CEUR-WS.org/Vol-2457/6.pdf

Automated Design of Complex Systems with
Constraint Programming Techniques

Stefano Demarchi', Marco Menapace?, and Armando Tacchella?

! Dipartimento di Chimica e Farmacia, Universitd degli Studi di Sassari
Via Vienna, 2 - 07100 Sassari, Italy
sdemarchi@uniss.it
2 DIBRIS, Universita degli Studi di Genova
Via Opera Pia, 13 - 16145 Genova, Italy
armando.tacchella@unige.it marco.menapace@edu.unige.it

Abstract. Automated design and configuration of complex systems is
well established as a research topic, specifically for constraint program-
ming. In order to encode “quality of design” rules, i.e., preferences about
the final outcomes, the encoding must be completed with optimization
capabilities. Based on experience in the configuration of elevator systems
we present a research agenda to develop methods and tools which should
be able to leverage constraint solvers in order to compute designs for
complex systems that can compete with the ones produced by humans.
Besides elevator systems, we propose to evaluate the methodology and
the tools on other case studies, e.g., hardware configuration or heating-
ventilation and air conditioning systems.

Keywords: Product configuration, Product design, Constraint program-
ming, Computer-automated Design

1 Introduction

In this paper we present and discuss the intention to build a tool able to handle
both configuration and design, e.g, in the terms of “quality” of the configuration
satisfaction [1] relying on the principles of constraint programming. This tool
would automate both configuration — where given a system and associated con-
straints it is produced, if possible, a feasible result — and design — the actual
step forward in the state-of-the-art. This “high-level configurator” could help
non-programmers to experiment with a model by dynamically adding, remov-
ing or editing configuration constraints. In order to achieve this interactivity,
a framework allowing models representation and custom configurations is cru-
cial. In the end, the software ideally would not require expensive patches due
to changes in requirements but could be reconfigured just by changing the en-
coding. The formulation we propose in order to achieve this goal is based on
Satisfiability Modulo Theories (SMT for short) [2]. To the extent of our knowl-
edge, SMT provides enough expressiveness to encode the configuration task as
the feasibility of a set of constraints. Using SMT instead of, e.g., mathematical

Copyright (©2019 for this paper by its authors. Use permitted under Creative Commons License Attribution 4.0 Interna-
tional (CC BY 4.0).

S. Demarchi et al.

programming, or constraints solving, gives us more flexibility in the choice of the
encodings, which can include a variety of (decidable) theories in first order logic,
combined through a Boolean structure. SMT can be extended with theories of
cost yielding Optimization Modulo Theories (OMT for short) [3]. Using an OMT
solver we can deal with both feasibility and optimality target at the same time,
i.e., we can handle both configuration and design tasks with a single engine. The
key idea is to encode the design problem into (i) a set of constraints on some
decision variables, and (ii) a cost function that expresses “quality-of-design”
rules.

In Section 2, after a short context definition, we focus on elevators domain,
which is our success story covered in Section 3. Encouraged by our results, we
propose in Section 4 a detailed roadmap for the development of an automated
configuration tool. Finally, in Section 5 we draw some conclusions on both the
work carried out until now and the methodologies for future contribution.

2 Motivation

2.1 Context

Product configuration has been a fruitful topic of research in Artificial Intelli-
gence (Al) since 1970, and also became a commercially successful application of
AT techniques. In the recent past, review and survey papers have been reported.
With focus on specific topics on product configuration, these papers provide
rich information and knowledge in the corresponding areas, such as configura-
tion benefits and challenges, configuration modeling and solving, configuration
knowledge handling and industrial cases, managerial issues related to configura-
tion in practice and theory testing of product configuration with respect to time
and quality performance. [4]

Configuration problems have been treated also as a class of constraint satis-
faction problems (CSPs) — see, e.g., in [5] or [6] — appearing extremely suitable
for treating a design task. In this setup, both the model and its feasibility can
be mapped with a CSP model and relative constraints. In a static configuration
problem, the decision variables, the domain and the constraints are known in
advance and fixed, therefore the problem of configuration solving can be encoded
as a (standard) CSP — see, e.g., [7]. In a dynamic configuration problem, de-
pending on the assignment to the corresponding decision variable, a component
may have a varying number of properties, whose existence is triggered by activ-
ity constraints. Handling dynamic configuration tasks requires generative CSP
(GCSP) formulations® introduced in [9] specifically to handle dynamic configu-
ration solving.

Satisfiability Modulo Theories is the problem of deciding the satisfiability
of a first-order formula with respect to some decidable theory 7. In particular,
SMT generalizes the boolean satisfiability problem (SAT) by adding background
theories such as the theory of real numbers, the theory of integers, and the

3 GCSP is also defined as Conditional CSP in [8] and Dynamic CSP in [9].

Automated Design of Complex Systems

theories of data structures (e.g., lists, arrays and bit vectors) — see, e.g., [2] for
details. To decide the satisfiability of an input formula ¢ in conjunctive normal
form, SMT solvers typically first build a Boolean abstraction abs(y) of ¢ by
replacing each constraint by a fresh Boolean variable (proposition), e.g.,

o x>y AN(y>0Vve>0)Ay<0
~—— N~ S~ ——
abs(p): A A(B v C)A -B

where and y are real-valued variables, and A, B and C are propositions. A
propositional logic solver searches for a satisfying assignment S for abs(¢), e.g.,
S(A) =1, S(B) =0, S(C) =1 for the above example. If no such assignment
exists then the input formula ¢ is unsatisfiable. Otherwise, the consistency of the
assignment in the underlying theory is checked by a theory solver. In our example,
we check whether the set {z >y, y <0, = > 0} of linear inequalities is feasible,
which is the case. If the constraints are consistent then a satisfying solution
(model) is found for . Otherwise, the theory solver returns a theory lemma
wg giving an explanation for the conflict, e.g., the negated conjunction some
inconsistent input constraints. The explanation is used to refine the Boolean
abstraction abs(p) to abs(p) A abs(pg). These steps are iteratively executed
until either a theory-consistent Boolean assignment is found, or no more Boolean
satisfying assignments exist.

Adding theories of cost to SMT yields Optimization Modulo Theories (OMT),
an extension that finds models to optimize given objectives through a combina-
tion of SMT and optimization procedures [3]. For example,

p:x>yAN(y>0ve>0)Ay<0
ming ,(z + y)

requires all the constraints in ¢ to be satisfied and the additional cost + y to
be minimized. Notice that OMT extends classical formulations in mathematical
programming, e.g., linear programming or mixed integer linear programming,
since it allows Boolean structure to be taken into account together with the
optimization target. OMT solvers have been developed for several first-order
theories like, e.g., those of linear arithmetic over the rationals (LRA) or the
integers (LIA) or their combination (LIRA).

2.2 A primer on elevator systems

Elevator systems are characterized by different lifting mechanisms, e.g., ropes
and pistons, and different setups, e.g., one or two pistons, presence or absence of
counterweights, and dedicated machine room versus in-plant machine room. In
our work we focused on hydraulic elevators (HEs), which operate on hydraulics,
i.e., they rely on one or more pistons to move the car. Energy is usually pro-
vided to the hydraulic fluid by an electrically driven pump, and typically no
counterweight is needed to compensate for the weight of the car. Their low ini-
tial costs, compact footprint and ease of installation makes them a viable choice

S. Demarchi et al.

for retrofitting old residential buildings, and a cost-effective solution for new ones
alike. The choice of HEs as a case study is thus motivated by their popularity
in low-rise applications, and by the fact that, in spite of their relative low part
count, their structure presents already most of the challenges that are to be
found in this domain.

3 Elevator Design

3.1 Model

Figure 1 shows the top view of a technical drawing produced by our tool
LiFTCREATE?. The enclosure space in which all components are placed is the
shaft, and the car is sustained on the left by the car frame, a mechanic gear
that runs thanks to a vertical piston and a set of ropes on a pulley. At the
bottom of the drawing it is visible a pair of doors with three sliding panels each,
namely the car door at the top and the landing door at the bottom. The car
door is one for the whole elevator, and runs with the car, while there is one
landing door for each floor. The car frame and the car-landing door pair are the
components upon which the whole elevator design hinges. The reference system
origins from the top left corner of the shaft and the y axis is inverted with respect
to canonical Cartesian systems. In the drawing we can see that the car frame
structure is comprised of the brackets — visible in the picture as wall-mounted
T-shaped supports — which support the car rails on which the car frame core
gear runs. The car frame base point, i.e., the insertion point of the car frame
structure in the drawing, lies on the outer corner of the topmost bracket and it
is marked with a circle. The coordinates (z.f, yof) of the car frame base point
determine a specific placement of the structure. The overhang of the car with
respect to the car frame is the distance from the car walls to the car frame core
gear; dcr is the distance between the car rails, i.e., the size of the core gear.
The base point of the car door is denoted as (24, yeq) and the base point of the
landing door is denoted as (x4, y1q4): they are always at the top left corner of
the corresponding structure. The value of these coordinates represent a specific
placement of the car-landing door pair. The opening of the car is the available
space when entering the elevator and it is surrounded on the landing door by
the frame, i.e., the structure that surrounds the entrance to the car. The door
structure is divided in two parts starting from the midpoint of the opening, in
which we distinguish a left azis from a right axis.

In Tables 1 and 2 we summarize all the quantities involved in the elevator
configuration problem, highlighting the actual decision variables and the param-
eters that are related to the components database.

4 Part of the AILIFT suite available upon request at http://www.ailift.it. AILIFT is a
web-based application for the automated design of elevator systems.

Automated Design of Complex Systems

A__I_
T

_—
—‘ Interno 810
: overhang

(o 1) [
| : »
T] Superficie 0,931
I Portata 375
| Persone 4 p.
4
| O
| der Ly
i
—
ML
\ 7_/;' E
3> o
[=
s
[
[
=
[
L

overhang

750 60,

Fig. 1. Top view of a configured HE. The shaft is outlined by a gray enclosure in which
the components are placed. This elevator has the car frame on the left side and a single
door which opens on the bottom of the drawing. The opening area is outlined in the
bottom car wall.

3.2 Encoding

Those components must satisfy a set of constraints that guarantee the design
compliance with respect to directive 2014/33/EU and related EN 81-20/81-50
norms. The problem of configuring this kind of system is that for both car frame
and doors are selected from a database of existing components from different
vendors and with different parameters.

Feeding a constraint solver with the domain outlined before yields a feasible
configuration, if any. We may as well be interested in enumerating feasible con-

S. Demarchi et al.

Table 1. Explanation of the decision variables

Symbol|Description
Zef, Yer |Car frame base point coordinates

Zed, Yed|Car door base point coordinates
T14, Yid|Landing door base point coordinates

Zear, Year|Car base point coordinates
Wear, deqr|Car width and depth

Table 2. Explanation of the design parameters

Symbol|Description
Tshaft, Yshart|Shaft base point coordinates
Wshaft, dshaft|Shaft width and depth

red[n,g,s,w)|Distance between shaft and car walls (North, East, South, West)
cwt|y, g,s,w]|Car wall thickness (North, East, South, West)

wcs|Distance from z.; to the left car wall
d.r|External distance between car frame rails
Ygear|Core gear placement with respect to the car frame base point
dpr|External depth of the car frame bracket from the base point
der|Distance between car rails
maxon|Maximum car overhang that the car frame is able to sustain

opening|Doors opening
lacd, Tacq|Left and right axis size (car door)
laiq, raiqa|Left and right axis size (landing door)
stepeqa|Car door step
stepiq|Landing door step
dstep|Distance between doors
W frame|Landing door external frame width

figurations, or in pinpointing “optimal” configurations, i.e., designs which have
desirable properties according to some best principles and practices in elevator
engineering. In Table 3 we show a quick summary of the combinations among
feasibility (SAT) and optimality (OPT) targets with search for a single assign-
ment (Search) and enumeration of configurations (Enum). The two questions
that we found most relevant for practical purposes are feasibility and optimality
in a search context. Checking whether a feasible configuration exists is useful
in all the cases in which the size of the shaft and/or a restricted availability of
components makes the design hardly feasible. Finding an optimal configuration,
assuming that several alternative configurations exists, is about stepping from
plain configuration problems to full-fledged automated design. However, in order
to achieve optimality, we need to instruct the solver not just about what cannot
be done, but also about what should be done to obtain a “good” configuration.

Automated Design of Complex Systems

Table 3. Alternative configuration problems.

Search Enum

How many feasible configurations are
SAT |Is there a feasible configuration? |there for each choice of car frame and
door?

What is the optimal configuration for

OPT|Is there an optimal configuration?
P & each choice of car frame and door?

We encoded this configuration problem with the SMT formalism, not only
providing the feasibility constraints but also connecting the system with the com-
ponents database; in this way, the solver has the duty to select those components
(car frame and doors) whose parameters allow a feasible (possibly optimal) de-
sign. This encoding is embedded in a Java application which orchestrates at an
higher level the components relationships — the whole problem is still bigger
than this module — and provides database transactions and drawing services.

4 Research roadmap

In order to extend our work towards system-independent design, we need to
build a framework in which the configurator is accompanied by another system
providing the correct interpretation and translation of a generic model in a set
of variables, constraints and cost function(s).

Ontology-based modeling is widely used in order to build consistent models
from a structured description of a system: Ontology Web Language (OWL) [12]
grants the modeling capabilities to express the structure of any system [13] [14]
[15] and should help interfacing the core configurator with any model described
in this way. With this model interface we will build a first prototype of the core
configurator using our elevator configurator as a baseline.

As soon as the system implementation will be adequately ready, an experi-
mental analysis campaign will test the prototype development. The availability
of a research prototype will enable such analysis, targeted to assess the qual-
ity of the proposed solution. We expect interactions between experimental part
and implementation part in a sense that implemented techniques may be sub-
ject to modifications and refinements based on the experimental findings. From
this prototype release on, another test campaign will accurately cover the quality
and correctness of the application. The evaluation will be carried out considering
computational times as well as evaluation of the computer generated configu-
ration designs by human experts of the model tested, in order to also assess
the quality and correctness of the generated solutions. In order to provide re-
liable benchmarks we will test the prototype on our well-known application of
elevators, but we also identified more uncorrelated domains like hardware con-

S. Demarchi et al.

figuration and heating/ventilation systems. Hardware configuration refers to the
problem of choosing, connecting and verifying a set of components considering
multiple constraints related to physical occupancy, power consumption, equiv-
alent circuits and memory availability just to mention some, and the domain
also allows the re-configuration of an already configured system where some
constraints change and some components can change their connections. Heat-
ing/ventilation systems, on the other hand, are likely to present few constraints
related to the number of machines and their parameters but pose a more impor-
tant weight on the optimization of, e.g., number of radiators, power consumption,
overall cost.

At the end of experimental analysis we expect that the prototype will be
able to produce feasible configurations of a given system and will be comparable
with other constraint expression solutions. The ideal conclusion of the proposed
system is the implementation of an interactive interface, i.e., making possible to
interactively add, remove or edit constraints to the model in analysis. With this
feature the system would then let the user experience a complete and controlled
design process in which not only hard, model-relative feasibility constraints are
present but it is also possible to add custom refinements on the fly.

5 Conclusion

In the context of our LIFTCREATE design automation tool, we presented a
constraint-based encoding to solve configuration and design for hydraulic eleva-
tors, which proved successful and pushes us to continue the integration of such
methodology until the — possibly — complete design process with constraint-
based formulations.

This success story leads to our agenda toward a model-independent auto-
mated configurator for both configuration and design targets, creating a frame-
work in which a generic model expressed in an almost standard language can be
interpreted, translated in the core formulation and processed in order to obtain
a design for the requested cost function.

References

1. David C. Brown. Defining configuring. Artificial Intelligence for Engineering De-
sign, Analysis and Manufacturing, 12(4):301-305, 1998.

2. Robert Nieuwenhuis, Albert Oliveras, and Cesare Tinelli. Solving sat and sat
modulo theories: from an abstract davis—putnam—logemann—loveland procedure to
dpll (t). Journal of the ACM (JACM), 53(6):937-977, 2006.

3. Roberto Sebastiani and Patrick Trentin. On optimization modulo theories,
maxSMT and sorting networks. In International Conference on Tools and Al-
gorithms for the Construction and Analysis of Systems, pages 231-248. Springer,
2017.

4. Linda L Zhang. Product configuration: a review of the state-of-the-art and future
research. International Journal of Production Research, 52(21):6381-6398, 2014.

10.

11.

12.

13.

14.

15.

Automated Design of Complex Systems

SM Fohn, JS Liau, AR Greef, RE Young, and PJ O’grady. Configuring computer
systems through constraint-based modeling and interactive constraint satisfaction.
Computers in Industry, 27(1):3-21, 1995.

Michel Aldanondo, Khaled Hadj-Hamou, Guillaume Moynard, and Jacques
Lamothe. Mass customization and configuration: Requirement analysis and con-
straint based modeling propositions. Integrated Computer-Aided Engineering,
10(2):177-189, 2003.

Francesca Rossi, Peter Van Beek, and Toby Walsh. Handbook of constraint pro-
gramming. Elsevier, 2006.

Mihaela Sabin, FEugene C Freuder, and Richard J Wallace. Greater efficiency for
conditional constraint satisfaction. In International Conference on Principles and
Practice of Constraint Programming, pages 649—-663. Springer, 2003.

Sanjay Mittal and Brian Falkenhainer. Dynamic constraint satisfaction. In Pro-
ceedings eighth national conference on artificial intelligence, pages 25-32, 1990.
Clark Barrett and Cesare Tinelli. Satisfiability modulo theories. In Handbook of
Model Checking, pages 305—-343. Springer, 2018.

Arnaud Hubaux, Dietmar Jannach, Conrad Drescher, Leonardo Murta, Tomi Man-
nisto, Krzysztof Czarnecki, Patrick Heymans, Tien Nguyen, and Markus Zanker.
Unifying software and product configuration: A research roadmap. Proceedings of
the 2012 International Conference on Configuration - Volume 958, 2012.
Deborah L McGuinness, Frank Van Harmelen, et al. Owl web ontology language
overview. W3C recommendation, 10(10):2004, 2004.

Liana Razmerita, Albert Angehrn, and Alexander Maedche. Ontology-based user
modeling for knowledge management systems. In Peter Brusilovsky, Albert Cor-
bett, and Fiorella de Rosis, editors, User Modeling 2003, pages 213-217, Berlin,
Heidelberg, 2003. Springer Berlin Heidelberg.

Ming Dong, Dong Yang, and Liyue Su. Ontology-based service product config-
uration system modeling and development. FEzpert Systems with Applications,
38(9):11770 — 11786, 2011.

X. H. Wang, D. Q. Zhang, T. Gu, and H. K. Pung. Ontology based context model-
ing and reasoning using owl. In IEEE Annual Conference on Pervasive Computing
and Communications Workshops, 2004. Proceedings of the Second, pages 1822,
March 2004.

