tasks constrained by timing requirements such as latency
and throughput. In order to obtain a valid and implementable CPS, performance
analysis is then crucial in the early design-time of the system. To achieve this
goal, synchronous dataflow graphs (SDFGs) can be very beneficial. SDFG is a
formal model introduced in [17] and widely used to describe communications in
embedded and distributed systems and to perform the static analysis of their
performance. This model is known to be an equivalent of Weighted Event Graph
(WEG) [16], a subclass of Petri Nets which is a general-purpose modeling lan-
guage often used to model and analyze the timing behaviour of the automated
production systems [6]. For the rest of the paper, we adopt the notation SDFG
instead of WEG. In this paper, SDFG is used to tackle the static analysis of
throughput metrics for CPSs. Analyzing the throughput reachable by a CPS

Copyright (©2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).

P. Glanon et al.

at design-time means to evaluate the maximum execution frequency of its ap-
plication over its platform. This can be achieved by scheduling and mapping
the application graph of the CPS (i.e the SDFG that models the CPS) to the
platform in order to determine when and where the tasks of the application are
executed. This paper tackle the throughput analysis problem for a CPS where
communications are modeled with SDFG by taking into account the heterogene-
ity of the CPS resources. In this paper, resources heterogeneity means that there
is a potential redundancy of CPS components that may provide the same ser-
vices but they do not offer the same quality of service (QoS). In this context,
the QoS indicator related to the throughput analysis of a CPS is the execution
time of CPS tasks.

Various analysis techniques have been proposed previously in the literature of
dataflow models and similar tasks model to schedule and evaluate the throughput
for applications whose tasks are executed by parallel and distributed resources.

In [4, 6, 9], cyclic schedules were used to characterize and to evaluate through-
put for dataflow-based applications. However, the throughput analysis in these
paper do not deal with resources constraints of the platform on which the appli-
cations are scheduled and mapped.

In [8, 11, 14, 15], various static scheduling techniques have been used to max-
imize the throughput of dataflow-based applications. Although these techniques
take into account some resource constraints, the resources on which the tasks
are scheduled and mapped are fully homogeneous.

The scheduling of tasks onto heterogeneous platforms have been addressed
in [1,13]. However, scheduling has been only studied for directed acyclic graph
structures. This means that approaches proposed in these papers do not fit for
scheduling a task graph that contains cycles.

To the best of our knowledge, the current literature of dataflow models do
not deal with the scheduling and mapping of SDFGs which contains cycles onto
heterogeneous and parallel resources. In this paper, we aim at formulating this
scheduling and mapping problem for the CPS by proposing some mathemat-
ical models that describe the CPS platform and its tasks graph as well as its
scheduling and mapping constraints. Different research directions have also been
highlighted to solve the problem.

The rest of the paper is organized as follows. Section 2 is devoted to a detailed
description and modeling of a CPS. Next, in section 3 we depict a mathematical
model that describe the throughput problem for a CPS and we propose a resolu-
tion approach to evaluate the optimal throughput reachable by a CPS. Finally,
we draw some conclusions in the section 4.

2 Description and Modeling of the CPS

2.1 Architectural description of the CPS

The CPS tackled in this paper consists of a logical part and a physical part. The
logical part is an application involving computation functions to sense, control

Estimating Throughput for CPS

Sensing Data Processing Data — Actuaction

Physical Process

(a) Coarse view of the CPS function

Devicei Devicei+1 Devicen
I:)i NIi I:)i+1 Nii+1 e Pn Nln
Network
Communication link N
R R R
l—1—

(b) Overview of the CPS platform.

Fig. 1: Architectural Description of the CPS

and execute the physical processes. These functions exchange flows of data to
determine the behaviour of the system which mostly act as a loop-control (see
Fig. 1a). The physical part of the CPS (see Fig. 1b) is platform including parallel
and heterogeneous devices (also called resources) such as sensors, controllers and
actuators that interact with each other through a distributed network to process
the CPS functions. Each device contains a processor (P) which computes the
CPS tasks and a network interface (NI) through which it communicates with the
other devices. The network interface is needed to decouples computations from
communications and to connect the device with the distributed network. Which
network connects all devices via its routers (R) and communication links. The
CPS platform provides a resource sharing mechanism that allows several CPS
functions to use the communication and computation resources simultaneously
while guarantees can be provided on the amount of time a function has access
to the resources and frequency of these accesses.

2.2 CPS application model

In order to evaluate the throughput reachable by the CPS, computations and
communications are described using SDFG [17]. Indeed, SDFG is a model of
computation for a data-driven style of control. Formally, a SDFG is described
as a directed graph G4 = (A, E, P,C, M) where:

— A is the set of actors. Actors are nodes that model the computational func-
tions of the CPS.

P. Glanon et al.

(a) CPS application graph (b) Equivalent LCG

Fig.2: An example of a CPS application.

— E is the set of arcs (also called channels) each modeling the communication
between two computational functions.

— P = {p(e)|e € E} is the set of production rates determined by the function
p : B — Nx which associates to each channel e € E a fixed number p(e) = p.
indicating the quantity of produced data over the channel when the input
function of e is fired.

— C = {c(e)|le € E} is the set of consumption rates. It is determined by the
function ¢ : E — Nx which associates to each channel e € E a fixed number
c(e) = c. indicating the quantity of consumed data from the channel to fire
the output function of e.

— My = {M(0)(e)le € E} is the initial marking of the graph. The initial
marking represents the quantity of data upon the channels at the beginning
of a process. It is generally represented by dots also called tokens or delays
and is determined by the function M : E — N which associates to each
channel e € E a non-negative integer My(e) which provides a number of
tokens per channel.

Fig. 2a depicts the example of an application graph that models communica-
tions between three computational functions of a given CPS. In this application
graph, channels are initialized with fixed number of tokens. To analyze the timing
behaviour of such an application graph, static scheduling and mapping strategies
can be used to determine when and where the actors are executed. However, be-
fore scheduling and mapping such a graph to a platform, some useful properties
such as consistency and liveness need to be checked. Indeed these properties are
the necessary and sufficient conditions that determine the schedulability of any
SDFG. When a SDFG is consistent and live it is proved in [17] that there exists
a periodic admissible sequential (or parallel) schedule where its actors can be
fired infinitely often with a bounded number of tokens.

Definition 1 (Consistency and Repetition Vector). Let consider a SDFG
Gsar = (A, E,P,C, My). Gsqr is consistent if there exists a function n : E — Nx
which associates to each actor, a strictly positive integer such that for any chan-
nel e = (a;, aj, Pe, Ce; Mo(€)) € E, pe.n(a;) = ce.n(aj). The set of values provided

Estimating Throughput for CPS

by such function determines the repetition vector N = [n(ay), ...,n(a|4|)] associ-
ated with Gsqr where n(a;) is the number of times the actor fires within a single
execution cycle of Gqf.

According to Definition. 1, the application graph showed in Fig .2a is consis-
tent and its repetition vector is given by N=[2,1,1,1]. According to this vector,
the actor aq, fires twice while the other actor fires once in a single iteration of
the graph.

Definition 2 (Liveness). Let Gyq = (A, E) be a SDF model where A is a finite
set of actors, E is a finite set of channels. Gsqr is live if and only if its initial
marking enables to execute the SDF actors infinitely often without deadlocks.

Many algorithms have been proposed to check the liveness of SDFGs [7,12]. In
this paper, we assume that any SDFG that models a CPS application is always
consistent, live and then schedulable.

2.3 From a CPS application graph to a Linear Constraint Graph

Before scheduling a SDFG on a parallel platform, it is important to capture all
the dependencies between the firings of actors. To achieve this, SDFGs are often
transformed into precedence constraint graphs. There are three main approaches
to transform a SDFG into a precedence constraint graph. The first approach is
based on the transformation of the SDFG into an equivalent Homogeneous Syn-
chronous Dataflow Graph (HSDFG), which is a SDFG where all the input and
output rates are equals to one [17,8,4]. The second approach is by exploring
the state-space of a simulated self-time execution of the SDFG until a periodic
phase is found [11]. Such simulation-based method avoids the transformation
from SDF into HSDFG. The third approach is to transform the SDFG into a
linear constraint graph (LCG) which is a smaller sub-graph of a HSDFG [5].
These three approaches were implemented and compared in [5] and experimen-
tal results showed that the third approach is more efficient than the first two.
Therefore, we use the algorithm proposed in [5] to transform any application
graph of a CPS into an equivalent LCG.

According to the algorithm proposed in [5], the corresponding LCG for the
SDFG depicted in Fig .2a is depicted in Fig .2b. In the LCG, nodes characterize
the firings of actors belonging to the original SDFG and arcs characterize the
precedence relations between these firings. Dots on the arcs (a12,a11), (a21,a11)
and (a12,as1) indicate that the downstream actors (i.e a7 and as;) are fired
in the next iteration of the LCG. In general, a dot on an arc xy means that
the corresponding token is produced in one iteration and consumed in the next
iteration. Note that in an LCG, an arc can contain at most one token.

2.4 CPS platform model

Before analyzing the throughput for the CPS, we also need to provide a formal
description of the platform on which the CPS application is executed.

P. Glanon et al.

The targeted platform consists of n heterogeneous devices r,,, 1 < u < n fully
interconnected as a virtual clique by m heterogeneous communication medium
¢i, 1 <i < m. A communication medium is a bidirectional link L, , : 7, = 7y
between any pair of device r,, and r,, of data transmission time 6, ,., . Note that
the heterogeneity of devices means that they may execute the same actors with
different execution times while the heterogeneity of the communication medium
means that the communication times are different between all the devices. Each
device may process one or several actors. A set of tuples (ax, lr, o), 1 <k <p
is associated with each device r, to specify the set of actors a; that it executes
as well as the corresponding execution times /,., o, . More succinctly a platform
model is defined as follows:

{ru = {(akvfm,ak)}} U{ei = (Luw, 57"u,7"v)}

An instance of platform model for the application graph depicted in Fig .2a,
is given by:

{Tl = {(a'178)’ ((12,4)};7“2 = {(a2’5)a (CL3,6)};’I“3 = {(GQ’S)}} U {Cl = (L7'1,T275);
Co = (Lrl,T‘ga?’);C3 = (LT27T372)}

3 Throughput evaluation

Determining the optimal throughput reachable by the application graph of a CPS
implies to schedule and map the actors of its equivalent LCG to the platform in
such a way that the iteration period of the LCG can be minimized. In order to
achieve this goal, there is a need of defining a decision model that express the
scheduling and mapping constraints as well as the objective function that need
to be optimized when scheduling and mapping the LCG to the CPS platform.

3.1 Scheduling and Mapping Decision Model

Let Gsqr be a SDFG, G4 be its equivalent LCG, Pg be the platform on which
Gieg is scheduled and mapped and S be the function that schedules and maps
actors of G4 to Pg. The throughput A of G4y is defined as the average iteration
number of G4 per time units in S. G4 achieves a single iteration if all its nodes
are scheduled and mapped onto the Pg. If T is the iteration period associated
with Gjey then the throughput A is measured as the inverse of the iteration
period (i.e A = 1/T). Therefore, maximizing the throughput of an SDFG implies
to minimize the iteration period of its equivalent LCG. In order to achieve this,
we formulate the following mathematical model to describe the scheduling and
mapping problem for any LCG. Note that in the proposed model, an actor is
considered as a node in the LCG.

Variables

Estimating Throughput for CPS

— 84, the starting time of an actor a; in a schedule S.

— Xy, ,a;: & binary variable set to 1 if the actor a; is mapped onto the device
7. and 0 otherwise.

— Y the minimal iteration period.

Model

fobjective =min Y

NE

Xpva =1, Va. (1)

e
I
A

n

Sai + Z Xru,ai : Eru,ai < Sajv vai = Q. (2)
u=1
n
Sai + Z X’f’mai : ET‘u,ai S Y7 v a;. (3)
u=1
(Xrwai " Xrwsa; - (Say +lryar) < 8a;) V (Xeyar * Xryay - (Sa; +4rya;) <
Sai)> Vai,aj. (4)
X, 0 €{0,1}, ¥re R (5)
Sa, >0 (6)
¥ =0 (7

The objective function of this model is to map the tasks onto resources of the
platform and order their executions so that the constraints are satisfied and a
minimum overall completion time is obtained.

Constraint (1) states that any actor of the LCG must be mapped on exactly
one CPS device. Constraint (2) depicts the precedence constraint between two
dependent tasks in the LCG. Indeed, for any actor a; and a; if there exists a
precedence relation from a; to a; (i.e a; < a;), and if these actors are respectively
executed over the resources r, and 7, then, the starting time of a; is greater
or equal to the sum of starting and processing time of a; in device r,. For an
iteration of the LCG, the constraint (3) states that the finishing time of each
actor is lower of equal to the minimal iteration period. Constraint (4) states the
restriction that if any actor a; (or a;) is first assigned to resource r,, no other
actor a; (a;) can start onto the resource until a; (or a;) is completely processed.
Constraints (5), (6) and (7) define the range of optimization variables.

3.2 Resolution Method for Mapping and Throughput Computation

To solve this mapping problem and evaluate the maximum throughput, we split
it into two different sub-problems.

P. Glanon et al.

Assuming that for any SDFG, the equivalent LCG does not contain cycles.
In this case, the mapping problem refers to a well-known NP-complete problem
which is mapping a DAG to a parallel and distributed platform under communi-
cation constraints. Several approaches have been proposed to tackle this kind of
problem. In [1,13], differents list-based heuristics have been proposed that pro-
vide mapping solutions with reasonable computation times to solve this problem.
However, in this paper, as we assume that a LCG always contains cycles (e.g.
see Fig. 2b), we need to reduce the LCG structure into a DAG structure without
losing the semantic of the initial model. Afterwards, the DAG can be scheduled
and mapped to the heterogeneous platform using list-scheduling heuristics. Fi-
nally, according to the resulted schedule, the throughput of the CPS application
graph can be evaluated.

A useful technique has been proposed in [3] to transform a graph that con-
tains cycles into DAG and to map it on an homogeneous platform consisting
of two processors. This transformation technique can be extended and used in
the context of our study to transform a LCG into a DAG. After transforming
the LCG into DAG, existing heuristics [1,13] for mapping a DAG to a hetero-
geneous platform should be implemented and compared by running them over
various instances of LCG in order to determine the ones that provides the opti-
mal throughput reachable by the application graph of the CPS.

4 Conclusion and Outlooks

In this paper, we discuss the throughput evaluation of a CPS modeled with
SDFG. First we provide a formal description of the CPS platform and applica-
tion. Then, we formulate the scheduling and mapping problem for maximizing
the throughput of a CPS application considering some resources constraints
related to the CPS platform. Today, the problem is not solved yet, however, re-
search directions have been highlighted to tackle it. As first perspective, we plan
to propose an efficient algorithm to transform the precedence constraint graph
(i.e. the LCG) of a CPS application into a DAG that preserves the semantics of
the original graph. Afterwards, we plan to design and implement an efficient list
schedule heuristic for scheduling and mapping the DAG to the CPS platform in
order to evaluate the maximal throughput reachable by the CPS application.

References

1. A. Emeretlis, T. Tsakoulis, G. Theodoridis, P. Alefragis and N. Voros, ” Task graph
mapping and scheduling on heterogeneous architectures under communication con-
straints,” 2017 International Conference on Embedded Computer Systems: Archi-
tectures, Modeling, and Simulation (SAMOS), Pythagorion, 2017, pp. 239-244.

2. Youen Lesparre. Efficient evaluation of mappings of dataflow applications onto dis-
tributed memory architectures. Mobile Computing. University Pierre et Marie Curie
- Paris VI, 2017. English.

Estimating Throughput for CPS

3. W.N.M Ariffin, ” Task Scheduling for Directed Cyclic Graph Using Matching Tech-
nique,” Contemporary Engineering Sciences, Vol. 8, 2015, no. 17, 773 -788, HIKARI
Ltd.

4. Bodin B., Munier-Kordon A., and De Dinechin, B. D. (2012).,K-periodic schedules
for evaluating the maximum throughput of a synchronous dataflow graph. In 2012
International Conference on Embedded Computer Systems (SAMOS), pages 1521509.

5. De Groote, R., Kuper, J., Broersma, H., and Smit, G. J. (2012). Max-plus algebraic
throughput analysis of synchronous dataflow graphs. In 38th EUROMICRO Con-
ference on Software Engineering and Advanced Applications (SEAA), pages 2938.
IEEE.

6. Benabid-Najjar, A., Hanen, C., Marchetti, O., and Munier-Kordon, A. (2012). Pe-
riodic schedules for bounded timed weighted event graphs. IEEE Transactions on
Automatic Control, 57(5):12221232.

7. O. Marchetti et A. Munier Kordon A sufficient condition for the liveness of weighted
event graphs European Journal of Operational Research,197(2), pp. 532-540, Sept
2009.

8. S. Sriram and S. S. Bhattacharyya, Embedded Multiprocessors: Scheduling and
Synchronization, 2nd ed. Boca Raton, FL, USA: CRC Press, Inc., 2009.

9. C. Hanen : Cyclic scheduling, chapter in Introduction to Scheduling, Y. Robert,
F. Vivien (Eds.), pp. 103-128, (Chapman and Hall/CRC Computational Science),
(ISBN: 978-1420072730) (2009).

10. E. A. Lee, "Cyber Physical Systems: Design Challenges,” 2008 11th IEEE Inter-
national Symposium on Object and Component-Oriented Real-Time Distributed
Computing (ISORC), Orlando, FL, 2008, pp. 363-369.

11. A. Ghamarian, M. Geilen, S. Stuijk, T. Basten, A. Moonen, M. Bekooij, B. Theelen,
and M. Mousavi. Throughput analysis of synchronous data flow graphs. In ACSDO06,
Proc. (2006), IEEE.

12. A. H. Ghamarian, M. C. W. Geilen, T. Basten, B. D. Theelen, M. R. Mousavi and
S. Stuijk, ”Liveness and Boundedness of Synchronous Data Flow Graphs,” 2006
Formal Methods in Computer Aided Design, San Jose, CA, 2006, pp. 68-75.

13. Topcuoglu, Haluk; Hariri, Salim; Wu, M. (2002). ” Performance-effective and low-
complexity task scheduling for heterogeneous computing”. IEEE Transactions on
Parallel and Distributed Systems. 13 (3): 260274.

14. P.-Y. Calland, A. Darte, and Y. Robert. Circuit retiming applied to decom-
posed software pipelining. IEEE Transactions on Paralllel and Distributed Systems,
9(1):2435, 1998.

15. F. Gasperoni and U. Schwiegelshohn. Generating close to optimum loop schedules
on parallel processors. Parallel Processing Letters, 4:391403, 1994.

16. Teruel, E., Chrzastowski-Wachtel, P., Colom, J., Silva, M.: On weighted t-systems.
In: Application and Theory of Petri Nets 1992, pp. 348367 (1992).

17. E. A. Lee and D. G. Messerschmitt, ”Synchronous data flow,” in Proceedings of
the IEEE, vol. 75, no. 9, pp. 1235-1245, Sept. 1987.

