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Abstract. Real-time visualization of digital X-ray image sequences re-
quires the reduction of severe noise while preserving diagnostic details.
We introduce a noise reduction method for X-ray image sequences using
products of Laplacian pyramid coefficients. The method features SNR
improvement comparable to the Wiener filter, however, being superior
in the preservation of fine structures and generating a more stable image
impression in sequences.

1 Introduction

In medical diagnosis digital X-ray image sequences have important applications,
e.g. in angiography. In order to keep radiation exposure of medical staff and
patients as low as possible, very low radiation doses are used, resulting in severe
noise that must be reduced with image processing methods in real-time. At the
same time, diagnostic details must be preserved, thus, an efficient reduction of
strong noise while preserving fine image structures is required.

Originating from MR imaging, the multiscale products noise reduction tech-
nique by Bao and Zhang [1, 2] is known. Current methods to process X-ray
image sequences contain a multiscale decomposition as well, which, among other
things, is used to enhance image contrast [3]. However, a decomposition in form
of the Laplacian pyramid [4] is used while the method of Bao and Zhang is based
on non-decimating wavelets. Moreover, Bao and Zhang apply their method to
MRI data that has properties significantly different from digital X-ray image
sequences.

In this context we identified the task, staring from the method of Bao and
Zhang, to develop a noise reduction method for X-ray image sequences based on
multiscale products of the Laplacian pyramid. By utilizing the Laplacian pyra-
mid already available in the image processing pipeline no additional cost in time
or memory demands is required to generate the decomposition. Additionally, the
resulting adaptive non-linear spatial filter is to be extended by temporal filtering,
as in our experience pure spatial filtering leads to an unbalanced and unstable
image impression in sequences [5].
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2 State-of-the-Art

Known related methods perform a thresholding of high-frequency components.
They feature poor separation of structure and noise and therefore tend to blur
edges in the filtered images.

Whereas Bao and Zhang exploit that structure and noise evolve differently
across the scales due to their negative and positive Lipschitz regularities, respec-
tively [6, 7]. Structure is represented by significant signal across the scales while
noise amplitudes decrease rapid toward low frequencies. Hence, it is possible to
separate structure and noise e.g. by multiplying coefficients of different scales
and thresholding of coefficient products of adjacent scales.

Multiscale coefficient product methods known to us are based on non-deci-
mating wavelets [1, 2]. Therefore, they do not treat the difficulty of adapting
data sizes of different levels for the multiplication and do not regard the specific
properties of the Laplacian pyramid levels. Whereas algorithms based on the
Laplacian pyramid merely perform a simple thresholding of the single levels,
but do not combine the coefficients of different levels [8].

3 Methods

The Gaussian-Laplacian pyramid is a decomposition of an image in frequency
bands. Noise and fine structures are situated predominantly in the lower levels
Lo and Ly of the Laplacian pyramid, which contain the high frequencies, while
coarse structures are located in the upper pyramid layers.

Adjacent Laplacian levels are combined to products Lo ® Ly and L1 ® Lo
and the corresponding coefficients of the pyramid layers Ly and L; are classified
into signal and noise by thresholding the products. In this context, Ly ® Li41
denotes the multiplication by components, A @ B, of two layers transformed
to the same size by an operation still to define. In the subsequent image re-
construction from the pyramid, the components representing noise are weighted
significantly lower than coefficients representing signal, whereby noise is reduced
in the reconstructed image.

Apart from the value of the threshold applied to the coefficient product, the
degree of filtering is in particular depending on the minimum and maximum
coefficient weights in the reconstruction. By attenuating coefficients classified as
noise instead of setting these to zero, even fine structures that have wrongly
been classified as noise are partially preserved. In the same way, the noise su-
perposed on structures is smoothed by slightly reducing coefficients classified as
representing signal.

The primal difficulty when developing the method was intense impulse noise
remaining in the filtered image (fig. 1), which we were able to reduce significantly
by several modifications to the method. Apart from introducing linear weighting
with a minimum and maximum weight, this was achieved above all by forming
products in the adjacent level k + 1

Ly ® Lk+1 = REDUCE(Lk) ® Lk+1 (1)
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Fig. 1. Original image detail (left), remaining impulse noise in the unmodified method
(middle), processed with the proposed method (right).

and interpolating the resulting weights Wy 11 to the size of the pyramid level k,
i.e. the level that is to be weighted,

Wig11 = EXPAND( Wiy ) = EXPAND( f(Li ® Liy1) ) (2)

with the EXPAND and REDUCE operations according to [4] and a weight
function f. The modified Laplace levels Lg used for reconstruction are given by:

Ly = Wit1,1 @ Ly (3)

As noise in low-dose X-ray images is inherent signal-dependent, a signal-
dependent threshold determination has been implemented, leading to further
significant improvement of the noise reduction. The threshold is determined
against a noise estimation based on a noise model developed specifically for
the X-ray image sequences used.

Even without temporal filtering the method generates a comparatively steady
image impression. This was further improved considerably by the controllable
weighted averaging of temporal neighboring pixels, i.e. pixels at same locations
(z,y), of the reconstructed images. To prevent artifacts, temporal filtering is
applied in image regions without significant motion, only.

4 Results

The presented method has been compared to Wiener and binomial filters up to
9x9 pixel. For these methods, clinical X-ray sequences as well as an artificial
sequence have been evaluated objectively and subjectively. The signal-to-noise
ratio (SNR) was 20.3-32.8 dB in the clinical sequences and 14.58 dB in the
sequence created artificially and superposed with Poisson-distributed noise. To
begin with, the results for the artificial sequence are presented as the undisturbed
signal is known and no noise estimation is required in this case.

While fine structures were considerably degraded and the SNR was improved
only by approximately 5.03 dB in binomial filtering, the SNR, improvement when
applying Wiener filtering and the presented method was on a comparable high
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Fig. 2. Original image detail (left), processed with the proposed method (right).

level of 11.12 dB and 11.90 dB (without temporal filtering) or 12.66 dB (with
temporal filtering), respectively. However, the presented method features a much
higher stability of 22.6% (without temporal filtering) and 40.3% (with temporal
filtering) compared to 1.3% in Wiener filtering. Alike, applied to clinical se-
quences, the presented method and Wiener filtering led to a comparable SNR
improvement in the range 4.2-10.8 dB, depending on the sequence analyzed.
The subjective evaluation yielded excellent results for the presented method
(fig. 2 and 3) as well as Wiener filtering. In both methods, areas are considerably
smoothed and even though notable noise remains at edges, these are well pre-
served. However, the presented method features somewhat superior smoothing
while simultaneously preserving structures. Moreover, a far more balanced and
stable image impression is generated when viewing sequences instead of single
images. This was to be expected regarding the high stability of the method.

5 Discussion

The method of Bao and Zhang based on wavelet decomposition and MRI data
has been adapted for Laplacian pyramids and harnessed for X-ray image se-
quence applications. The presented method can be integrated in techniques al-
ready based on Laplacian pyramids with low additional complexity. Hence, the
important constraint of real-time processing remains fulfilled and real-time noise
reduction with preservation of important diagnostic details has been achieved.

The direct adaptation of the method led to artifacts that we were able to
reduce significantly. The separation of signal and noise by coefficient products
can now be used for noise reduction of X-ray images exhibiting severe noise. Due
to the already high temporal stability a simple temporal filter can be applied,
further improving the stable image impression in sequences. Significant gray
value differences between temporal adjacent pixels are with high probability due
to motion. Therefore, complex motion detection can be omitted.
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Fig. 3. Original image detail (left), processed with the proposed method (right).

The evaluation of various X-ray image sequences showed a SNR improvement
comparable to Wiener filtering. However, even without temporal filtering the
multiscale approach leads to a far more stable image impression in sequences.
In general, advances in noise reduction bear the prospect of reducing radiation
doses while keeping the image quality constant.
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