
Enhanced Cyber-Physical Security through
Deep Learning Techniques∗

Mayra Macas and Wu Chunming

Department of Computer Science, Zhejiang University, No.38, Zheda Rd, Zhejiang
310000, PR China

{mayramacas11,wuchunming}@zju.edu.cn

Abstract. Nowadays that various aspects of our lives depend on com-
plex cyber-physical systems, automated anomaly detection, as well as
attack prevention and reaction have become of paramount importance
and directly affect our security and ultimately our quality of life. Re-
cent catastrophic events have demonstrated that manual, human-based
management of anomalies in complex systems is not efficient enough, un-
derlying the importance of automatic detection and intelligent response
as the recommended approach of defence. We proposed an anomaly de-
tection framework for complex systems based on monitored data storage
and Statistical Correlation Analysis for different pairs of constituent time
series of a multivariate time series segment, and unsupervised deep learn-
ing to intelligently distinguish between normal and abnormal behavior of
the system. Experimental results demonstrate that the proposed model
is much better than baseline methods, and it can model (inter)correlation
and temporal patterns of multivariate time series effectively.

Keywords: Anomaly detection · Critical Infrastructures · Deep Learn-
ing.

1 Introduction

Cyber-Physical Systems (CPS) comprise a new generation of sophisticated sys-
tems whose normal operation depends on robust communications between their
physical and cyber components. Such systems have become vital for several
industrial sectors, including water treatment and distribution plants, electrical
power grids, public transportation systems, oil refineries, and many more. As the
deployment of Internet of Things (IoT) is undergoing an exponential increase,
a rise in CPS applications for a large variety of tasks is also observed, result-
ing in many systems and devices communicating and working autonomously
over networks. At the same time, CPS and IoT also increase the likelihood of
cyber-security vulnerabilities and incidents, as pointed out in the annual state-
ments issued by the European Agency for Network and Information Security
(ENISA) [1] and the Industrial Control Systems Cyber Emergency Response
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Team (ICS-CERT) [2], where exploits of the heterogeneous communication sys-
tems in charge of managing and controlling complex environments are presented
and discussed. From the cybercriminals’ perspective, the use of CPS constitutes
a unique opportunity to cause maximum damage with minimum effort [3]. In
recent years, many attempts to stealthily exploit CPS of important sectors have
occurred, such as the attack on the power grid in Ukraine [4], the Maroochy
water breach [5], the Stuxnet worm in Iranian nuclear plant [6], the Triton mal-
ware on the Saudi oil company [7], and a growing number of attacks on energy
networks [3].

Considering that the services provided by such systems are important for
the well-being of the community, CPS can be classified as Critical Infrastruc-
tures (CI) [3]. Consequently, their flexibility and resilience against cyber-attacks
has been a primary concern. Indeed, attacks that could corrupt or disrupt the
rendered services would have a negative impact in the context of public safety
and order, financial losses and environmental damage. Therefore, the ability to
detect sophisticated cyber-attacks on the increasingly heterogeneous nature of
the CPS that is amplified by the arrival of IoT has become a crucial task. In
this paper, we focus on an unsupervised machine-learning based anomaly detec-
tion approach, based on which we attempt to detect anomalous behavior of the
system at the physical level.

Popular solutions for anomaly detection such as Statistical Process Con-
trol (SPC) [8] methods like cumulative sum (CUSUM), Exponentially Weighted
Moving Average (EWMA) and Shewhart charts are not able to cope with the
increasingly heterogeneous nature of the CPS with the arrival of IoT. As a re-
sult, researchers have moved beyond specification or signature-based techniques
and have begun to leverage both supervised and unsupervised machine learn-
ing techniques to develop more intelligent and adaptive methods for big data,
in order to identify anomalies or intrusions [9]. However, even with the use of
machine learning techniques, the detection of anomalies in time series remains
a demanding task. First, while the supervised techniques require a sufficient
amount of labeled normal data and anomaly classes to learn from, anomalies
are typically scarce in a real environment. Second, most of the existing unsuper-
vised methods, such as distance/clustering methods [10] and temporal prediction
methods [13], may still not be able to effectively recognize anomalies due to the
following reasons: (i) The existence of temporal dependencies in multivariate
time series. Distance/clustering methods (e.g., k-Nearest Neighbor (kNN) [10])
and classification methods (e.g., One-Class SVM [11,12]) cannot capture tem-
poral dependencies across different time series. (ii) Multivariate time series data
often contain noise in real environment applications. When the noise grows mod-
erately severe, it can affect the generalization ability of temporal prediction
models (e.g., LSTM-RRN [13]), causing the false positive detection rate to in-
crease. Fig. 1. illustrates a high-level overview of the proposed anomaly detection
framework for complex systems that aims to address the aforementioned chal-
lenges. Based on monitored data storage and Statistical Correlation Analysis for
different pairs of constituent time series of a multivariate time series segment,



Fig. 1: Anomaly detection representation

we employ unsupervised deep learning to intelligently distinguish between ”nor-
mal” and ”abnormal” behavior of the system. More precisely, we propose an un-
supervised deep learning approach based on Spatial-Temporal Encoder-Decoder
scheme for Anomaly Detection in a complex multi-process CPS that builds upon
the trained Convolutional Neural Network Autoencoder (CNN-AE) and Convo-
lutional LSTM EncoderDecoder (ConvLSTM-ED) models. In greater detail, we
first construct correlation matrices to characterize the system status. Next, a
convolutional encoder is employed to encode the patterns of the correlation ma-
trices, whereas a ConvLSTM-ED model captures the underlying temporal depen-
dencies. Finally, the convolutional decoder is used to reconstruct the correlation
matrices and is leveraged in order to detect anomalies. The central idea is that
the model will be trained only with normal data and will learn to accurately re-
construct the respective matrices. When given an anomalous instance, it is not
expected to reconstruct it equally well, and this will result to higher reconstruc-
tion errors compared to the ones of normal instances. Therefore, these errors can
be used to separate normal from abnormal behaviors. Our primary contributions
are the following: (i) We design an intelligent system, which is trained to detect
anomalies in complex multi-process cyber-physical systems and is built upon
Convolutional Neural Network Autoencoder and Convolutional LSTM Encoder-
Decoder. (ii) We conduct extensive performance evaluation on the Secure Water
Treatment (SWat) testbed [14]. Our preliminary results demonstrate the supe-
rior performance of the proposed model compared to state-of-the-art baseline
methods.

2 Related works

Unsupervised learning techniques aim to identify the hidden structure of unla-
beled data. Given that these techniques can handle a large dataset in addition to
their simplicity, they have been extensively employed in the most recent studies
on CPS intrusion detection [16]. The SVM-based one-class (OCSVM) classi-
fier [11,12] and k-means clustering algorithms are used in [10]. Nevertheless,
distance/clustering methods and the OCSVM classifier ignore the temporal de-
pendencies that exist between anomalous data points [15] and are vulnerable
to false alarms. Goh et al. [13] used deep LSTM-RNN and Cumulative Sum



(CUSUM) to detect anomalies on the first stage of the SWAT dataset. However,
this approach is not suitable for time series affected by external factors not cap-
tured by sensors, making them unpredictable [17]. Inoue et al. [11] conducted a
study based on OCSVM. The research was carried out on all six stages of the
SWaT dataset. The axuthors used a complex structure that treats sensors and
actuators separately, in which the outputs of the LSTM layer are used to predict
the outcome of the actuators. The predictions are combined with actual values
and are fed into a fully connected hidden layer to predict the mean value and
variance of the first sensor. This process is repeated for the remainder of the
sensors, and then the sum of the log likelihoods of the actuator positions and
sensor values gives the outlier factor used for anomaly detection. The proposed
architecture is complex, challenging to understand and resource demanding.

Recently, Kravchik et al. [18] used two deep neural network models: 1D-
convolutional (CNN) and recurrent neural network (LSTM), in order to detect
cyber-attacks on all six stages of the SWAT dataset. The authors assert that
the model with ensembled record reports rates of 86.7%, 85.4% and 86.0% for
precision, recall, and F1 score, respectively. Nevertheless, the attack detection
was performances at each stage separately, therefore the ways to learn inter-stage
dependencies (including time dependencies) were not examined.

3 Secure Water Treatment (SWaT) testbed dataset

The Secure Water Treatment (SWaT) testbed [14] was designed to provide re-
searchers with data collected from a realistic, complex CPS environment. The
SWaT testbed is an operational small-scale water treatment plant that supplies
purified water. The water purification method in the testbed is divided in six
stages denoted P1 through P6. Each stage has a series of sensors and actuators.
The P1 stage is for raw water supply and storage, and P2 is for pre-treatment
where the water condition is evaluated. Undesired substances are then eliminated
by ultra-filtration (UF) backwash in P3. The residual chlorine is eliminated dur-
ing the Dechlorination process (P4). Subsequently, the water from P4 is pumped
into the Reverse Osmosis (RO) system (P5) to decrease inorganic impurities. Fi-
nally, P6 stores the water that is suitable for distribution and consumption. The
sensors and the actuators at each phase are connected to the corresponding PLC
(programming logic controller), and the PLCs are connected to the SCADA (Su-
pervisory Control and Data Acquisitions) workstation.

The data from 51 sensors and actuators were recorded every second by the
Historian Server. The SWaT dataset contains seven days of capturing under nor-
mal operating conditions and a four-day-long recording during which 36 attacks
were carried out. The attack model used in the experiment simulated a system
that was already affected by attackers, who proceed to interfere with normal
system operation and spoof the system state to the PLCs, thus causing incor-
rect commands by modifying the network traffic in the level 1 network, raising
the sensors’ values and issuing fake SCADA commands. The dataset includes
attacks that aim at a single stage of the system, as well as attacks targeting



simultaneously multiple stages. Furthermore, similar varieties of sensors (or ac-
tuators) tend to react to attacks in similar fashions. The above observations
suggest we should assume a multivariate approach during model formulation,
instead of considering each sensor or actuator in the CPS as an independent
data source (univariate approach). The underlying correlation between the sen-
sors and actuators could be applied to accurately recognize irregularities in the
system.

4 Proposed Framework

In this section, we first introduce the problem we aim to study, and then we
describe the proposed model in detail.

4.1 Problem statement

Suppose we have the historical data of n time series, i.e., X = (x1,x2, · · · ,xn)ᵀ =
(x1,x2, · · · ,xL) ∈ Rn×L, where L is the size/length of the time series. Under
the assumption that there are no anomalies in the historical data, the model
aims to detect anomalous events at certain time steps after L.

4.2 Statistical Correlation Analysis

Following the suggestions of many recent studies [20,21], we apply statistical
correlation analysis between different pairs of time series in a multivariate time
series segment to characterize the system. In particular, we construct a n × n
correlation matrix based on Pearson’s correlation coefficient. Given two time
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where x̄i and x̄j represent the sample means of the two time series. In order to in-
vestigate the effect of characterizing system status in different scales (or different
sequences length) during anomaly detection different lengths of sequences were
tested in the experimental phase. Since the SWaT data were recorded every sec-
ond, we built the correlation matrices with window lengths of ` = {90, 120, 150}
(i.e., data collected within 1.5 2 and 2.5 minutes) at each time step. In this study,
the interval between the starting time of two consecutive segments is s = 10.

4.3 Spatial-Temporal Encoder-Decoder scheme

The Spatial-Temporal Encoder-Decoder (ST-ED) scheme is adapted from the
architecture proposed in [19]. The model combines a convolutional autoencoder



[22], which learns the spatial structure of each correlation matrix, with a ConvL-
STM Encoder-Decoder [23] that captures the temporal dependencies from the
learned spatial feature maps of every time step. Fig. 2. (left) depicts the core of
our approach.

Fig. 2: (Left)the proposed Deep Learning Security Module with Input Subsequences
of Length equal four. The blue and light blue denote convolution and deconvolution
respectively. The orange boxes represent ConvLSTM. (Rigth) spatial view of our model.

Convolutional LSTM Units: the regular LSTM applies vector multiplications
on the input elements. That is, it treats the input as vectors and it vectorizes the
input feature map. The statistical correlation matrices, however, are composed
of both spatial and temporal components. Given that no spatial information is
considered by the LSTM, the results of such an application could be subopti-
mal. In order to conserve the spatiotemporal information, the fully connected
multiplicative operations of the input-to-state and state-to-state transitions are
substituted by convolutions in ConvLSTM [23], namely:

it = α(Wxi ∗X t + Whi ∗Ht−1 + Wci � Ct−1 + bi) (2)

ft = α(Wxf ∗X t + Whf ∗Ht−1 + Wcf � Ct−1 + bf ) (3)

Ct = ft � Ct−1 + it � tanh(Wxc ∗X t + Whc ∗Ht−1 + bc) (4)

ot = α(Wxo ∗X t + Who ∗Ht−1 + Wco � Ct−1 + bo) (5)

Ht = ot � tanh(Ct) (6)

where it, ft, ot represent the input, forget, and output gates at time t respec-
tively; Ct, and Ht denote the cell outputs and the hidden states at time t; α()
and tanh() are the sigmoid and hyperbolic tangent non-linearities; � denotes the
Hadamard product; * expresses the convolution operation; Wh• are the filter ma-
trices connecting different gates, and bh• are the corresponding bias of filters. All
the inputs X 1, · · · ,X t, cell outputs C1, · · · ,Ct, hidden state H1, · · · ,Ht, and
gates it, ft, ot are 3D tensors whose last two dimensions are spatial dimensions



(rows and columns). Furthermore, this convolutional version also adds optimal
peephole connections that enable the units to derive past information better.
The advantages of ConvLSTM over regular LSTM are related to the advantages
of convolutional layers compared to linear layers: they are suitable for learning
filters, valuable for spatially invariant inputs, and they require less memory for
the parameters. The memory needed is independent of the size of the input.

As shown in Fig. 2. (right), our model consists of three ConvLSTM lay-
ers and the Convolutional auto-encoder is used to reconstruct the correlation
matrices. The employed loss function is the mean square error (MSE) between

the prediction result and ground truth for N time steps: 1
N

∑N
t=1

[
Xt − X̂t

]2
.

We use mini-batch stochastic gradient method together with Adaptive Moment
Estimation (Adam) method [27] to minimize the mean square loss function.
After training the model, the neural network is used to infer the reconstruction
correlation matrices of validation and test data. Finally, anomaly detection is
performed build upon residual correlation matrices, which is presented in the
next section.

5 EXPERIMENTS AND ANALYSIS

In order to evaluate the performance of the proposed framework, we carried out
a comprehensive empirical study exploiting the infrastructures and the datasets
of the SWaT testbed.

5.1 Experimental Setup

Dataset: The SWaT dataset contains data captured on a per second basis
for 51 variables corresponding to sensors and actuators. Within the raw data,
496,800 records were collected under normal conditions, and 449,919 records
were collected while performing various cyber-attacks in the system. The first
16,000 records of the training dataset were trimmed since it took around 5 hours
to reach stabilization when the system was first turned on according to [14].
During our analysis, we divided the dataset captured under normal conditions
into three parts: SN which comprises the 80% of the original normal dataset and
is used for the training of the model, VN1 which comprises the 10% and is used
for early stopping in order to avoid over-fitting and VN2 which comprises the
remaining 10% and is used for determining the threshold along with the 10%
of the dataset that contains anomalies denoted by VAB1. The remaining 90% of
the anomalous dataset SAB is used for testing.

Baseline methods: We compare the proposed model with the following base-
line methods: One-Class SVM [11] learns a decision function and classifies the
test dataset as similar or dissimilar to the training dataset. LSTM-ED [17] rep-
resents the temporal dependencies of the training dataset and predicts the value



of the test dataset. In LSTM-ED model the average prediction error over the all-
time series is considered as the anomaly score. The anomaly score of each time
point is equal to the reconstruction error of the respective correlation matrix.
If that value is larger than a given threshold which is determined empirically
over different datasets, then we consider that an attack is taking place. Other-
wise, we assume normal behavior. The above baseline methods are state-of-art
anomaly detection algorithms that can be used for raw time series data. The
proposed method is implemented in Python 3.5.6 with use of TensorFlow frame-
work version 1.11 [24]. The baseline methods, i.e., One Class SVM and LSTM
encoder-decoder, are likewise created in Python 3.5 using the Scikit-learn li-
brary [25] and TensorFlow framework version 1.11, respectively. Experiments
are performed on a Linux server with 6 vCPUs and 15GB of memory.

Evaluation metrics: In order to evaluate the anomaly detection performance
of each method, we use Precision, Recall and F1 scores defined as Prec = tp

tp+fp

Rec = tp
tp+fn , and F1 = 2×precision×recall

precision+recall , where tp, fp and tn denote true
positives, false positives, and false negatives, respectively. To detect anomalies,
we determine a threshold τ = β · max{V al(t)} where V al(t) are the anomaly
scores over the join of the sets VN2 and VAB1, and β ∈ [1, 2] is a constant tuned
to maximize the F1 Score over validation period Recall and Precision scores over
the testing period are computed based on this threshold.

Other settings In order to avoid over-fitting, we used early stopping while
training the model. Furthermore, Dropout [26] is employed with probability 0,4
in the recurrent layers. Furthermore, we fix the batch size at 128. The learning
rate and epoch are set to 0.01 and 1000 respectively. The model used hyperbolic
tangent non-linearity (tanh) as activation function. The proposed model uses an
input and output length of four.

5.2 Experimental Results

We first demonstrate that the ST-ED scheme as the baseline method LSTM-
ED can learn the system features and predict them with high precision. We
note that the respective parameter settings and configurations are described
in Section 4.3 for the ST-ED architecture and Section 5.1 for LSTM-ED. The
classification baseline method OC-SVM is omitted here since traditional models
behave differently compared to deep learning methods. As mentioned in Section
4.2, we used different scales or window lengths (`) to characterize the system
status. In other words, ST-ED and its variants were trained, validated, and tested
on correlation matrix samples built under different windows lengths. For LSTM-
ED, we used the raw time-series data from the SWaT dataset. We identified that
given adequate computational capacity, the deep learning models were able to
achieve an RMSE within the range of 0.00323 (ST-ED) to 0.09873 (LSTM-ED),
as summarized in Table I. Fig. 3(a). Illustrates how the test error rate of ST-
ED architecture changes as the employed window length varies. In particular,



the lowest error is achieved when the window length is equal to 120 (i.e., two
minutes). In Fig. 3(a) and Table I, it can be seen that the ST-ED scheme achieves
the best convergence, generating the lowest error

Test RMSE
(×10−2)

Train epoch time
(sec)

Test epoch time
(sec)

Model size
(KB)

90 120 150 Raw data 90 120 150 Raw data 90 120 150 Raw data

ST-ED 0.328 0.323 0.355 - 1004 692 717 - 248.7 217.5 220 12.014

LSTM-ED - - - 9.873 - - - 57 - - - 13 2.329

Table 1: Training/Test Result.

Fig. 3: Evaluation of the models

In the following, we compare the training and test times, as well as the differ-
ent model sizes, which are presented in Fig. 3(b), Fig. 3(c) and Fig. 3(d), respec-
tively. In particular, Figures 3(b)-3(c) demonstrate the average time/duration
per epoch, as measured at the workstation machine described in Section 5.1
during training and testing. We found that the LSTM-ED model exhibits the
fastest/shortest training and testing times due to its application to raw data,
while also being the smallest model in terms of size. Another observation is that
the ST-ED scheme can learn faster when ` = 120. The results are summarized
in Table I.

Subsequently, we evaluate the models’ performance on the six stages of the
SWaT dataset in terms of precision (Pre), recall (Rec), and F1 score. Experi-
ments on the dataset are repeated five times, and the average results are reported
for comparison, presented in Table 2. We observe that the classification method



(OC-SVM) perform worse than the prediction model (LSTM), indicating that
the traditional methods cannot handle adequately the temporal dependencies
that exist in the dataset. The LSTM-ED and the ST-ED with ` = 120 architec-
tures yield the largest precision. However, the ST-ED model achieves the largest
recall and F1 score for all the employed window sizes. Hence, this verifies that
the proposed spatial-temporal encoder-decoder is efficient at identifying anoma-
lies or outliers. Next, we demonstrate how the performance of the ST-ED scheme
varies with regard to the employed sequence window lengths ` = {90, 120, 150}.
In particular, ST-ED with ` = {90, 120} has better precision than ST-ED with
` = 150, whereas ST-ED with ` = 120 has better recall and F1 score compared
to the other window lengths. Fig. 4 provides a visual representation of the ability
of the ST-ED and LSTM-ED methods to detect anomalies.

Method
Raw time series data ` = 90 ` = 120 ` = 150
Pre Rec F1 Pre Rec F1 Pre Rec F1 Pre Rec F1

OC-SVM 0.210 0.423 0.281 - - - - - - - - -

LSTM-ED 0.951 0.627 0.756 - - - - - - - - -

ST-ED - - - 0.929 0.695 0.795 0.949 0.705 0.809 0.927 0.686 0.788

Table 2: Anomaly detection results.

Fig. 4: Anomaly detection representation

6 Conclusion

In this paper, we have presented an anomaly detection model for the com-
plex CPS networks based on the combination of a convolutional autoencoder,
which learns the spatial structure of each correlation matrix, with a ConvLSTM
Encoder-Decoder that captures the temporal dependencies from the learned spa-
tial feature maps of every time step. We have demonstrated its improved per-
formance compared to two baseline models in terms of Recall and F1 metrics.
Moreover, the proposed model, contrary to study [18], is able to model both
inter-sensor correlation and temporal dependencies of multivariate time series.



One limitation of the present work is the fact that the experiments were per-
formed on one dataset from one type of industrial process. Various adversarial
attacks can be carried out against the proposed model. One such attack can al-
ter the training process by influencing and corrupting the training data. On the
other hand, an exploratory attack can employ probing to discover information
about the training set. The potential adversary cannot modify or manipulate
the training data but can craft new instances based on the underlying data dis-
tribution. Therefore, it is necessary to explore reactive and proactive defense
strategies in order to take countermeasures for adverse attacks. Apart from ad-
dressing the aforementioned issues, this research can be expanded in several
directions: i) investigating the application of recent adversarial autoencoders as
well as adversarial variational autoencoder to anomaly detection; ii) introducing
an input attention mechanism to adaptively select the most significant input fea-
tures; iii) exploring other methods to performance the correlation analysis that
are robust to non-normality of the data; v) amplify the scope of the proposed
model to anomaly diagnosis, i.e., identifying the most likely cause of an anomaly;
iv) applying the proposed anomaly detection method to streaming data.
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