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Abstract
Collaborative Filtering (CF) models lie at the core of most rec-

ommendation systems due to their state-of-the-art accuracy. They

are commonly adopted in e-commerce and online services for their

impact on sales volume and/or diversity, and their impact on com-

panies’ outcome. However, CF models are only as good as the inter-

action data they work with. As these models rely on outside sources

of information, counterfeit data such as user ratings or reviews can

be injected by attackers to manipulate the underlying data and

alter the impact of resulting recommendations, thus implement-

ing a so-called shilling attack. While previous works have focused

on evaluating shilling attack strategies from a global perspective

paying particular attention to the effect of the size of attacks and

attacker’s knowledge, in this work we explore the effectiveness of

shilling attacks under novel aspects. First, we investigate the effect

of attack strategies crafted on a target user in order to push the rec-

ommendation of a low-ranking item to a higher position, referred to

as user-item attack. Second, we evaluate the effectiveness of attacks
in altering the impact of different CF models by contemplating the

class of the target user, from the perspective of the richness of her

profile (i.e., slightly-active v.s. highly-active user). Finally, similar to

previous work we contemplate the size of attack (i.e., the amount

of fake profiles injected) in examining their success.

The results of experiments on two widely used datasets in busi-

ness and movie domains, namely Yelp and MovieLens, suggest that

highly-active and slightly-active users exhibit contrasting behaviors

in datasets with different characteristics.

1 Introduction and Related Work
Collaborative filtering (CF) models are a crucial component in

many real-world recommendation services due to their state-of-the-

art accuracy. Considering their widespread popularity and adoption

in the industry, the output of these models can impact many de-

cision qualities in different application scenarios [3, 16, 28]. The

open nature of CF models, which rely on user-specified judgments

(e.g., ratings or reviews) to build user profiles and compute recom-

mendation, can be used in the hand of adversaries to manipulate

the underlying data and affect the impact of recommendation, a

phenomenon commonly referred to as shilling attacks [11, 19]. The

attacker maymanipulate the recommender for positive motivations,

like outcomes improvement, or malicious, like reducing the user’s

loyalty to a competitor.
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In this direction, first works [15, 19, 24] focused on different

profile injection strategies by analyzing and classifying them on

the required effort and amount of attacker’s knowledge to craft

successful attacks. These works have been followed by multiple

studies on the evaluation of the robustness [4, 7, 22] of different CF

models and detection strategies [8, 18, 29]. The robustness analysis

in surveys [11, 21] shows that Item-kNN is more robust than User-

kNN and model-based CF are generally more resistant to shilling

attacks than conventional nearest neighbor-based algorithms.

One common characteristic of the previous literature on shilling

attacks on CF-RS is their focus on assessing the global impact of

shilling attacks on different CF models by examining the success of

attacks from the perspective of attacker’s knowledge and the size of

attack (i.e. the number of shilling profiles) [11]. In the present work

instead, we investigate the effectiveness of an attack on a target-

item of a target-user, namely user-item attack, with a novel point of

attention focused on influence of the attack on the classes of attacked
users in particular highly-active (HA) user and slightly-active (SA)
user.

The application scenario for class-based study of attacks on RS

may span in different domains. As an example, a restaurant owner

may wish to diminish the trust on a target user of a competitor

by pushing a low-ranked product for the specific user. The same

argument can be made for new users. An attacker may be interested

in pushing or nuking, particular products with the objective of

modifying the impact of a recommender system in order to affect

future interactions of the new user.

The leading reserach questions of this work are then:

• RQ1: From a global perspective, what is the impact of user-

item attack on classes of users such as slightly-active and

highly-active users?

– Could attacks be tailored to have a higher impact on a

particular class of users?

– Which factors play a role on the impact of such an attack?

• RQ2: From a local perspective, how do CF recommendation

model work differently under user-item attacks by looking

to user-classes?

The remainder of the paper is structured as follows. Section 2

presents the evaluation protocol and datasets description we used

in our experimental evaluation. Section 3 reports on the results

and their discussion. Section 4 concludes the paper and introduces

future perspectives.

2 User-Item attack modeling and evaluation
In this section, we discuss our evaluation protocol for a user-item

attack modeling and the corresponding evaluation setup.



2.1 Evaluation Protocol
In order to test the effects of a user-item attack on attacked

user classes, an extensive set of experiments has been carried out

with respect to three dimensions: (i) the attack strategy (type and

quantity of injected profiles), (ii) core CF recommendation model

and (iii) the user classes. The experimental evaluation has been

executed on two well-known datasets, MovieLens-1M (ML-1M) and

Yelp (described in Section 2.2).

2.1.1 Attack Strategies.We have implemented two attack strate-

gies to craft shilling profiles (SP) in order to model different level

of attacker’s capability. Given a user profile P(u) = {ri1 , . . . , rin }
(consisting of a set of items rated by user u), we consider the items

in P(u) in the form of: selected items (IS ), filler items (IF ), target
item (IT ) previously identified in [6], with |IS | + |IF | + |IT | = |P(u)|.
The items in the set IF are selected randomly in order to obstruct

detection of an SP while the only element in IT is the item that the

attacker wants to push, or nuke. Here we focus on two strategies

to build IS , which lies at the core of a shilling profile generation.

The number of items in a shilling profile is close to the mean value

of the number of rating in the dataset. We execute two types of

attacks:

• User-and-Model aware attack (UMA) assumes a partial

knowledge of some victim preferences. The attacker creates

a new profile, called seed profile, on the system with these

preferences and uses the recommendation systems to receive

recommendations. The recommendations are then used to

fill IS with high ratings. This type of attack is inspired by the

probe attack [2, 6, 11]. In the probe attack, the seed profile is

created by the adversary and the recommendations gener-

ated by the recommender system are used to learn related

items and their ratings in order to built up shilling profiles

very similar to existing users in the system. These items

constitute the 50% of each shilling profile.

• User-Neighbor aware attack (UNA) assumes that the at-

tacker knows some users similar to the victim. We employ

this attack by evaluating the k-nearest neighbor users of each
victim

1
and selecting the most rated items in the neighbor

in order to fill IS . This attack is a modified version of the

bandwagon or popular attack [25]. While the bandwagon at-

tack sets high ratings on the popular items of the system; the

proposed attack sets high ratings on the popular items inside

the victim’s neighborhood in order in order to inject profiles

capable to influence more the victim-s recommendations.

We executed experiments with different size of injected profiles,

which are classified in small-size attacks by averaging results of

attacks with 2, 10, 20, 50 shilling profiles and large-size attacks by
averaging attacks with 200 and 500 injected profiles.

2.1.2 CF Models. In our evaluation, we compared the vulnerabil-

ity/robustness of the following CF models:

User-kNN [5]: user-based k-nearest-neighbor (kNN) method. In

our experiments, we set the number of neighbors k to 20 [19].

Item-kNN [27]: item-based kNN method. Also in this case, the

number of neighbors k has been set equal to 20.

1
experiment setting: k = 50, similarity metric = cosine similarity.

BPR-SLIM [23]: Sparse LInear Method (SLIM) is an item-item

model that models the estimation of unknown user-item rating

as a regression problem. It learns a sparse aggregation coefficient

matrix from aggregated users’ preferences. This model allows the

system to capture correlations between items. BPR-SLIM uses the

BPR optimization criterion.
2

BPR-MF [26]: This method uses matrix factorization (MF) as its un-

derlying core predictor and optimizes it with Bayesian Personalized

Ranking (BPR) objective function.

These CF models stand for state-of-the-art models for the item

recommendation task, each using a different prediction concept,

allowing us to study the impact of different attack strategies from

multiple viewpoints.

2.1.3 User Classes. Given that CF models only rely on user prefer-

ence scores (i.e., ratings) to compute recommendation, we hypoth-

esize that it is relevant to investigate the impact of different attack

strategies with respect to the victim user’s level of activity, i.e. the

richness of her profile, calculated on the basis of the number of

ratings available in her profile. To this aim, we define two classes

of users:

• Highly-active (HA) users are defined as users who have

a number of ratings greater than the second quartile of the

number of ratings for each user in the dataset.

• Slightly-active (SA) users are defined as users who have

a number of ratings lower than the second quartile.

2.1.4 Evaluation Metric. Several metrics have already been pro-

posed to evaluate malicious attacks. For example, [24] proposes the

prediction shift (PS) which estimates the success of an attack by

measuring the prediction difference before and after the attack [30].

It has been identified that a strong PS does not necessarily implies

an effective attack result [20]. From the perspective of the attacker,

the ideal goal in a push attack is to increase the chance of a de-

sired item being recommended after the attack than before. We

use a modified version of Hit-Ratio [17] to measure the fraction of

successful attacks on a set of different user-item pairs.

Definition 1. Let u be the user under attack and i be the targeted
item that the attacker wants to push/appear in the top-k recommenda-
tions of u. Let topku be the top-k recommendations of u. Let ϕ(i, topku )
be the function to evaluate the effectiveness on an attack on (u, i).
If i is pushed in the top-k then ϕ(i, topku ) = 1 (successful attack),
otherwise ϕ(i, topku ) = 0 (unsuccessful attack). Let S be the set of
(u, i) user-item pairs under attack. HR@k is defined as the fraction
of successful attacks on each (u, i) ∈ S .

HR@k =

∑
(u,i)∈S ϕ(i, top

k
u )

|S |
(1)

where |S | is the number of (u, i) pairs over which HR@k is measured.

2.2 Data Descriptions
We conducted experiments on two well-known datasets, Movie-

Lens 1M [12] and Yelp [13, 14]. The datasets represent different item

2
The computation of the CF comparative models has been done with the publicly

available software library MyMediaLite http://www.mymedialite.net/. We used default

parameters for both BPR-MF and BPR-SLIM.
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recommendation scenarios for movie and business domains and

have data densities which are approximately 40 times different from

each other. Table 1 summarizes the statistics of the two datasets

(after pre-processing).

Table 1: Characteristics of the dataset used in the offline experi-
ment: |U | is the number of users, |I | the number of items, |R | the
number of ratings

Dataset |U| |I| |R|
|R |

|I | · |U |
× 100

ML-1M 6040 3706 1000209 4.468%

Yelp 5135 5163 24809 0.093%

MovieLens-1M: We used a million-sized version of the dataset

ML-1M, which contain 1M ratings of users for items (movies). We

used the original ML-1M dataset for the experiments without any

filtering.

Yelp: This dataset contains ratings of users on businesses. We used

the pre-processed version of the dataset provided by [13, 14] with

731K ratings of 25K users for 25K businesses. Given the large size

of users and items from which item-item or user-similarities have

to be computed, similar to [1] we extracted a random sample of

5K users and 5K items in order to speed up the experiments. The

resulted dataset contains 24.8K ratings with data density (0.110%),

which is comparable with the one before filtering (0.093%).

3 Results and Discussion
In order to validate the empirical impact of the under study attack

types on different classes of users, an extensive set of experiments

has been carried out with respect to the dimensions introduced in

Section 2.1. The final results are presented in Table 2 and discussed

from the following viewpoints:

• A global analysis of the impact of attacks on user classes (cf.

Section 3.1)

• A fine-grained analysis of the impact of attacks on user

classes by looking into the CF models and attack types. (cf.

Section 3.2)

We present each of these analysis viewpoints in the following sub-

sections.

3.1 Global impact of attacks on user classes
The goal of this analysis is to answer the first research question

related to the global assessment on the effectiveness of user-item

attack with respect to the identified users classes. We use the term

global here, since in this analysis we would like to free our attention

from the impact of attacks on CF models, attack quality (type)

and/or quantity as they have been largely addressed in previous

works [11, 21, 22]. Instead, we examine the impact of attacks on

the dimension of user classes by looking into the aggregate mean

values computed across CF models on the two datasets we adopted

in our experimental evaluation.

A general observation for the results in Table 2 is that larger-size

attacks reach higher level of effectiveness on both classes of users

(highly-active and slightly-active) in comparison with smaller-size

attacks. For example, on the Yelp dataset, the average HR@10 for

UNA attack on highly-active users (across CF models) is 0.256 for

small-size attacks, while it is 0.800 for large-size attacks, a difference

of approximately three times. The same pattern of results is obtained

in other experimental cases. These results are in line with those

presented in previous works [21, 22].

Our objective here is to study the impact of different attack

strategies on user classes. For this purpose, we define the variable

r = HRHA
HRSA and refer to it as user-class attack impact —i.e., the

impact of an attack on highly-active users in comparison with

slightly-active users. Different values for r are interpreted as in the

following:

• r = 1: the attack has an equal impact on highly-active and

slightly-active users.

• r > 1: the attack has an unequal impact on highly-active w.r.t
slightly-active users. The impact of attack on highly-active
users is relatively higher in comparison with slightly-active

users.
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• r < 1: the attack has an unequal impact on highly-active v.s.

slightly-active users. The impact of attack on slightly-active
users is relatively higher in comparison with highly-active

users.

It is obvious that the larger r deviates from the center point 1, the

larger is the attack success in differentiating highly-active with

respect to slightly-active users in one of the above-mentioned di-

rections (r < 1 or r > 1). Before starting a deeper analysis of the

results we highlight that the most interesting values are in the

left portion of Table 2 (small-size attacks), because when the size

of attack is larger the attack reaches the maximum effectiveness,

HR = 1, independently of user classes.

By looking at the results for each attack size in Table 2, we can

see that the average user-class impact r̄ has a value higher than 1 for
the Yelp dataset (r̄ > 1), while a value lower than 1 for the ML-1M

dataset (r̄ < 1). These results show that both attack types have an
unequal impact on slightly-active vs highly-active users as r , 1.

However, the class of users they have a larger impact on remains
largely different and contrasting in the two datasets.

As an example, in Yelp and for UMA, one can note that for small-

size attack r̄ = 2.393 and for large-size attack r̄ = 1.832, while

the corresponding values on ML-1M are r̄ = 0.658 and r̄ = 0.909,

respectively. This means that the impact of attacks on user classes is

higher on highly-active users on the Yelp dataset (r̄>1), differently
from ML-1M (r̄<1).

We conjecture that the above contrasting behaviors are directly

linked with the characteristics of the datasets such as their sparsity.

As shown in Table 1, Yelp dataset is approximately 40 times sparser

than ML-1M and we consider this difference as the main/possible

cause of the contrasting outcomes in tested datasets. We try to

provide a possible explanation here. In the more sparse dataset (i.e.,

the Yelp dataset), users with a small number of ratings (slightly-
active users) aremore immune to attacks because they have a smaller

support size of the user profile (i.e., the user profile is not rich

enough for the attacker to be able to mimic it in a crafted way).

In contrast, highly-active users are more immune to attack in ML-

1M with higher density, because their recommendations rely on

neighbors with (very) rich user profiles. Put it simply, the crafted

3
This is equal to say, slightly-active users are relatively more immune to the attack

w.r.t. highly-active users.
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Table 2: HR@10 for small-size and large-size attacks with respect to the class of user, slightly-active and highly-active, and the CF model. The
user-class impact r is the ratio of HRHA value to HRSA . (Abbreviations: HA→ Highly Active, SA→Slightly Active)

Small-size attacks Large-size attacks

Dataset CF/Attack U-kNN I-kNN
BPR

SLIM

BPR

MF

mean U-kNN I-kNN
BPR

SLIM

BPR

MF

mean overall
mean

Yelp

UMA
SA 0.750 0.067 0.225 0.108 0.288 0.967 0.184 0.500 0.533 0.546 0.417
HA 0.800 0.350 0.492 0.117 0.440 1.000 0.667 0.784 0.584 0.758 0.599
r 1.067 5.243 2.184 1.079 2.393 1.034 3.632 1.567 1.095 1.832 2.113

UNA
SA 0.850 0.625 0.792 0.400 0.667 1.000 0.834 1.000 1.000 0.958 0.813
HA 0.875 0.742 0.850 0.433 0.725 1.000 0.850 1.000 1.000 0.963 0.844
r 1.029 1.186 1.074 1.082 1.093 1.000 1.020 1.000 1.000 1.005 1.049

ML-1M

UMA
SA 0.302 0.155 0.267 0.121 0.211 0.897 0.086 0.586 0.328 0.474 0.343
HA 0.092 0.108 0.159 0.125 0.121 0.383 0.150 0.350 0.284 0.292 0.206
r 0.303 0.698 0.593 1.037 0.658 0.427 1.744 0.597 0.866 0.909 0.783

UNA
SA 0.621 0.302 0.595 0.164 0.420 1.000 0.897 1.000 0.811 0.927 0.673
HA 0.459 0.133 0.250 0.183 0.256 1.000 0.800 0.800 0.600 0.800 0.528
r 0.739 0.442 0.421 1.121 0.680 1.000 0.892 0.800 0.740 0.858 0.769

(a) HR@10 Slightly-active Users (b) HR@10 Highly-active Users

Figure 1: Heat-map of Correlation Coefficient (ρ) of different mea-
sures between CF models for small-size attacks: (a) HR@10 on
Slightly-active Users, (b) HR@10 on Highly-active Users.

attacks need to use a large number of profiles to be able to alter

recommendation for the target user.

The insight on sparsity is an important indication that data

characteristics are playing a role in the effectiveness of attacks and

it motivates further research in this direction.

3.2 Fine-grained analysis of the impact of
attacks on user classes

The goal of this analysis is to study how different CF models

behave against the attacks: which ones have similar performance

and which ones have a different performance. This study resembles

previous work on shilling attacks on CF models. However, we take

into account the impact of attack on user classes in this study as

well.

Instead of individual CF models performances and attack types,

we compute the pairwise Pearson correlation between each pair

of analyzed CF models. Figure 1 indicates a strong correlation on

HR@10 between BPR-SLIM and Item-kNN (ρ = 0.960 in Figure 1a

and ρ = 0.993 in Figure 1b). We justify this value by the fact

that both CF models exploit the item-item similarity computation.

Looking at the correlation values for User-kNN in Figure 1, one can

observe a slightly lower correlation in the case of slightly-active-
users with respect to other models. We think that this phenomenon

comes from the fact that tested attack are based on user preferences

which gain good effect also with small-size attacks. For instance,

HR@10 for Yelp on slightly-active users (0.750 and 0.850) is higher

than the mean values with other models for both attack (mean =

0.288 and 0.440). We can also observe an interesting behavior when

we compare ρ of BPR-MF with BPR-SLIM and Item-kNN. Figure 1
(a) and (b) show that HR@10 on both classes of attacked users

is highly correlated (ρ ≥ 0.840). Finally, results in Table 2 show

that BPR-MF is the model that is less influenced by user-classes

because the user-impact factor is close to 1 for each class of users

and attacks.

4 Conclusion and Future Work
This work investigates the effect of user-item attacks on classes

of users. Particularly, we investigated the effectiveness of attacks

from a global and local perspective by varying the quality and quan-

tity of attacks, the target user class and the collaborative filtering

recommendation model.

Experimental results on Yelp and MovieLens datasets indicate

that for Yelp dataset slightly-active users are more immune to

shilling attacks than highly-active users, a characteristic that is in

contrast with the results on MovieLens dataset where highly-active

users are more immune than slightly-active users. As datasets have

a very different sparsity (Yelp is approximately 40 time more sparse

than MovieLens) we will move our future works in analyzing the

effectiveness of dataset properties under different attack scenarios.

From a local perspective, we evidence that BPR-MF is less influ-

enced than other models when varying user-class and attack types.

On the other hand, BPR-SLIM and Item-kNN have shown similar

behavior related to the effect of attacks on user classes. In future,

we also plan to extend our study by considering more datasets from

different domains, exploring in an extensive way the influence of

dataset properties, such as sparsity, user and item skewness, rating

variance, on the effectiveness of different type of attacks. Also, it

is of our interest to consider the impact of various shilling attack

types on CF models using item content as side information [9, 10].

These studies give important insights on the impact of shilling

attacks on recommender systems and provide clues on how to

reduce their effectiveness by working on datasets characteristics.
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