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Abstract. Recent public calls for the development of explainable and
verifiable Artificial Intelligence (AI) led to a growing interest in formal
verification and repair of machine-learned models. Despite the impres-
sive progress that the learning community has made, models such as
deep neural networks remain vulnerable to adversarial attacks, and their
sheer size represents a major obstacle to formal analysis and implemen-
tation. In this paper, we present our current efforts to tackle repair of
deep convolutional neural networks using ideas borrowed from Trans-
fer Learning. Using results obtained on popular MNIST and CIFAR10
datasets, we show that models of deep convolutional neural networks can
be transformed into simpler ones preserving their accuracy, and we dis-
cuss how formal repair through convex programming techniques could
benefit from this process.
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1 Introduction

The need for the development of explainable and verifiable AI has been put for-
ward in a number of public events, e.g., the Workshop on Explainable AI held at
IJCAI 20174, and research programs, e.g., the DARPA program on Explainable
Artificial Intelligence.5 These “calls to arms” did not go unanswered, originat-
ing several related research streams. Among them, particularly vibrant is the
one concerned with automated verification and repair of Deep Neural Networks
(DNNs).

Despite the impressive progress that the learning community has made in
the field, it is well known — see, e.g., [16, 3] — that DNNs can be vulnerable to
adversarial perturbations, i.e., minimal changes to correctly classified input data
that cause a network to respond in unexpected and incorrect ways. Indepen-
dently from the accuracy of a network, the vulnerability to adversarial attacks
calls for techniques to improve robustness and guarantee desired properties. Re-
pair [12, 4, 5] is one such technique, whereby we seek to adjust the parameters

4 http://home.earthlink.net/ dwaha/research/meetings/ijcai17-xai/
5 https://www.darpa.mil/program/explainable-artificial-intelligence



of the network in order to formally guarantee that the network will respond cor-
rectly even in the presence of adversarial perturbations. In practice, the sheer
size of these models still represents a major obstacle to formal analysis of any
kind. Typical state of the art neural networks for tasks like image classification
have more than a hundred millions of parameters [15], which makes off-the-shelf
techniques hardly applicable.

In this paper we focus on the repair of Convolutional Neural Networks
(CNNs), a type of DNN mainly used in computer vision — see [8] for a survey
related to DNN architectures and their applications. In particular, we discuss
our current efforts to repair CNNs using convex programming and ideas bor-
rowed from Transfer Learning (TL) [18]. As posited in [14], the idea is to keep
the convolutional part of the network as a learned feature extractor, and replace
the final classification layer with one featuring less parameters and/or a smaller
model complexity. Noticeably, the replacement may yield networks whose accu-
racy is comparable with the one of the original DNNs, yet more amenable to
formal analysis.

More specifically, we contribute an experimental analysis based on the pop-
ular MNIST6 and CIFAR107 datasets. The first step is to train CNNs on both
datasets and to replace their final fully-connected layer with linear support vec-
tor machines. This step reduces by orders of magnitude the number of free
parameters, e.g., from 4.7 million to 65 thousand in the case of CIFAR10, while
preserving accuracy. We discover adversarial attacks on such “hybrid” models
using the Fast Gradient Sign Method described in [3]. Since we replace nonlin-
ear layers with linear ones, we are able to define a repair procedure as a convex
optimization problem — as done in [4] for kernel-based learning models. The
resulting problem can be solved with off-the-shelf tools — cvxopt8 in our case.
The results we obtain are still preliminary, but show some promise as far as
scaling to networks of larger size is concerned. However, the repair procedure
is not yet general enough to make the networks immune to perturbations other
than those considered by the repair procedure. While this might not be a strong
limitation when considering real-world instead of artificial adversaries — see [2]
— further investigations are needed to confirm whether our method could be
effective for practical applications.

To the extent of our knowledge, this is the first time that TL is leveraged
in order to repair a CNN through convex programming techniques. The idea of
replacing parts of a CNN to improve its performances is not new, as it has been
explored in [14] and [17], among others. However, the focus of these contributions
is to improve the accuracy of the network, rather than providing models whose
properties can be certified more easily than the original one. Trying to apply
formal verification techniques to networks of size smaller than the original could
be done following alternative paths. For instance, in [1] the authors show that it
is possible to find small-sized subnetworks in CNNs which prove to be remarkably

6 http://yann.lecun.com/exdb/mnist/
7 https://www.cs.toronto.edu/ kriz/cifar.html
8 https://cvxopt.org/index.html



Fig. 1. Generic architecture of a fully connected DNN with 3 hidden layers (left) and
graphics representation of a local receptive field (right). The images are taken from [9].

accurate on some datasets including MNIST and CIFAR10. These subnetworks
could be extracted and certified considering our approach or other state-of-the-
art tools like Marabou [6]. Finally, the aim of obtaining networks robust to
adversarial examples, but not necessarily smaller than the original ones, can be
pursued using results in robust training: recent results — see, e.g., [19] — seem
to open this possibility also for CNNs of considerable size.

2 Preliminaries

2.1 Convolutional Neural Networks

According to [7], representation learning “is a set of methods that allows a ma-
chine to be fed with raw data and to automatically discover the representations
needed for detection of classification”. DNNs are representation learning mod-
els characterized by multiple levels of representation, obtained by composing
several non-linear modules. Each module transforms the representation at one
level (starting with raw input) into the next, more abstract, representation. At
the heart of every DNN lie the “classical” neural network modules as shown in
Figure 1 (left) whose mathematical formulation can be expressed in a recursive
form as:

h(1) = Φ(1)(W(1) · x + b(1))

h(i) = Φ(i)(W(i) · h(i−1) + b(i))
(1)

where Φ(i) is the activation function, W(i) ∈ Rdi×di−1 is a matrix of weights and
b(i) ∈ Rdi is the vector of the biases of the i-th layer. h(i) ∈ Rdi corresponds to
the output of the i-th layer and the range of i depends on the number of layers.
A module like this is said to be fully connected, because the weighted sum of the
outputs of each neuron in level i is fed to every neuron in level i+1, creating the
topology shown in Figure 1 (left). CNNs are a specifc kind of DNNs, typically
adopted in computer vision applications, characterized by one or more convo-
lutional modules. The distinctive element of such modules is that they feature
connections for small, localized regions of the input vector, i.e., each neuron of
the hidden layer is connected only to a small subset of the input neurons. This



subset of the input neurons is called local receptive field of the hidden neuron.
A graphical example of a local receptive is depicted in Figure 1 (right). Another
important feature of convolutional modules is that all the local receptive fields
share the same weights and bias reducing the overall number of weights substan-
tially. In practice, each local receptive field is trained to detect a specific feature
in the input image, i.e., distinctive elements of input portions. As a consequence,
in a specific hidden layer, different sets of shared weights are used: each of these
sets is trained to detect specific feature in the image. Usually each convolutional
module is followed by a pooling layer, which simplifies the information received.
For instance, each unit of a pooling layer could take a subset of neurons from
the previous module and select their maximum activation — an operation called
max-pooling. Since our experiments are about image classification, in the follow-
ing we consider a CNN arrangement widely adopted for this task, i.e., a series of
convolutional modules and pooling layers followed by fully connected modules.
The first part of the network can be seen as an application of a (learned) kernel
to the original input whereas the second part can be seen as the actual classifier.
For a more detailed study on Convolutional Neural Networks we refer to [9].

2.2 Transfer Learning

As mentioned in [18], TL is “the improvement of learning in a new task through
the transfer of knowledge from a related task that has already been learned”. TL
has been suggested in the context of deep learning applications — see, e.g., [14]
— where pre-trained models are used as starting points for computer vision or
natural language tasks. Since the training of DNNs requires substantial compu-
tational resources, it is often the case that reusing (parts of) pre-trained models
enables applications which would not be feasible otherwise. For instance, in [14],
a pre-trained convolutional module is extracted from a CNN and then applied
as a feature extractor in the context of an object recognition task where the
paucity of training samples would make training of the full CNN untenable. On
the other hand, combining the pre-trained convolutional module with a newly
trained classifier, makes for an effective combination, enabling to solve classi-
fication tasks that were not within the reach of the original CNN. TL and its
applications suggest the possibility of replacing some modules of a DNN which
are hardly analyzable with formal methods, with others that are more amenable
to such analysis. As long as the accuracy of the resulting network, which we call
hybrid network in the following, is close to the original DNN, one may (i) replace
the original network with the hybrid one and (ii) fix the hybrid one instead of
the original network, should adversarial examples be found also for the hybrid
network. In particular, we build hybrid networks by collating the convolutional
module of a CNN followed by a linear Support Vector Machine (lSVM), i.e., a
classifier based on separating hyper-planes in which the distance of the hyper-
plane from the nearest samples of both classes is maximized. In our experiments
we consider multiclass lSVMs, i.e., in order to discriminate among k classes we
compute k different separating hyper-planes each one discriminating among one
class and the remaining k − 1. The input-output relation of a multiclass lSVM



is defined as follows:
f(x) = W · x + b

y = argmax(f(x))
(2)

where x ∈ Rd is the vector of the inputs, b ∈ Rk is the vector of the biases,
W ∈ Rk×d is the matrix of the weights corresponding to k lSVMs, each working
to detect one of the k classes. The function f(x) is the decision function corre-
sponding to the input x. It contains the signed distances of the input x from
each decision hyper-plane. From the definition of the decision function we can
derive the correct class y for an input x.

3 Repair of hybrid networks

3.1 Hybrid Networks

For the sake of our experiments, we have developed two CNNs and two corre-
sponding hybrid networks for each dataset considered. Given the preliminary
nature of this work the datasets considered are CIFAR10 and MNIST, two of
the most famous basic datasets for image classification. The MNIST dataset con-
tains 60000 black-and-white images of handwritten digits whereas the CIFAR10
dataset contains 60000 color images in 10 different mutually exclusive classes:
both datasets are divided in a training set of 50000 images and a test set of
10000 images.

The network considered for the MNIST dataset (MNIST-NN) is a CNN with
2 convolutional layers, 2 max-pooling layers and 2 fully connected layers. The
convolutional layers have kernel size equal to 5× 5 and stride length equal to 1,
the max-pooling layers have kernel size equal to 2× 2. The two fully connected
layers have 500 and 10 hidden neurons respectively and the inputs of the first
layer are the value generated from 800 neurons of the second max-pooling layer.
The activation functions are all ReLU. The total number of parameters of the
network is 407330 and 99.5% of them are part of the fully connected layers.

The network developed for the CIFAR10 dataset (CIFAR10-NN) is a CNN
with 6 convolutional layers, 3 max-pooling layer and 3 fully connected layers.
The convolutional layers have kernel size equal to 3 × 3, stride length equal to
1, padding equal to 1 and present respectively 32, 64, 128, 128, 256 and 256
different kernels, the max-pooling layers has kernel size equal to 2 × 2. There
is a max pooling layer every 2 convolutional layer. The three fully connected
layers have 1024, 512 and 10 hidden neurons respectively and the inputs of the
first layer are the values generated from 4096 neurons of the third max-pooling
layer. The activation functions are all ReLU. The total number of parameters is
4747904 and 99.5% of them are part of the fully connected layers. The network
considered is similar to the Conv-6 network presented in [1], but our network
features a first convolutional layer with 32 kernels whereas the corresponding
layer of the Conv-6 network has 64 kernels.

In this work we have used PyTorch [10] for the implementation and training
of all the networks. The hybrid networks consist of the union of the convolutional



and max-pooling layers of the original networks with lSVM multiclass classifiers:
in this work we have used off-of-the-shelf implementations provided by scikit-
learn [11]. In particular, both for MNIST-NN and for CIFAR10-NN, we have
designed corresponding linear and non-linear hybrids: the non-linear hybrids
use as kernel the standard radial basis function. We identify the linear hybrids
as MNIST-LH and CIFAR10-LH and the non-linear hybrids as MNIST-KH and
CIFAR10-KH. All networks are trained using standard training parameters rec-
ommended respectively from PyTorch and scikit-learn documentation.

As a preliminary experiment we have analyzed the accuracy gap between
the hybrid models and the corresponding neural networks: for CIFAR10 models
our results are 85.4% (NN), 85.51% (KH) and 85.6% (LH). The accuracies of
the MNIST models are 97.12% (NN), 98.86% (KH) and 98.72% (LH). All the
accuracies were computed as the number of correctly classified images against
all the images of the test sets provided by the MNIST and CIFAR10 reposito-
ries. These figures tell us that, for the MNIST dataset, hybrid models can be
more accurate than the corresponding CNN, with the kernel-based hybrid be-
ing slightly more accurate than the linear one. CIFAR10 is more complex than
MNIST, nevertheless the results still hold.

3.2 Repair

The main idea behind our repair approach is to circumvent the repair of CNNs
and attempt to repair the corresponding hybrid networks instead. To repair hy-
brid networks, we generate adversarial examples for them, and then we solve
an optimization problem in the space of the network’s parameter, with the ob-
jective to reduce as much as possible the impact of the adversaries. In order to
make the optimization problem computationally feasible, we consider the con-
volutional modules of our hybrid models as a fixed feature map and we do not
include their parameters into the optimization problem, but we concentrate on
the final layers instead. In practice, this corresponds to analyzing the network
in feature space, instead of input space — as done in [4]. Owing to this, and to
the fact that fully connected layers of the CNN are substituted by (l)SVMs in
our hybrid networks, the number of free variables for the convex optimization
problem is drastically reduced. For example, in the case of the MNIST models,
we managed to reduce the number of variables from 405510 to approximately
8000.

In this first stage of our work, we decided to further simplify the problem
considered by excluding KH models: in this way it is possible to limit the convex
optimization problem to piece-wise linearity — because of absolute values —
eliminating the need of a non-linear solver or abstraction techniques to manage
the radial basis function kernels. In equation (3) we present the mathematical
definition of our optimization problem: parameters c and d are the number of
possible classes and the number of features of the adversarial sample in the
feature space, respectively; parameters γi,j are the modification on the weights
wi,j of the lSVM model; the variables δi are slack variable necessary to keep
the problem solvable at the price of some error on the prediction of the decision



function for the adversarial sample of interest; finally, yi are the correct values
of the decision function of the lSVM classifier for the adversarial sample and xj
are the features of the adversarial sample of interest in the feature space. All the
variable considered take real values.

min

c∑
i=1

d∑
j=1

|γi,j |+
c∑

i=1

δi

yi − δi ≤
d∑

j=1

(wi,j + γi,j)xj ≤ yi + δi ∀i = 1, ..., c

δi ≥ 0 ∀i = 1, ..., c

(3)

In this case we consider only one adversarial, but the extension of the problem
to the case in which more than one adversarial sample is considered is trivial.
The cost function seeks to minimize the (absolute) variation of the weights of the
lSVM, while satisfying the constraint of bringing the prediction of the decision
function of the adversarial example as close as possible to the correct decision
function. In the case of the CIFAR10 model we need a further simplification:
even with the replacement of the fully connected layers the number of variables
in the convex optimization problem is 40960 and the optimization procedure is
not able to solve the problem. Therefore we decided to apply a feature-selection
procedure on the output of the convolutional layers of our model. For each
feature we consider two set of samples: the first one taken from the original
inputs and the second one taken from the adversarial inputs. We compare the
sets of samples using the Wilcoxon Signed Rank test against the null hypothesis
that the two sets come from the same distribution. The procedure computes the
p-values of the test for each feature and selects the ones which present a p-value
below a given threshold: in our experiments we choose a threshold value of 0.1.
The rationale of our procedure is to retain only the features which are affected
significantly by the adversarial inputs and change only the corresponding weights
in the SVM. After feature selection we manage to reduce the number of variables
of the convex optimization problem below 6000, therefore making the problem
manageable for the solver.

4 Experimental Results

We test our repair procedure on both the MNIST and CIFAR10 datasets, using
the Fast Sign Gradient Method [3] as adversarial attack of choice. In order
to generate adversarial samples for our models we utilize FoolBox [13] which
provides a number of ready-made adversarial attacks. Another advantage of
FoolBox is that it accepts as model to be attacked every valid PyTorch model,
which allows us to attack also our hybrid models without complex workarounds.
In our tests, firstly we analyze the loss of accuracy of our models corresponding
to increasing magnitudes of the adversarial attack. We call the parameter which
control this magnitude ε, and we show our results in figure 2.
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Fig. 2. Accuracies of MNIST-NN, MNIST-LH (above) and CIFAR10-NN, CIFAR10-
LH (below) as ε increases (left) and graphics representation of some adversarial exam-
ples (right).

As it can be expected the accuracies of both the MNIST and CIFAR10 models
drop for increasing values of ε and in general the LH models seem to be more
vulnerable to this kind of adversarial attack. Given that our aim is to repair
the LH models, this is not a limitation for our approach. As it can be observed
in Figure 2 for ε = 0.15 the adversarial perturbation for the MNIST images is
clearly recognizable even if it would not fool a human observer. For the CIFAR10
dataset we consider smaller adversarial perturbations: as can be seen in Figure 2
for ε = 0.025 the models accuracy is already below the baseline.

In our main experiment we analyzed the behavior of MNIST-LH and of
its repaired version (MNIST-RLH) for ε = [0.025, 0.05, 0.075, 0.1, 0.125, 0.15]
and the behavior of CIFAR10-LH and of its repaired version (CIFAR10-RLH)
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Fig. 3. Accuracies of the NN, LH and RLH models computed on different test sets of
interest (MNIST above, CIFAR10 below). All the accuracies are computed for increas-
ing values of ε.

for ε = [.001, .005, .01, .015, 0.02, 0.025]. More specifically, for each ε, we com-
pute the accuracies of the LH, NN and RLH models on the following test
sets: MNIST/CIFAR10 test set (Data), MNIST/CIFAR10 test sets in which
all the images for which we found a corresponding adversarial example have
been replaced with the adversarial example. Since the adversarial attack is
model-dependent, the latter test set corresponds to three different sets com-
puted on MNIST/CIFAR10-NN (NADV), MNIST/CIFAR10-LH (HADV) and
MNIST/CIFAR10-RLH (RHADV).

In figure 3 (left) it is possible to see how repair affects the accuracy of the
models both with respect to adversarial samples only (ADV) and with respect
to the original test set (Data). In the case of MNIST, even considering only



one adversarial in the optimization problem (3), the resulting model (MNIST-
RLH) manages to generalize also on other adversarial examples, e.g. it manages
to classify correctly at least 20% of the adversarial examples. In the case of
CIFAR10, even if the repaired model is more accurate than the original one
with respect to the adversarial samples the improvement is not substantial; in
our opinion this is due to the fact that both the model and the dataset are
more complex than the ones in MNIST. In figure 3 (right) it is also possible
to see how the accuracy of the RLH models compares with the accuracies of
the LH and NN ones with respect to the datasets NADV and HADV: from the
images on the right it is clear that, while the repaired model is more robust to
the adversarial sample computed on the non-repaired model, it has not acquired
robustness against adversarial attacks in general. Moreover, it appears clear that
the original model (NN) is still more robust to adversarial attacks. From the same
images it is also possible to see that, as the RLH models are somewhat robust
with respect to the adversarial example computed on the LH ones, so the LH
models are somewhat robust with respect to the adversarial example computed
on the RLH ones. This result suggests that the adversarial examples computed on
the LH and RLH models belong to different categories of adversarial examples.
This phenomenon requires further investigation to be confirmed.

5 Conclusions and Future Work

The main idea presented in this paper is to study the safety of DNNs in a ”mod-
ular” fashion using techniques adopted from transfer learning. In particular, we
consider how the properties of CNNs change if we swap the fully connected
module with lSVMs obtaining hybrid networks. Our results confirm that such
swap does not impact on the accuracy in a relevant manner, while making repair
of hybrid networks feasible using a relatively simple encoding in a convex opti-
mization problem. Adversarial examples can be found on hybrid networks more
easily than on the original network: this result conforms to the hypothesis about
the nature of adversarial examples presented in [3]. Our experimental results
on MNIST show that, even using very few adversaries, the repair procedures
manage to provide a model which presents an acceptable generalization on all
the adversaries computed using the original hybrid model. On the other hand,
our results on CIFAR10 show a more intricate picture, one in which the repaired
network can be made robust against specific adversaries but generalization is
still not completely achieved.

Given the results obtained from this work, our future lines of research will
concentrate on understanding the properties of categories of adversarial samples
in hybrid convolutional-lSVM networks and adding verification-driven kernels to
our SVMs in order to obtain robust hybrid convolutional-SVM networks. More-
over, we will try to extend our work in order to repair CNNs without swapping
away the fully connected modules and to explain how adversarial attacks affect
the convolutional part of the networks and therefore the input in the feature
space.
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