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Abstract. Ontology Design Patterns (ODP) are often described as
reusable solutions to recurrent modelling problems. Yet, there is no well-
established formalism or framework for facilitating the reuse of ODPs in
practise. This motivates a comparison of existing approaches and proposals
for capturing modelling solutions recommended by ODPs. To gain a first
understanding, we identify and characterise repetitive structures, e.g.
axioms or logical expressions, as an important aspect of many ODPs. We
find that existing frameworks provide features to support simple repetitive
structures that commonly occur in modelling solutions of ODPs.

1 Introduction

The idea of Ontology Design Patterns (ODP) has been introduced as a means to
facilitate ontology engineering [6,10]. In addition to providing descriptions of best
practises, ODPs place an emphasis on notions of reusability in practise. Despite
numerous considerations on how ODPs can be reused, there is no widely-used
notion of ODP reuse nor is there a well-established formalism or framework for
facilitating ontology engineering with ODPs. This motivates a comparison of
existing approaches and proposals for capturing modelling solutions recommended
by ODPs.

In this paper, we aim to develop a first understanding of the requirements for
ODP reuse by focusing on repetitive structures, e.g. axioms or logical expressions,
that are part of an ODP’s documentation. The contributions are as follows: (i)
we identify and characterise repetitive structures occurring in ODPs, (ii) we
exmplify how repetitive structures manifest under notions of ODP reuse, (iii) and
we compare two existing frameworks with respect to their support for identified
repetitive structures.

2 Preliminaries

We assume the reader to be familiar with description logics (DL) [1] and their
relation to the OWL Web Ontology Language [2]. Although we will make use
of German DL syntax for specifying axioms, we will stick to OWL parlance
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otherwise. We will refer to the set of non-logical symbols (class, property, and
individual names) of an ontology as its signature. Any element of an ontology’s
signature will be referred to as an entity.

3 Repetitive Structures in Ontology Design Patterns

ODPs have been proposed for a wide range of ontology engineering tasks. As a
result, a variety of different kinds of ODPs exist [3, 6, 13, 35]. In the scope of this
work, we focus on two kinds of ODPs that are most commonly discussed under
the names of Content Ontology Design Pattern (CODP) and Logical Ontology
Design Patterns (LODP). CODPs are motivated as conceptual modelling solutions
that address domain specific modelling problems, whereas LODPs are motivated
as structural modelling solutions that mitigate expressive limitations in terms
of available langauge primitives of knowledge representation fromalisms, e.g.
OWL [11]. However, both these two types of ODPs can be characterised by
providing “practical building blocks” for ontological engineering [29, 30]. This
characterisation is based on the idea of reusing an ODP via a set of predefined
axioms that may or may not be modified [7,29,36]. In particular, CODPs are
supposed to be reused via a concrete set of axioms that features a domain
dependant signature. LODPs, on the other hand, are supposed to be reused by
instantiating a set of axioms that features variables in lieu of domain dependent
signature [10,30].

In the following, we give examples for the reuse of both CODPs and LODPs
(cf. Section 3.1) and how these ways of reusing ODPs involve repetitive structures
(cf. Section 3.2). Finally, we characterise these structures and identify publicly
available ODPs exhibiting aspects of repetitive structures as part of their design
(cf. Section 3.3).

3.1 Examples of ODP Reuse

The descriptions of both CODPs and LODPs often suggest a notion of ODP
reuse in terms of some implied metamodel. For example, in case of LODPs
there is generally an assumed notion of variables that are to be instantiated.
However, neither variables nor a valid ways for instantiating them are explicitly
defined or qualified. Such vagueness in the documentation of ODPs gives room for
interpretation with respect to an ODP’s reuse in practise. We will discuss issues
related to this lack of formal rigour in Section 3.2 and Section 5. For the purpose
of this section, we present example ODPs that are documented in a well-known,
publicly available library of ODPs [30]. An ODP’s documentation usually contains
a diagram that visualises how different components of the pattern are related to
each other. Although these diagrams are commonly given in reference to OWL,
in general, there is no one-to-one correspondence to an actual set of OWL axioms.
In the following, we give concrete examples for both a LODP and a CODP.

Example 1 (CODP). The CODP NaryParticipation [30] provides a modelling
solution for representing events in relation to participants, time, and space.
It introduces explicit non-logical vocabulary for classes and properties, e.g.,



Event,Situation, isParticipantIn, or participationIncludes. The pattern is supposed to
be reused by extending these classes and properties by subclasses and subproperties.
The following figure depicts a conceptual diagram for the pattern.

Fig. 1. NaryParticipation (taken from “NeOn Catalogue” [30])

For a concrete use case, consider an academic conference, e.g. ISWC, and its
participants in terms of authors, reviewers, and organisers. Suppose that authors
𝑎1, 𝑎2, 𝑎3 participated in the 2019 edition of ISWC with a jointly written paper 𝑝
that has been reviewed by reviewers 𝑟1, 𝑟2, 𝑟3. Then, the following adaptation of
the NaryParticipation pattern captures this situation.

First, the specified classes of NaryParticipation are specialised by creating
domain specific subclasses and subproperties (see Figure 2).

Conference ⊑ Event Publication ⊑ ∃includesVenue.Conference
Author ⊑ Object Publication ⊑ ∃includesAuthor.Author

Organiser ⊑ Object Publication ⊑ ∃includesOrganiser.Organiser
Reviewer ⊑ Object Publication ⊑ ∃includesReviewer.Reviewer

Paper ⊑ Object Publication ⊑ ∃includesPaper.Paper
Publication ⊑ NaryParticipation

Conference ⊑ ∀hasParticipant.(Author ⊔ Organiser ⊔ Reviewer)

includesAuthor ⊑ participationIncludes

includesPaper ⊑ participationIncludes

includesReviewer ⊑ participationIncludes

includesOrganiser ⊑ participationIncludes

includesTimeInterval ⊑ participationIncludes

includesVenue ⊑ participationIncludes

Fig. 2. TBox for modelling conference publication with NaryParticipation

Next, the newly created subclasses are populated as needed, i.e,Author(𝑎𝑖),Reviewer(ri),
etc., and finally all individual parts are interrelated via a shared instance of the
Publication class that is subsumed by NaryParticipation (see Figure 3). �



Publication(𝑁1)

Conference(𝐼𝑆𝑊𝐶) includesConference(𝑁1, 𝐼𝑆𝑊𝐶)
Author(𝑎1) includesAuthor(𝑁1, 𝑎1)
Author(𝑎2) includesAuthor(𝑁1, 𝑎2)
Author(𝑎3) includesAuthor(𝑁1, 𝑎3)

Reviewer(𝑟1) includesReviewer(𝑁1, 𝑟1)
Reviewer(𝑟2) includesReviewer(𝑁1, 𝑟2)
Reviewer(𝑟3) includesReviewer(𝑁1, 𝑟3)

Paper(𝑝) includesPaper(𝑁1, 𝑝)
TimeInterval(𝑑1) includesTimeInterval(𝑁1, 𝑑1)

hasIntervalStartDate(𝑑1, 26.10.2019)
hasIntervalEndDate(𝑑1, 30.10.2019)

Fig. 3. ABox populating the NaryParticipation pattern

Example 2 (LODP). The LODP NaryRelation [30] provides a modelling solution
for representing 𝑛-ary relationships in OWL. Since OWL does not provide a
language primitive for 𝑛-ary relationships, the pattern describes how 𝑛-ary
relationships can be captured by a combination of several binary relations and an
auxiliary (newly created) class. The auxiliary class is said to reify the original
𝑛-ary relationship. Figure 4 shows a conceptual diagram for the pattern.

Fig. 4. NaryRelation (taken from “NeOn Catalogue” [30])

In this diagram, the NaryRelationClass constitutes the reified class for the
𝑛-ary relationship. This class is used to establish a connection between all 𝑛
components of the original relationship each of which will be represented by a
distinct instantiation of the class NaryRelationProjection.

As a concrete use case, consider information about a university level exam.
Here, a relation between a student, a course, a grade, and a semester time has to
be modelled. This can be achieved by using the NaryRelation pattern as follows.
First, we reify a class ExamEntry to represent the relationship. Next, we introduce



distinct classes and properties for each component of the original relationship:

Exam ⊑ ∃has.ExamEntry

ExamEntry ⊑ ∃ofStudent.Student
ExamEntry ⊑ ∃withGrade.Grade
ExamEntry ⊑ ∃inSemester.Semester

ExamEntry ⊑ ∃inCourse.Course

Comparing this set of axioms to the axioms for modelling publications in
the previous example, it becomes clear that the CODP NaryParticipation is
based on the LODP NaryRelation. Note that the use of existential restrictions
in the CODP NaryParticipation and in the example for exams is not part of
the design proposed by the LODP NaryRelation. As Figure 4 indicates, only
the domains and ranges of object properties are required to be specified. Our use
of existential restrictions is merely for ease of presentation and not a substitute
for domain and range axioms. However, there exist variants of the NaryRelation
pattern that define the use of existential restrictions as mandatory. See for example
the following diagram published in the Manchester “ontology design patterns
public catalogue”.1 �

Fig. 5. Variation of NaryRelation (taken from “Manchester Catalogue”2)

3.2 Occurrence of Repetitive Structures in ODPs
The examples in the previous section demonstrate ways of reusing both CODPs
and LODPs. For a given CODPs, its classes and properties are extended by
subclasses and subproperties, whereas for a given LODP, variable entities are
instantiated (e.g. by atomic entities, or compound expressions). For both notions
of reuse, extending entities by subsumption on the one hand, and instantiating
variables on the other hand, the respective operations may be repeatedly performed
to give rise to structurally similar axioms.

For example, the different participants of a conference publication are all
modelled in the same manner in Example 1 (CODP). Namely,

𝐶 ⊑ Object

𝑃 ⊑ participationIncludes

Publication ⊑ ∃𝑃.𝐶
1 http://odps.sourceforge.net/odp/html/index.html
2 http://odps.sourceforge.net/odp/html/Nary_Relationship.html
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where we abstracted over names of domain specific participation objects, e.g.
Author or Reviewer, by introducing the variables 𝐶 (a class variable) and 𝑃
(a property variable). Similarly, in Example 2 (LODP), all components of an
𝑛-ary relationship are modelled by instantiating structurally identical variable
components, e.g. existential restrictions or domain and range axioms, repeatedly.

Repetitive structures in ODP driven modelling are not necessarily incidental
to ways of reusing patterns in specific use cases. In fact, many ODPs describe
repetitive structures as part of their design explicitly. Most CODPs published
in [30], that reuse the LODP NaryRelation, indicate components of indefinite
artiy in their conceptual diagrams by some form of cardinality notation. As an
example of this, see the conceptual diagram for the CODP Situation shown
in Figure 6. Another way of indicating repeated structures is by enumeration.
This is frequently done for ODPs published in the Manchester “ontology design
patterns public catalogue”. An example for this is shown in Figure 5 (see previous
section).

Fig. 6. Situation (taken from “Web Portal Catalogue”3)

We identify ODPs exhibiting repetitive structures in their design according to
the following five criteria:

(a) presence of an indefinite cardinality constraint,
(b) presence of an indefinite enumeration,
(c) presence of a cyclic design component,
(d) presence of an example suggesting indefinite enumeration,
(e) presence of an example suggesting a cyclic component.

Using these criteria, we determine the prevalence of ODPs involving repetitive
structures in the following publicly available catalogues:

1. D2.5.1: A Library of Ontology Design Patterns (NeOn Catalogue) [30],
2. ODP Semantic Web Portal (Web Portal Catalogue),4
3. Manchester Ontology Design Pattern Public Catalogue (Manchester Cata-

logue),5
4. Modular Ontology Design Library (MODL Catalogue).6

Table 1 reports the number of ODPs identified by criteria (a)–(e) above
without double-counting ODPs by (d) or (e) if already identified by (a)–(c).
3 http://ontologydesignpatterns.org/wiki/Submissions:Situation
4 http://ontologydesignpatterns.org
5 http://odps.sourceforge.net/odp/html/index.html
6 https://dase.cs.wright.edu/content/modl-modular-ontology-design-library

http://ontologydesignpatterns.org/wiki/Submissions:Situation
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http://odps.sourceforge.net/odp/html/index.html
https://dase.cs.wright.edu/content/modl-modular-ontology-design-library


Table 1. ODPs exhibiting repetitive structures

Catalogue Pattern Type Identified ODPs / Available ODPs (a) (b) (c) (d) (e)
NeOn CODP 23 / 34 5 0 0 16 2
NeOn LODP 3 / 4 2 0 0 0 1

Web Portal CODP 31 / 155 14 5 12 0 0
Web Portal LODP 6 / 18 0 3 2 1 0
Manchester - 10 / 17 0 9 1 0 0

MODL - 9 / 18 0 1 8 0 0

3.3 Characterisation of Repetitive Structures

The prevalence of repetitive structures in modelling solutions proposed by ODPs
raises the question whether these structures are based on common design principles
that suggest similar ways of reuse in practise. Consider the axioms used in Example
1 based on the NaryParticipation pattern. Here, 𝑛 different types of participants
𝑝1, . . . , 𝑝𝑛 at a conference are modelled by using a structure with indefinite arity
of the following form:

Conference ⊑ ∀hasParticipant.

⎛⎝ ⨆︁
1≤𝑖≤𝑛

𝑝𝑖

⎞⎠
𝑝1 ⊑ Object

...
𝑝𝑛 ⊑ Object

In this structure, the variable number of participants 𝑝1, . . . , 𝑝𝑛 are used both
within a single logical expression (namely a union of class names), as well as
a set of axioms (namely a set of subsumptions 𝑝𝑖 ⊑ Object). This observation
motivates a threefold distinction of repetitive structures:

1. structures involving some repetition of axioms,
2. structures involving some repetition within logical expressions,
3. structures involving a combination of repetitive structures.

Despite its simplicity, this threefold distinction allows us to gain a first
understanding about the nature of repetitive structures that are, by design, part
of modelling solutions proposed by ODPs. In Table 2, we list how many ODPs
involving repetitive structures (c.f. Section 3.2 categories (a)–(e) and Table 1)
involve repetitive axioms, repetitive logical expressions, or some combination of
both. It appears that most repetitive structures in ODPs are due to repeated
axioms rather than logical expressions of indefinite arity.

Note that these numbers only report on ODPs that suggest repetitive structures
explicitly in the documentation of their proposed modelling solution (see Figure 5
for an example). The table does not report on ODPs that give rise to repetitive
structures solely by virtue of specific notions of ODPs reuse.



Table 2. Characterisation of ODPs

Catalogue 1. Repetitive Axioms 2. Repetitive Expressions 3. Combination
NeOn 26 0 0

Web Portal 36 0 1
Manchester 5 1 4

MODL 9 0 0

4 Capturing Repetitive Structures in ODP-Based
Modelling

Infrastructure for supporting ontology engineering with ODPs is scarce and often
not well-maintained [5]. Moreover, it is not well understood what kind of tool
support is needed in practise for facilitating ODP-based modelling [16]. However,
the prevalence of repetitive structures in ODP’s proposed modelling solutions (cf.
Table 1 in Section 3.2) raises the question how such structures can be captured.
Despite the lack of tool support for ODP reuse, there already exist frameworks
for capturing repetitive structures in ontological modelling. In the following, we
compare implemented features of two such frameworks with respect to their
capability to capture repetitive structures occurring in ODPs.

There currently exist two publicly available frameworks for handling repetitive
ontology design tasks, namely the Ontology Pre-Processing Language7 (OPPL) [8]
and Reasonable Ontology Templates8 (OTTR) [9, 33]. Both of these frameworks
claim to provide general support for ontological modelling patterns in OWL
and suitable support for ODPs in particular. They provide means for directly
instantiating variables occurring in a fixed set of axioms. Hence, it is, in principle,
possible to reuse LODPs by instantiation. Also, CODPs reuse by the introduction
of subclasses and subproperties for some the pattern’s entities can be achieved by
introducing axioms with variables for said subclasses and subproperties which
then need to be instantiated. Thus, there is basic support for some notions of
ODP reuse.

In addition to basic support of ODP reuse via simple variable instantiation
of a fixed set of axioms, both frameworks provide means for generating a set of
axioms based on repeated instantiation of a given set of axioms. For example,
given the axiom ?𝑋 ⊑ ∃hasAttribute.?𝑌 where ?𝑋, and ?𝑌 are variables, both
OPPL and OTTR allow for the generation of the set of axioms, that corresponds
to the cross product of variables instantiations of the respective input sets. So,
continuing the example with 𝑉1 and 𝑉2 as input sets of class names for ?𝑋 and
?𝑌 , then the resulting set of axioms is

{?𝑋 ⊑ ∃hasAttribute.?𝑌 |?𝑋 ∈ 𝑉1, ?𝑌 ∈ 𝑉2}.

Replicating syntactically similar axioms seems to be a needed feature for the
reuse of some LODPs as well as CODPs as most of the repetitive structures

7 http://oppl2.sourceforge.net/index.html
8 https://ottr.xyz/
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explicitly occurring in ODPs appear to exhibit such repeated axioms (cf. Table 2
in Section 3.3).

Example 3 (Instantiation by Cross Product). Consider the NaryParticipation
pattern from Example 1 in Section 3.1. Here, all participation objects of an
𝑛-ary participation are specialisations of (i.e. are subsumed by) the Object class.
Without introducing separate object properties for all objects, the (partial) reuse
of the NaryParticipation pattern could be formalised by the following set of
axioms:

?𝑋 ⊑ Object

?𝑌 ⊑ NaryParticipation

?𝑌 ⊑ ∃participationIncludes.?𝑋.

Given 𝑉1 = {Author,Organiser,Reviewer,Paper} and 𝑉2 = {Publication} as sets
of class names, the cross product of instantiations ?𝑋 over 𝑉1 and ?𝑌 over 𝑉2

would allow for the generation of repetitive modelling of participation objects. �

In addition to repeated axioms, some ODPs exhibit logical expressions, e.g.
class unions, with an indefinite number of components (cf. Table 2 for Catalogue
3). Such variable logical expressions can be captured in both OTTR and OPPL
to some degree.

Example 4 (Logical Expressions with indefinite arity). As before, consider the
NaryParticipation pattern from Example 1 in Section 3.1. Here, the axiom

Conference ⊑ ∀hasParticipant.(Author ⊔ Organiser ⊔ Reviewer)

contains a class union of three classes. However, a pattern’s design might generalise
over the number of different participant types via an axiom of the form

Conference ⊑ ∀hasParticipant.

⎛⎝ ⨆︁
1≤𝑖≤𝑛

𝑝𝑖

⎞⎠ ,

where we introduced 𝑛 variables for the classes participating in the union that is
the filler of the universal quantification. In both OTTR and OPPL, this more
general rendering can be expressed if 𝑝𝑖 are assumed to be class names. �

While both OPPL and OTTR provide some support for capturing logical
expressions of indefinite arity, there are limitations in terms of nesting and
composing expressions of indefinite arity as the following example shows.

Example 5 (Compound Logical Expressions with indefinite arity). Both OTTR and
OPPL provide support for formulating logical expressions such as an intersection
of classes 𝐴1 ⊓ . . . ⊓𝐴𝑛, where the number 𝑛 of classes is not fixed. Furthermore,
it is possible to create compound logical expressions of arbitrary arity, as long as



they are not nested. For example, it is possible to formulate an expression that is
the union of say three intersections of indefinite arity, i.e.,

(𝐴1 ⊓ . . . ⊓𝐴𝑛)⏟  ⏞  
first intersection

⊔ (𝐵1 ⊓ . . . ⊓𝐵𝑚)⏟  ⏞  
second intersection

⊔ (𝐶1 ⊓ . . . ⊓ 𝐶𝑘)⏟  ⏞  
third intersection

.

However, it is not possible to generalise this case from a union of three indefinite
intersections to an indefinite union of indefinite intersections.9 �

Lastly, there exist ODPs that propose modelling solutions involving combina-
tions of distinct repetitive structures (cf. Table 2 for the Manchester Catalogue).
Such combinations may be structurally interrelated or not. A repetitive structure
that involves two structurally independent components may be supported by
both OPPL or OTTR if each of the components is supported separately.

Example 6 (Combination of Independent Repetitive Structures). As before, con-
sider the NaryParticipation pattern from Example 1 in Section 3.1. Here, the
structure

Conference ⊑ ∀hasParticipant.

⎛⎝ ⨆︁
1≤𝑖≤𝑛

𝑝𝑖

⎞⎠
𝑝1 ⊑ Object

...
𝑝𝑛 ⊑ Object

with 𝑝1 = Author, 𝑝2 = Organiser, 𝑝3 = Reviewer occurs. Since both OPPL and
OTTR provide means for generating the repeated axioms 𝑝𝑖 ⊑ Object as well
as the axiom containing a union over an indefinite number of class names, the
combination of both structures can be captured as well. �

However, not all complex repetitive structures are combinations of structurally
independent components as the following example shows.

Example 7 (Interrelated Repetitive Structures). As before, consider the NaryParti-
cipation pattern from Example 1 in Section 3.1. Here, the NaryParticipation
pattern is (partially) reused by extension according to the following general
structure:

𝑝1 ⊑ Object 𝑟1 ⊑ participationIncludes Publication ⊑ ∃𝑟1.𝑝1
...

...
...

𝑝𝑛 ⊑ Object 𝑟𝑛 ⊑ participationIncludes Publication ⊑ ∃𝑟𝑛.𝑝𝑛
9 OPPL only allows for a fixed number of ’input variables’ that range over entities of

an ontology. Hence, only a fixed number of indefinite intersections can be captured.
For OTTR, a similar argument can be made.



For each participation object, e.g. Author, a separate object property is in-
troduced, e.g. includesAuthor that is used to establish the relationship to the
NaryParticipationObject, here Publication. Therefore, each participation object 𝑝𝑖
is related to exactly one object property 𝑟𝑖. This dependency, where each 𝑝𝑖 has
to be coupled with a corresponding 𝑟𝑖 to generate the axioms Publication ⊑ ∃𝑟𝑖.𝑝𝑖,
constitutes a structure that can be captured in OTTR via a list expansion
mode called “zip”. However, OPPL does not appear to provide support for such
interrelations of repetitive structures. �

5 Discussion

5.1 Choice of Examples

We have guided the comparison of OTTR and OPPL by characteristics of repetitive
structures occurring in ODPs and potential ways of their reuse in practise. The
choice of our examples was based on two frequently discussed operations for ODP
reuse. First, the instantiation of variables in a given set of axioms [12, 17, 30].
And second, extending and replicating a given modelling solution by subclasses
and subproperties [5, 29].

However, it needs to be pointed out that there are other ways of ODP reuse
and that the very notion of ODP reuse is still an open research question [15,16].
There is no no standard or widely-used mechanism for reusing an ODP in practise.
Hence, the work in this paper is an endeavour to identify features of ODP that
may shed light on requirements for mechanisms to facilitate ODP reuse.

5.2 Complex Repetitive Structures

The repetitive structures occurring in most ODPs are of rather simple nature.
Axioms are repeated in a very systematic manner and logical expressions with an
indefinite number of components are mostly restricted to operators over a set of
entity names, e.g. a union of an arbitrary number of class names. However, there are
also examples of more complex repetitive structures that exhibit interdependencies
between its constituent components.

While a complete coverage of characteristics for more complex patterns is be-
yond the scope of this work, we give a concrete example Entity-Property-Quality
pattern (see Figure 7). Reusing this pattern may give rise to three interrelated
repetitive structures. First, an entity category is defined in terms of a number of
entities 𝑒𝑛𝑡𝑖𝑡𝑦1, . . . , 𝑒𝑛𝑡𝑖𝑡𝑦𝑛. Second, each entity may have multiple qualities10
𝑞𝑢𝑎𝑙𝑖𝑡𝑦1, . . . , 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑚. And third, each of these qualities is modelled by a union
of (pairwise disjoint) quality values 𝑣𝑎𝑙𝑢𝑒𝑞1, . . . , 𝑣𝑎𝑙𝑢𝑒

𝑞
𝑘 (𝑣𝑎𝑙𝑢𝑒𝑞𝑖 denotes the 𝑖th

quality value for quality 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑞). So overall, an entity 𝑒𝑛𝑡𝑖𝑡𝑦𝑖 may have a num-
ber of quality values 𝑣𝑎𝑙𝑢𝑒𝑝𝑗 , . . . , 𝑣𝑎𝑙𝑢𝑒

𝑝
𝑘, . . . 𝑣𝑎𝑙𝑢𝑒

𝑚
𝑖 , . . . , 𝑣𝑎𝑙𝑢𝑒𝑚𝑜 over a number

of different qualities 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑝, . . . , 𝑞𝑢𝑎𝑙𝑖𝑡𝑦𝑚. The interrelationship of these three
structures may or may not result in a systematically repetitive ontological model.
10 Although the diagram for the pattern does not show an enumeration for different

qualities, the documentation states the enumeration for qualities verbally: “To model
qualities of independent entities (e.g. position, colour, ...).”



It is currently unknown whether (and how) such complex repetitive structures
are used in practise and whether they could be captured in OTTR or OPPL.

Fig. 7. Entity-Property-Quality (taken from “Manchester Catalogue”11)

5.3 Related Work
Research on ODPs faces a number of difficult open questions and challenges [16].
Little is known what makes for a good ODPs, how they are to be documented, or
how they are best reused in practise.

Existing user studies reveal inconsistent perceptions of the benefits supposedly
provided by ODPs. While some studies report that participants perceive ODPs
generally as useful [4], others report accounts of scepticism towards their usefulness
[14,17], and still others state demonstrable limitations in practise [23,32].

These inconclusive results motivate what is often referred to a “bottom-
up” approach that tries to gather information for ODP research from existing
ontologies. However, empirical studies on the prevalence of publicly accessible
ODP repositories indicate limited evidence for ODP reuse in practise [22, 27].
Another bottom-up approach is to motivate new ODPs on the basis of frequent
axiom patterns and syntactic or semantic regularities in ontologies [24–26].

Besides user studies, empirical detection and discovery studies for ODPs, there
is little research on formal requirements of mechanisms to effectively reuse ODPs
in practise. One step in this direction is done by [18], where a mismatch in terms
of OWL language profiles between biomedical ontologies and ODPs is identified as
a tangible hindrance for many notions of ODP reuse. Another step is done by [20],
in which safe ways, defined in terms of conservative extensions, of reusing ODP
are qualified. Otherwise, there have only been a number of untested proposals of
formalisms and frameworks for ODP reuse [6, 7, 10,19,21,28,29,31,34,36,37].

6 Conclusion and Future Work
Despite a large number of proposals of different notions for pattern reuse, little is
known what kind of features a mechanism for facilitating ODP reuse needs to
11 http://odps.sourceforge.net/odp/html/Entity_Property_Quality.html
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provide. The work in this paper on tool support for capturing repetitive structures
contained in modelling solutions of ODPs is a tentative step in this direction.
Understanding and qualifying important aspects of ODPs may inform the design
of suitable mechanisms for ODP reuse.

In this paper, we have considered repetitive structures of axioms and logical
expressions in the context of ODP reuse. It seems that many ODPs exhibit
such structures already in their proposed modelling solution or suggest the
generation of such structures due to repeated operations of reuse. We found
that two existing frameworks seem to provide suitable support for most ODPs
with respect to identified repetitive structures. There are examples of complex
interrelated structures (cf. Section 5.2) that cannot be appropriately captured by
either OPPL nor OTTR but is unclear whether such structures have practical
relevance.

Overall, it seems that, in principle, providing sufficient technical support
for ODP reuse in practise is possible. The identification of important features
occurring in many modelling solutions of ODPs can inform notions of ODP
reuse and how they might be supported by tools. While the scope of this work
is limited to just two frameworks and their support of repetitive structures in
ODPs, there are many more directions for future work. A direct extension of this
work might consider aspects of ODPs other than repetitive structures. A more
comprehensive comparison between OPPL and OTTR (or other frameworks) to
determine how they differ in terms of expressive capabilities would also provide
useful information for knowledge engineers in search for a tool of their needs.

Besides such technical aspects of how to provide tool support for ODP reuse,
one also has to consider practical aspects in terms of usability. It has already
been speculated that OPPL is not widely adopted as a tool for ODP reuse
because it may not be easy to use [17]. Therefore, instead of working towards a
“feature-complete” mechanism for ODP reuse, one also needs to take into account
the practical needs of potential users. Identifying practically relevant ODPs and
facilitating their reuse in an intuitive and easy to use manner still appears to be
a tough challenge.
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