
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons 
License Attribution 4.0 International (CC BY 4.0). 

 

LabDER - Relational Database Virtual Learning 
Environment 

Adriano Lino1[0000-0003-1403-2209], Álvaro Rocha1[0000-0002-0750-8187], Luís Macedo1[0000-0002-

3144-0362] and Amanda Sizo 1[0000-0002-9516-7991] 

1 Department of Informatics Engineering  
CISUC, Centre for Informatics and Systems 

University of Coimbra 
Coimbra, Portugal 

{adlino, amrocha, macedo, sizo}@dei.uc.pt 

Abstract. This paper describes a virtual learning environment for use in intro-
ductory database disciplines that aligns with the professor’s teaching plan and 
aims to automatically evaluate students’ responses to questions, which may be 
multiple-choice or discursive or may involve entity relationship diagrams (ERDs) 
or SQL. The main advantage of LabDER over previous automatic evaluation ap-
proaches for ERD and SQL is that it accepts multiple responses and encourages 
students to develop the best solution through semantic feedback based on com-
piler theories, software engineering metrics and supervised machine learning. 
This approach considers the distance of the student’s response from the model 
response and provides semantic feedback via a blend of compiler and various 
other metrics, while predicting the student’s grade using a machine learning al-
gorithm. A case study was designed to confirm the approach and 15,158 students’ 
responses were automatically evaluated. As a result, semantic feedback provided 
student self-learning through suggestions on the database concepts involved in 
each solution, which generated a considerable increase in student participation as 
well as an increase in their average grades. In future work, we will investigate 
how to include other database topics that can be automatically evaluated, such as 
query performance and relational algebra. 

Keywords: Virtual Learning Environment, Automatic Evaluation, Entity Rela-
tionship Diagram, SQL, Compiler, Metrics, Supervised Machine Learning 

1 Introduction 

Entity relationship diagrams (ERDs) and Structured Query Language (SQL) represent 
a high proportion of the elective database components of baccalaureate courses and are 
included in the baccalaureate curriculum guidelines recommended by the Association 
for Computing Machinery (ACM) and the IEEE Computer Society [1]. These courses 
are supported by virtual learning environments (VLEs): systems that assist the teaching 
and learning process and provide resources for course assignments and access to mate-
rial anywhere and at any time, using any device [16]. 



43 

Microsoft [10] and Oracle [13] provide educational materials and tools on SQL and 
ERD topics, and some of these tools provide indicators for measuring the progress of 
user learning, often via multiple-choice activities. However, these tools have not been 
developed for the same purpose as VLEs and do not provide resources for the professor 
to implement the teaching plan and to manage and evaluate students and other academic 
requirements. Furthermore, they do not provide automatic evaluation of SQL and ERD. 

Within the scope of this research, there are VLEs that enable the teaching of ERD 
and SQL with automatic evaluation. The literature review on this topic presents the 
following environments: SQL-Tutor [3], SQLator [14], MIST [4], OpenMark [15] and 
EER-Tutor [5]. However, these solutions for automatic evaluation of ERD and SQL are 
not complete, as they have evidence of limitations that can be overcome, i.e., an inter-
face that limits the student answer at the same time as providing a model answer. 

This article introduces LabDER, a relational database virtual learning environment 
that has a set of functionalities for implementing a teaching plan and automatically 
evaluating students’ responses, which can be multiple-choice or discursive or involve 
SQL or ERDs. Unlike previous approaches, LabDER provides semantic feedback and 
a grade, based on compiler theory, software engineering metrics and supervised ma-
chine learning (ML). The automatic evaluation provides semantic feedback to the stu-
dent on each submitted response, which in general is a measure of the distance between 
the student’s response and the model response initially registered by the professor. This 
approach challenges and encourages students to refactor their solutions, to obtain, in 
addition to the answer that returns the correct result, semantic feedback with a grade 
that approximates that of the specialist. The main advantages of our approach are: 1) 
the student receives automatic feedback for each response submitted to the system and 
2) the environment accepts equivalent computational solutions to the same problem and 
encourages the student to find more efficient solutions through semantic feedback. 

This paper presents LabDER, describing its features, architecture and testing. The 
case study shows the system being used in a class providing more than 15,000 re-
sponses. Predictive models of SQL and ERD based on metrics and supervised ML have 
been described in previous studies [8],[9]. Based on this positioning, the previous per-
spectives will be analysed. Conclusions and references will close the work, as usual. 

1.1 Literature Review 

A literature review was conducted to assess the limitations of the computational ap-
proaches used to automatically evaluate ERDs in VLEs. Five electronic databases: 
ACM, IEEE, Springer, ScienceDirect and Web of Science, were used. The search terms 
used for eligible articles were “automatic evaluation”, “automatic feedback”, “auto-
matic classification”, “virtual learning”, “diagram design”, “entity relationship model-
ling”, “ER modelling”, “automated diagram evaluation” and their combinations. 

The search criteria at the date of publication included all works published up to 7th 
March 2019, when the last search was made. Eligible documents were those in the Eng-
lish language where proposals were made for computational environments with auto-
matic evaluation of ERDs. Textbooks, book chapters, theses, unpublished documents, 
non-English documents and exclusive works were excluded. Articles with no evidence 



44 

of system use were also excluded, as well as those that did not provide an analysis of 
results. 

There are studies on automatic evaluation of ERDs without evidence of continuity, 
such as those on ERM-VLE [6] and DATsys [7], and some that are still in progress 
such as EER-Tutor [5] and OpenMark [15], originally known as KERMIT and ERD-
Drawing. These studies provide references in the field of the achievement of the auto-
mation of ERD and are guides for the development of new technologies. 

ERM-VLE is a text-based VLE for ER modelling, in which students design data-
bases by browsing the virtual world. The virtual world consists of rooms, such as entity-
creation rooms and relationship-creation rooms, and the students write text commands 
such as picking, dropping, naming, evaluating, creating and destroying, to manipulate 
objects. This tool proved to be very restrictive, and students reported discouragement 
at being forced to follow the path of the ideal solution. 

The method used in DATsys [7] assesses the students’ answer by running their so-
lutions against a set of metric tools. When the marking subsystem runs the flow chart 
tool, the student’s flow chart diagram is converted into BASIC code, which is then fed 
to the dynamic tool. Then, the dynamic tool runs the BASIC code and returns a grade 
and feedback to the students. However, this method does not address several equally 
valid model solutions with slightly different and mutually exclusive characteristics [7]. 

OpenMark [15] uses an approach for automatic evaluation of ERDs using NLP and 
heuristic techniques, in which a similarity measure is used to provide the marking. The 
results are close to those of the human evaluator, with 91% accuracy. A weak point is 
that the diagram used does not include all the ERD concepts, such as strong and weak 
entities, attributes and composition, and thus does not evaluate these concepts. 

EER-Tutor [5] explores the effect of instructional feedback to simulate an evaluation 
of the EER and thus to provide feedback to detect and correct errors. However, for this 
purpose, the feedback in EER-Tutor is statically defined in the source code. Another 
disadvantage is the use of coloured visual highlights for various issues. This greatly 
simplifies the problem to be solved, and almost provides the system’s expected re-
sponse, highlighting the names of the tables, attributes and relationships. 

In general, all these environments present some limitations that we can categorize as 
follows. Restrictive responses occur when students experience limitations in produc-
ing the diagrams because the environment accepts only a correct solution, and conse-
quently students are directed to follow a standard response through the graphical inter-
face. Visual highlights occur when systems visually highlight words in the description 
of an exam question, such as entities, attributes and relationships, then limit the stu-
dent’s reflection by providing the answers using the words expected by the system. 
Ambiguity occurs when students can guess the correct answer from among the alter-
natives offered and can get correct feedback for the wrong reason and static feedback 
occurs in an expert system that uses an approach limited by a set of pre-established 
rules, so that feedback is static for cases of error detection and correction. Conceptual 
limitations occur when the tools do not provide functionalities to evaluate database 
concepts, and consequently are limited to a restricted set of concepts. For example, they 
may evaluate only the entity name and relationship, and not cardinality, attributes or 



45 

domains. The literature review has shown few effective applications of automatic eval-
uation of ERD in the real world. Therefore, there are opportunities for improvement 
this field. 

2 Method 

LabDER1 is the result of a doctoral research project. It aims to automatically evaluate 
students’ responses, which may be multiple choice or discursive or may involve SQL 
or ERD. In addition, the system provides features similar to a VLE, enabling the pro-
fessor to execute the teaching plan. The system is hosted on the cloud service of the 
PhD Programme in Information Science and Technology of the Faculty of Sciences and 
Technology at the University of Coimbra (FCTUC). 

LabDER was developed following the standard software engineering process. 
Firstly, functional requirements, performance requirements and usability requirements 
were identified. The requirements list was built and validated with the support of key 
stakeholders for this project, i.e., the professor and the students. Performance testing 
was supported by OctoPerf2 in all phases.  

2.1 Features 

The main functionalities of the system are automatic evaluations of SQL and ERD; 
however, LabDER has 89 functionalities, which together provide professors and stu-
dents with an environment that helps in the database teaching and learning process. 

The management features in the professor profile are create, read, update and delete 
data, and the following resource management modules are available (see Fig. 1): 

Manage courses and classes: this module prepares LabDER for use by the profes-
sor and a class of students. The management features used to create a class are: profes-
sor, teaching institution, course, discipline and class. 

Manage student: this module manages students’ information. The features are: 
manage enrolment of students via CSV file or enable manual student enrolment through 
a standard form, manage student teams for performing activities and manage the student 
DB. Students have access to the system after agreeing to the legal terms of use and the 
privacy policy available on the LabDER website. 

Manage evaluation and questions: this module manages the questions, answers 
and evaluations. There are four types of questions: discursive, multiple-choice, SQL 
and ERD crow’s foot notation questions. Professors can share questions and answers 
with each other. The question group management feature is used to group the questions 
and gives the option to create activities with random questions. Normally, homework 
is created with the same questions for all students and should include all questions in 
the group of questions. Evaluations are usually random and should use a smaller num-
ber of group questions in order to be so. This avoids plagiarism. 

                                                           
1  LabDER is available at https://labder.dei.uc.pt/ 
2  Company for performance testing, see https://octoperf.com 

https://labder.dei.uc.pt/


46 

Manage teaching material: the professor can edit the default digital book and add 
digital content, view reports to track student progress. Additionally, the professor can 
evaluate the student activities manually, replacing the automatic grade, or can give 
feedback in the format of virtual Post-it notes. In class, the professor can explain DB 
concepts using the SQL-Free and ERD-Free features. SQL-Free is an interface for con-
necting to a DB instance and running SQL code. ERD-Free is an interface for designing 
ERD crow’s foot notation and saving it in a user DB or exporting it to SQL. 

Manage 
Profile

Progress 
Evaluation

Data Source Adapters

Automatic evaluation metrics

ER diagrams

SQL

Discursive

Multiple choiceResponse DB

nGramma

SQL Interpreter

Drawing ER API

Components Types of 
questions

Data 
Layer

LabDER DB

Metrics DB

Users DB

Manage Students Manage Teaching 
Material

Students

Professors

Presentation
Layer

Https Protocol

Modules

Manage Evaluations 
and Questions

Manage Courses 
and Classes

Exercises 
and 

Evaluations

View Educational Material

Application
Layer

 
Fig. 1. General architecture of LabDER. 

Furthermore, the student has the following functionalities.  
View educational material: the student could access the interface for visualizing 

the digital book with six chapters, covering the topics of: introduction to DBMS, mod-
elling, ERD, relational algebra, SQL and transactions and security. The student can 
export the materials in PDF format. Each student has a MySQL DB instance and can 
use SQL-Free to obtain access to the DBMS. The DBMS controls the security and the 
interface returns the SQL result. Students can use ERD-Free to design ERDs following 
the professor’s instructions or can use it as needed. This interface has more than 59 
features to improve the usability using shortcut keys and drag-and-drop. 

Progress evaluation: the student can check their performance and the progress of 
each activity through reports. 

Manage profile: the student can manage their profile by editing personal infor-
mation and can reset the DB instance and monitor the access log using the tool. 

Exercises and evaluations: this interface allow the student to visualize the activity 
and answer multiple-choice, discursive, SQL and ERD questions. All responses are 
evaluated automatically, and semantic feedback is provided instantly.  

2.2 Architectural Overview 

The environment uses the server-client architecture in three tiers (see Fig. 1). In the 
presentation layer, the professors and students access the application as clients via a 
browser. In the logic layer there are two application servers using load-balancing, via 
the Ubuntu and Apache HTTP service developed in PHP version 5.6.35. In the data 
layer, MySQL Server version 5.7.21 is installed on Ubuntu. The ERD design API3 was 

                                                           
3  API for ERD drawing, available at https://github.com/ondras/wwwsqldesigner 

https://github.com/ondras/wwwsqldesigner


47 

developed in JavaScript and is available on GitHub. In LabDER, this API is integrated 
for answering the ERD questions and designing freely using ERD-Free. 

The professor uses the teaching plan to prepare the LabDER for the students through 
the modules, registering the course and class, questions and answers, summative, diag-
nostic and training activities and any other resources for the students to use. 

Furthermore, the student visualizes the activities available through the exercise and 
evaluation module. The interface fits the question type, i.e., ERD, SQL, multiple-choice 
or discursive, and triggers the corresponding automatic evaluation component. The au-
tomatic evaluation component is triggered for each student’s answer. In the case of SQL 
and ERD responses, the student’s response is compared with the model response at 
three levels: compiler, metrics and the predictive model. 

The compiler level uses a tokenizer, lexical analysis, syntactic and semantic analysis, 
a symbol table and error handler. This phase identifies each element of the student’s 
response and analyses it, finally sending the feedback as a compiler. For example, the 
SQL semantic rule to detect the ORDER BY clause requirement is given by the model 
response. In the case of ERD, an example is the detection of the type of cardinality 
expected in the student’s response, also given by the model response. 

The metric-level evaluation computes measurements of the student’s response and 
the model response. Most of the metrics used are DB metrics, such as the number of 
tables, columns or foreign keys, but we have also merged adaptations of software en-
gineering metrics such as volume and McCabe [9]. At this level, one example of ERD 
feedback could be the lack of one strong entity and two columns of domain characters. 
In the case of SQL feedback, an example would be a solution having insufficient tables 
for the question. 

In the prediction phase, a predictive function is triggered, using as input the metrics 
extracted from the student’s response and the model response, and as output a grade 
that approaches the professor’s evaluation. The predictive model was created in previ-
ous research [8], [9], using data collected from students and professors. It also describes 
DB metrics, with a demonstration of compiler phases and an error analysis. 

2.3 Software Test 

Appropriate software tests were defined for the goals to be achieved, using the envi-
ronment. The first aim is to meet the functional requirements of the system and to find 
divergences between the execution environment and the system specification [11]. For 
this purpose, it must be ensured that all functionalities work as specified. A functional-
ity test was made using a test-case template for 38 system functionality (see i.e. Table 
1). The process followed a flow in cycles using five testers as recommended by Nielsen 
[12], and was completed when the feature obtained the status “passed”. 

The second aim was to ensure simultaneous access to LabDER in a classroom con-
text, so that the system could be used by more than 500 students simultaneously in 
exams or class days. Thus, the performance testing aimed to keep users on the system, 
helping to find solutions to the problems of response time, load time, speed and low 
scalability. The system showed adequate performance, without bottlenecks or failures 
that could lead students and professors to leave the system. 



48 

Table 1. Functional test-case (TC) 65 - Answer ERD Questions. 
Unique:  TC – 65 
Test Case: Answer ERD Questions 
Location:  https://labder.dei.uc.pt/sql_avaliacao.php 
Description: Allows student to answer ERD questions in an assessment 
Precondition:  The student is logged in and there is at least one assessment registered by the professor. 
Procedure:  1: Select an assessment. 

2: Select a question. 
3: If the question is ERD, develop the ERD and click "Submit". 

Expected Result: The ERD is saved and semantic feedback is provided. 
Result:  Passed 

The performance test was undertaken using the OctoPerf software. The project was 
intended to support up to 1,000 concurrent users. This number was defined based on 
FCTUC’s offer for the database discipline. There are about 450 students and 10 profes-
sors working together in the master’s and baccalaureate courses in IT. 

The main test scenario is the TC-Student ERD, which creates a complete simulation 
of the student answering an ERD question available in the assessment. Table 2  shows 
the results of the test scenario in configurations with a 1vCPU and a 2vCPU. Load 
balancing (2vCPU) achieved response time of less than 4s using the 2vCPU for a thou-
sand concurrent users and less than 1s for 1,000 concurrent users. 

Table 2. Test case – student ERD performance comparison between 1vCPU and 2vCPU. 

TC Metric Scenario – 1,000 VUs  
Configuration 1vCPU 

Scenario – 1,000 VUs 
Configuration 2vCPU 

Student 
ERD 

Average Response Time 28,175  1,822  
Requests 201,420  3,136,723  
Latency 9,449  1,130  
Errors 942  50  
95% Percentile 135,626  4,411  
90% Percentile 129,932  3,992  
85% Percentile 52,770  3,142  
80% Percentile 32,729  2,844  

The server received a total of 200,000 requests. After fixing the problems detected 
in the various stages of the performance test, we implemented load balancing to achieve 
the target response time. The best configuration received more than three million re-
quests (see Table 2). In addition, in 95% of cases, with 1,000 concurrent users, the 
response time (previously 135s) had been reduced to 4s. The performance test was ap-
proved, since it achieved a 4s response time, less than the target response time for this 
test scenario, which was 10s. All test cases were approved, as shown in the technical 
report. 

Table 3. The system usability scale questionnaire. 
Please rate your level of agreement with each of the following statements: 1. Strongly disagree 2 3 4 5. Strongly agree 
1. I think that I would like to use this system frequently.           
2. I found the system unnecessarily complex.           
3. I thought the system was easy to use.           
4. I think that I would need the support of a technical person to be able to use this system.           
5. I found the various functions in this system were well integrated.           
6. I thought there was too much inconsistency in this system.           
7. I would imagine that most people would learn to use this system very quickly.           
8. I found the system very cumbersome to use.           
9. I felt very confident using the system.           
10. I needed to learn a lot of things before I could get going with this system.           

The third objective was the usability test, to ensure that students and professors can 
perform their activities without experiencing difficulties in human-machine interaction. 

https://labder.dei.uc.pt/sql_avaliacao.php


49 

The SUS questionnaire (see Table 3) was applied. This was originally written in Eng-
lish and later translated into Spanish and Portuguese. 

LabDER was evaluated by 64 users, students and professors from Brazil, Portugal 
and Colombia, and scored an average of 72.97 on the SUS scale. Based on Fig. 2, it is 
observed that a system with a score of 70 points is acceptable and below 50 is unac-
ceptable, according to the acceptability ranges scale. In adjective classification, a sys-
tem evaluated with the adjectives “best imaginable”, “excellent” or “good” is accepted. 
However, evaluation using the adjective “OK” may raise doubts about the acceptance 
and may lead to requirements for modifications to the system interfaces under analysis. 

LabDER

 
Fig. 2. LabDER usability ratings on the acceptability scale [2]. Scores below 50 are considered 

unacceptable. 

Around 13 users (see Fig. 3) evaluated the system on the acceptability scale as “best 
imaginable” and 25 users agreed that the system was “excellent”, while 21 users rated 
it as “good”. Only one user rated the system as “worst imaginable”. About 98% of the 
users classified the system as acceptable. 

 
Fig. 3. Usability frequency distribution of LabDER for SUS usability adjective classification. 

At the end of the software tests, the evidence was sufficient to show that LabDER is 
able to perform data collection accurately and can be used by students and professors. 

3 Case Study 

The case study was performed within the degree course in IT management at ISCAC – 
Coimbra Business School. The subjects consisted of 23 students. The course workload 
is estimated at 67.5 hours, for 15 weeks, with two face-to-face classes per week. The 
following section describes the preparation phase of the environment for using the sys-
tem to collect the data and analyse the results. 

0
5

10
15
20
25
30

Worst imaginable Poor OK/Fair Good Excellent Best imaginable

Fr
eq

ue
nc

y

Average SUS Scores

Frequency Distribution of SUS scores (n=64) 



50 

3.1 Preparation 

The preparation of the environment aims to release the system to be used by professors 
and students. The first preparation activity was to train the professor and prepare him 
to use the LabDER features, thus enabling him to execute his teaching plan. 

The training had the professor’s teaching plan as a requirement, as this helped to 
provide personalized training. The professor’s teaching plan was converted into a set 
of executable activities in LabDER (see Table 4), and data were added to the environ-
ment, such as the course, discipline, questions, answers and activities. For reference, in 
this document SQL is labelled (S), ERD is labelled (E), discursive questions are la-
belled (D) and multiple-choice questions are labelled (M). 

The students received the training on the first day. This was aimed at explaining the 
LabDER features and gaining initial access to the system. After completing the training, 
classroom support was provided on the first two days of class and on exam days. 

Table 4. Course activity plan by period and content.  
Act. Quest. 

 
Period 
dd/mm 

LabDER Book 
Chapters 

Content 

A1 
S 20 
D 18 
M 23 

18/02 to 
25/03 

Module I DB Concepts, DBMS, Relational Algebra, SQL overview. 

Module II SQL Syntax Elements, DB Syntax Creation, Queries, Constraints, Sorting and 
Logical and Arithmetic Operators. 

Module III DDL and DCL Statements, Create/Drop Objects, Insert/Update/Delete Statements, 
Constraint Syntax, Indexes, Views, Procedures, Triggers. 

Module IV SQL GROUP BY Statement, Complex Queries with HAVING. 

A2 
S 17 
D 06 
M 28 

27/03 to 
15/04 Module V 

Types of joins: cross, inner, outer, left, right.  
Subqueries: in a Column Expression, WHERE Clause as a Filter Criterion, FROM 
Clause as a Table, HAVING Clause as a Group Selector, Complex Queries Mixing 
All SQL Modules. 

A3 E 25 
M 35 

17/04 to 
10/06 Module VI Design Concepts: The Relational Database Model, Entity Relationship (ER) Mod-

elling, Advanced Data Modelling, Database Normalization. 

E1 S 07 
M 03 26/03 Modules I to, 

II, III, IV Exam 1 – Evaluate All Introductory Database and SQL Concepts. 

E2 S 07 
M 03 16/04 Module V Exam 2 - Evaluate the Advanced SQL Concepts. 

E3 E 04 
M 08 11/06 Module VI Exam 3 - Evaluate All ERD Concepts. 

With the help of the digital book and small real-world examples, students learned 
DBMS and SQL concepts for five weeks. The concepts taught are listed in Table 4 
(Modules I to IV). Meanwhile, they were given the first activity (A1) with 61 questions, 
(see Table 4). At the end of the period allowed for this activity, the students received 
an exam (E1) with 10 questions. 

In the following three weeks, the concepts of joins and subqueries were taught to 
students, as described in detail in Table 4 (Module V). Students received activity 2 
(A2) for completion at the end of this three-week period. A2 mixed the concepts of 
joins and subqueries with aggregate functions and topics from previous modules and 
had 51 questions. At the end of A2, students received another exam (E2) with 10 ques-
tions. 

In the next seven weeks, students were taught the database modelling concepts de-
scribed in Table 4 (Module VI). Students were given activity 3 (A3), with 60 questions, 
to be submitted at the end of this seven-week period. The students received the last 
exam (E3) after A3. This exam has 11 questions.  



51 

These six sets of data (A1, A2, A3, E1, E2 and E3) were collected (over a period of 
15 weeks in total) and automatically assessed, as explained in the following subsec-
tions.  

3.2 Results of Collection of Data 

A total of 15,158 responses were collected. Of these, 2,539 were discursive, 2,435 
were multiple-choice responses, 6,097 were SQL responses and 4,087 were ERD re-
sponses (see Table 5). The system log recorded a frequency of 1,915 logins and 26,918 
iterations on the system. The iterations included digital book visualization, exercises, 
reports and any system window view. 

Table 5. Number of responses submitted by question type, together with general system log. 

Activity  
(Total Questions) 

Answers Submitted User Log - Frequency 
Discursive Multiple choice SQL ERD Total Login Features Used SQL-Free ERD-Free 

Activity 1 (61 q) 2,106 551 2,269 N/A 4,926 589 9,698 5,144 N/A 
Activity 2 (51 q) 433 701 2,028 N/A 3,162 486 8,165 5,149 N/A 
Activity 3 (60 q) N/A 815 N/A 3,197 4,012 743 7,027 830 809 
Exam 1 (10) N/A 87 832 N/A 919 30 819 992 N/A 
Exam 2 (10) N/A 113 968 N/A 1,081 40 967 1,680 N/A 
Exam 3 (11) N/A 168 N/A 890 1,058 27 242 N/A N/A 
Total  2,539 2,435 6,097 4,087 15,158 1,915 26,918 13,795 809 

In the training mode, more than 13,000 commands were submitted using SQL-Free, 
and around 800 diagrams using ERD-Free. 

3.3 Results – ERD Evaluation 

The results of the ERD evaluation are on a five-point scale, according to the percentage 
of hits (1 – Fail (0%-20%), 2 – Poor (21%-49%), 3 – Satisfactory (50%-69%), 4 – Good 
(70%-89%) and 5 – Excellent (90%-100%)). 

Table 6 presents the frequency and percentages of submissions by DB concept, of 
the ERD design activities in A3 and E3. For example, activity 3 has 25 ERD questions 
(see Table 4), and the frequency of submissions for the relationship concept was 1,029, 
with 85% of these submissions being correct. 

Table 6. Frequency and percentage of students successfully completing ERD. 
Database Concept 

A
ct

iv
ity

 

Ta
bl

e 

C
ol

um
n 

C
ol

um
n 

N
um

er
ic

  
D

om
ai

n 

C
ol

um
n 

C
ha

ra
ct

er
  

D
om

ai
n 

C
ol

um
n 

D
at

e  
D

om
ai

n 

Pr
im

ar
y 

K
ey

 

U
ni

qu
e 

K
ey

 

R
el

at
io

ns
hi

p 

R
el

at
io

ns
hi

p 
U

na
ry

 

R
el

at
io

ns
hi

p 
Bi

na
ry

 

R
el

at
io

ns
hi

p 
Te

rn
ar

y 

R
el

at
io

ns
hi

p 
N

-A
ry

 

R
el

at
io

ns
hi

p 
1:

N
 

R
el

at
io

ns
hi

p 
M

:N
 

R
el

at
io

ns
hi

p 
St

ro
ng

 

R
el

at
io

ns
hi

p 
W

ea
k 

PK
 C

ar
di

na
lit

y/
 

Pa
rt

ic
ip

at
io

n 
FK

 C
ar

di
na

lit
y/

 
Pa

rt
ic

ip
at

io
n 

A3 1,385 5,047 2,590 1,990 467 1,599 1 1,029 19 260 60 32 884 201 342 687 337 319 
90% 77% 82% 77% 96% 84% 100% 87% 98% 88% 99% 98% 85% 88% 88% 84% 76% 72% 

E3 201 627 310 293 24 215 N/A 153 1 37 5 5 127 25 16 137 126 122 
78% 71% 73% 78% 92% 81% N/A 86% 99% 87% 95% 99% 81% 82% 90% 84% 80% 77% 

The professor interface (see Fig. 4) shows the student’s answer to question 273, and 
the automatic feedback in red gives information about the lack of an M:N relationship 



52 

as well as the number of wrong cardinalities in each relationship. Additionally, the au-
tomatic feedback suggested grade 2, and the professor added manual feedback in yel-
low: “The relationship between benefit and plan is reversed. Fixing this will also solve 
the error of the missing M:N relation.” 

The student interface is similar to that of the professor (see Fig. 4), but a response 
submit button is visible instead of the change grade button. Each student’s response is 
saved and evaluated automatically, and the results are presented in the semantic feed-
back panel and in the history panel. The student can view the professor’s evaluations 
through the history panel, submit a new response or add a note in Post-it format. 

 
Fig. 4. Professor interface evaluating student’s ERD with manual feedback and grade. 

The case study was carried out in Portugal, hence the language presented in the inter-
face (see Fig. 4). However, the system was prepared for use in any language and has 
been used in Spanish, English and Portuguese. 

3.4 Results – SQL Evaluation 

The result to be analysed is the student’s answer to question 170. Fig. 5 shows the 
professor’s interface when evaluating a student’s SQL command. In the feedback panel, 



53 

the result of the automatic evaluation can be seen, classifying the SQL as 92.43% cor-
rect and providing semantic feedback with SQL command improvement tips.  

The student’s solution to question 170, when compared to the system response, re-
quires one more comparison expression to produce the same SQL result. Therefore, the 
automatic feedback hint notifies the student that the SQL has exceeded the number of 
comparisons operators, and indicates the exceeded operators in brackets; in this case 
the equals sign and the logical operator “and”. 

 
Fig. 5. Professor interface evaluating the SQL of the student’s response. 

The professor can change the automatic assessment, and the new grade is saved and is 
available in the student response history panel. This interface is also adapted for the 
discursive and multiple-choice questions. However, these are not presented via the au-
tomatic evaluation of SQL and ERD. 

4 Discussion and Future Directions 

The LabDER virtual relational database teaching environment was proposed to over-
come the limitations of the ERD design found in previous work, such as restrictive 
responses, visual highlights, ambiguity, static feedback and conceptual limitations. 
LabDER overcomes the previous limitations using web technologies and can be aligned 
with the professor’s teaching plan while providing an innovative approach to automatic 
assessment that accepts equivalent computational responses to an issue. 



54 

The approach improves on the state of the art of automatic evaluation of ERD and 
SQL because it accepts multiple responses and provides semantic feedback that encour-
ages students to develop more efficient computational solutions. Semantic feedback 
mixes compilers, software engineering metrics and supervised machine learning to give 
grades and conceptual DB tips on each student’s response. The integration of these 
techniques in the form of feedback demonstrates the system’s accuracy to students and 
professors, since the notes and tips are consistent with the students’ correct responses 
and their mistakes. Feedback proved to be useful to the students, because they used it 
to learn and test their skills in order to develop better solutions. For the professor, this 
approach allowed better orientation, allowing the students’ most frequent conceptual 
doubts to be quickly identified. LabDER offers several ways to use this approach, in 
diagnostic, formative and summative evaluations, as well as offering a series of func-
tionalities for mixing pedagogical strategies, and the overall result was very positive, 
with a correctness rate of above 95% for several DB concepts. 

In addition to the case study, the project has been running in 13 other bachelor’s and 
master’s degree courses in computing in Brazil, Colombia, India and Portugal. Google 
Analytics has tracked access from 450 LabDER students in more than 16 cities in Por-
tugal, 20 cities in Brazil, nine cities in Colombia and four cities in India, as well as 
tracking visitors from America, Europe and Asia. The software test showed that Lab-
DER has the scalability and robustness to support this volume of access and provided 
evidence of self-learning and participation by users outside the classroom. 

The LabDER approach is the opposite of traditional tools. This approach is used for 
decision-making: for example, the professor decides when to move on to the next learn-
ing topics. In previous approaches, the concern is to avoid user evasion and to ensure 
that the system continues to be used. This approach showed that students seek self-
learning and try to solve all questions several times, until they can achieve the model 
response. In addition, the professor can make decisions, receive feedback from the stu-
dents and decide which DB concepts should be taught again or whether the students 
can move faster. 

In future work, we intend to investigate how to include new automatic evaluation 
modules, such as modules on relational algebra or database performance. Relational 
algebra can be converted into SQL, and then the framework can be used to develop the 
new module faster. Furthermore, the framework could be migrated to the teaching of 
UML class diagrams, because these are close to the ERD notation. Finally, we intend 
to include other ERD notations, as some professors want to teach modelling concepts 
using alternative notations. 

Acknowledgement 
We would like to thank OctoPerf for providing the software license and for support in 
performance testing. We also thank the IT staff of the University of Coimbra and 
ISCAC for their support in implementing the project and gratefully acknowledge the 
support of CNPq, the National Council for Scientific and Technological Development 
in Brazil. 



55 

References 

1. ACM Computing Curricula Task Force ed: Computer Science Curricula 2013: Curriculum 
Guidelines for Undergraduate Degree Programs in Computer Science. ACM, Inc (2013). 
https://doi.org/10.1145/2534860. 

2. Bangor, A. et al.: Determining What Individual SUS Scores Mean: Adding an Adjective Rating 
Scale. J. Usability Stud. 4, 3, 114–123 (2009). 

3. Chen, X. et al.: Does Adaptive Provision of Learning Activities Improve Learning in SQL-Tutor? 
Presented at the (2017). https://doi.org/10.1007/978-3-319-61425-0_44. 

4. Dimitrieski, V. et al.: Concepts and evaluation of the extended entity-relationship approach to 
database design in a multi-paradigm information system modeling tool. Comput. Lang. Syst. Struct. 
44, 299–318 (2015). https://doi.org/10.1016/j.cl.2015.08.011. 

5. Elmadani, M. et al.: Investigating student interactions with tutorial dialogues in EER-Tutor. Res. 
Pract. Technol. Enhanc. Learn. 10, 1, 16 (2015). https://doi.org/10.1186/s41039-015-0013-1. 

6. Hall, L. et al.: A virtual learning environment for entity relationship modelling. In: Proceedings of 
the twenty-ninth SIGCSE technical symposium on Computer science education  - SIGCSE ’98. pp. 
345–349 ACM Press, New York, New York, USA (1998). https://doi.org/10.1145/273133.274327. 

7. Higgins, C. et al.: Diagram-based CBA using DATsys and CourseMaster. In: International 
Conference on Computers in Education, 2002. Proceedings. pp. 167–172 IEEE Comput. Soc 
(2002). https://doi.org/10.1109/CIE.2002.1185893. 

8. Lino, A. et al.: A Proposal for Automatic Evaluation by Symbolic Regression in Virtual Learning 
Environments. In: New Advances in Information Systems and Technologies. Advances in 
Intelligent Systems and Computing. pp. 855–865 Springer International Publishing (2016). 
https://doi.org/10.1007/978-3-319-31232-3_81. 

9. Lino, A. et al.: Application of clustering-based decision tree approach in SQL query error database. 
Futur. Gener. Comput. Syst. 93, (2019). https://doi.org/10.1016/j.future.2018.10.038. 

10. Microsoft: Microsoft Online IT Training | Microsoft Learning, https://www.microsoft.com/en-
us/learning/training.aspx. 

11. Myers, G.J. et al.: The art of software testing. John Wiley & Sons (2012). 
12. Nielsen, J., Landauer, T.K.: A mathematical model of the finding of usability problems. In: 

Proceedings of the SIGCHI conference on Human factors in computing systems - CHI ’93. pp. 
206–213 ACM Press, New York, USA (1993). https://doi.org/10.1145/169059.169166. 

13. Oracle: IT Training: Certification for Oracle Technology, https://education.oracle.com/en/. 
14. Sadiq, S. et al.: SQLator: An Online SQL Learning Workbench. In: ITiCSE ’04 Proceedings of the 

9th Annual SIGCSE Conference on Innovation and Technology in Computer Science Education. 
p. 5 ACM Press, New York, New York, USA (2004). https://doi.org/10.1145/1007996.1008055. 

15. Thomas, P.: Online Automatic Marking of Diagrams. Syst. Pract. Action Res. 26, 4, 349–359 
(2013). https://doi.org/10.1007/s11213-012-9273-5. 

16. Vassilakaki, E.: New Trends in Higher Education: Can Information Professionals Rise to the 
Challenge? End Wisdom? 119–122 (2017). https://doi.org/10.1016/B978-0-08-100142-4.00012-9. 

 


	1 Introduction
	1.1 Literature Review

	2 Method
	2.1 Features
	2.2 Architectural Overview
	2.3 Software Test

	3 Case Study
	3.1 Preparation
	3.2 Results of Collection of Data
	3.3 Results – ERD Evaluation
	3.4 Results – SQL Evaluation

	4 Discussion and Future Directions
	References

