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Abstract: We present an introductory investigation into
continuous-space vector representations of sentences. We
acquire pairs of very similar sentences differing only by a
small alterations (such as change of a noun, adding an ad-
jective, noun or punctuation) from datasets for natural lan-
guage inference using a simple pattern method. We look
into how such a small change within the sentence text af-
fects its representation in the continuous space and how
such alterations are reflected by some of the popular sen-
tence embedding models. We found that vector differences
of some embeddings actually reflect small changes within
a sentence.

1 Introduction

Continuous-space representations of sentences, so-called
sentence embeddings, are becoming an interesting object
of study, consider e.g. the BlackBox workshop.1 Repre-
senting sentences in a continuous space, i.e. commonly
with a long vector of real numbers, can be useful in multi-
ple ways, analogous to continuous word representations
(word embeddings). Word embeddings have provably
made downstream processing robust to unimportant input
variations or minor errors (sometimes incl. typos), they
have greatly boosted the performance of many tasks in
low data conditions and can form the basis of empirically-
driven lexicographic explanations of word meanings.

One notable observation was made in [15], showing that
several interesting relations between words have their im-
mediate geometric counterpart in the continuous vector
space.

Our aim is to examine existing continuous representa-
tions of whole sentences, looking for an analogous be-
haviour. The idea of what we are hoping for is illustrated
in Figure 1. As with words, we would like to learn if and to
what extent some simple geometric operations in the con-
tinuous space correspond to simple semantic operations
on the sentence strings. Similarly to [15], we are delib-
erately not including this aspect in the training objective
of the sentence presentations but instead search for prop-
erties that are learned in an unsupervised way, as a side-
effect of the original training objective, data and setup.
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der Creative Commons License Attribution 4.0 International (CC BY
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1https://blackboxnlp.github.io/

Figure 1: An illustration of a continuous multi-
dimensional vector space representing individual sen-
tences, a ‘space of sentences’ (upper plot) where each sen-
tence is represented as a dot. Pairs of related sentences are
connected with arrows; dashing indicates various relation
types. The lower plot illustrates a possible ‘space of op-
erations’ (here vector difference, so all arrows are simply
moved to start at a common origin). The hope is that sim-
ilar operations (e.g. all vector transformations extracted
from sentence pairs differing in the speed of travel “run-
ning instead of walking”) would be represented close to
each other in the space of operations, i.e. form a more or
less compact cluster.

A little boy is walking.

A sad boy is walking.

A little boy is running.

Look at my little cat!

Look how sad my cat is.

A dog is walking past a field.

There is a dog running past the field.

A man is walking
in the field.

...being sad, not little...

...running instead of walking...

...a man instead
of a dog...

...a grown-up instead of a child...
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This approach has the potential of explaining the good or
bad performance of the examined types of representations
in various tasks.

The paper is structured as follows: Section 2 reviews
the closest related work. Sections 3 and 4, respectively,
describe the dataset of sentences and the sentence embed-
dings methods we use. Section 5 presents the selection of
operations on the sentence vectors. Section 6 provides the
main experimental results of our work. We conclude in
Section 7.

2 Related Work

Series of tests to measure how well their word embed-
dings capture semantic and syntactic information is de-
fined in [15]. These tests include for example declina-
tion of adjectives (“easy"→“easier"→“easiest"), chang-
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Figure 2: Example of our pattern extraction method. In the first step, the longest common subsequence of tokens (ear is
playing a guitar .) is found and replaced with the variable X. In the second step, with a tattoo behind is substituted with
the variable Y. As the variables are not listed alphabetically in the premise, they are switched in the last step.

step premise hypothesis
1. a man with a tattoo behind his ear is playing a guitar . a woman with a tattoo behind her ear is playing a guitar .
2. a man with a tattoo behind his X a woman with a tattoo behind her X
3. a man Y his X a woman Y her X
4. a man X his Y a woman X her Y

Figure 3: Top 10 patterns extracted from sentence pairs labelled as entailmens, contradictions and neutrals, respectively.
Note the “X→ X" pattern indicating no change in the sentence string at all.

entailments contradictions neutrals
premise hypothesis premise hypothesis premise hypothesis

1. X X 693 X man Y X woman Y 413 X Y X sad Y 701
2. X man Y X person Y 224 X woman Y X man Y 196 X Y X big Y 119
3. X . X 207 X men X women Y 111 X Y X fat Y 69
4. X woman Y X person Y 118 X boy Y X girl Y 109 X young Y X sad Y 68
5. X boy Y X person Y 65 X dog Y X cat Y 98 X people Y X men Y 60
6. X Y Y , X . 61 X girl Y X boy Y 97 X sad X 51
7. X men Y X people Y 56 X women Y X men Y 64 X X 41
8. two X X 56 X Y, X not Y 56 X person Y X man Y 34
9. X girl Y X person Y 55 two X, three X 46 X Y X red Y 30
10. X , Y Y X . 53 X child Y X man Y 44 X Y X busy Y 28

ing the tense of a verb (“walking"→“walk") or getting
the capital (“Athens"→“Greece") or currency of a state
(“Angola"→“kwanza"). References [2; 13] have further
refined the support of sub-word units, leading to con-
siderable improvements in representing morpho-syntactic
properties of words. Vylomova, Rimmel, Cohn and Bald-
win [26] largely extended the set of considered semantic
relations of words.

Sentence embeddings are most commonly evaluated ex-
trinsically in so called ‘transfer tasks’, i.e. comparing
the evaluated representations based on their performance
in sentence sentiment analysis, question type prediction,
natural language inference and other assignments. Refer-
ence [8] introduce ‘probing tasks’ for intrinsic evaluation
of sentence embeddings. They measure to what extent lin-
guistic features like sentence length, word order, or the
depth of the syntactic tree are available in a sentence em-
bedding. This work was extended to SentEval [6], a toolkit
for evaluating the quality of sentence embedding both in-
trinsically and extrinsically. It contains 17 transfer tasks
and 10 probing tasks. SentEval is applied to many recent
sentence embedding techniques showing that no method
had a consistently good performance across all tasks [18].

Voleti, Liss and Berisha [25] examine how errors (such
as incorrect word substitution caused by automatic speech
recognition) in a sentence affect its embedding. The em-
beddings of corrupted sentences are then used in textual
similarity tasks and the performance is compared with

original embedding. The results suggest that pretrained
neural sentence encoders are much more robust to intro-
duced errors contrary to bag-of-words embeddings.

3 Examined Sentences

Because manual creation of sentence variations is costly,
we reuse existing data from SNLI [3] and MultiNLI [27].
Both these collections consist of pairs of sentences—a
premise and a hypothesis—and their relationship (entail-
ment/contradiction/neutral). The two datasets together
contain 982k unique sentence pairs. All sentences were
lowercased and tokenized using NLTK [14].

From all the available sentence pairs, we select only a
subset where the difference between the sentences in the
pair can be described with a simple pattern. Our method
goes as follows: given two sentences, a premise p and the
corresponding hypothesis h, we find the longest common
substring consisting of whole words and replace it with
a variable. This is repeated once more, so our sentence
patterns can have up to two variables. In the last step, we
make sure the pattern is in a canonical form by switching
the variables to ensure they are alphabetically sorted in p.
The process is illustrated in Figure 2.

Ten most common patterns for each NLI relation are
shown in Figure 3. Many of the obtained patterns clearly
match the sentence pair label. For instance the pattern no.
2 (“X man Y→ X person Y”) can be expected to lead to



a sentence pair illustrating entailment. If a man appears in
a story, we can infer that a person appeared in the story.
The contradictions illustrate typical oppositions like man–
woman, dog–cat. Neutrals are various refinements of the
content described by the sentences, probably in part due to
the original instruction in SNLI that hypothesis “might be
a true” given the premise in neutral relation.

We kept only patterns appearing with at least 20 differ-
ent sentence pairs in order to have large and variable sets
of sentence pairs in subsequent experiments. We also ig-
nored the overall most common pattern, namely the iden-
tity, because it actually does not alter the sentence at all.
Strangely enough, identity was observed not just among
entailment pairs (693 cases), but also in neutral (41 cases)
and contradiction (22) pairs.

Altogether, we collected 4,2k unique sentence pairs in
60 patterns. Only 10% of this data comes from MultiNLI,
the majority is from SNLI.

4 Sentence Embeddings

We experiment with several popular pretrained sentence
embeddings.

InferSent2 [7] is the first embedding model that used a
supervised learning to compute sentence representations.
It was trained to predict inference labels on the SNLI
dataset. The authors tested 7 different architectures and
BiLSTM encoder with max pooling achieved the best
results. InferSent comes in two versions: InferSent_1
is trained with Glove embeddings [17] and InferSent_2
with fastText [2]. InferSent representations are by far the
largest, with the dimensionality of 4096 in both versions.

Similarly to InferSent, Universal Sentence Encoder [4]
uses unsupervised learning augmented with training on su-
pervised data from SNLI. There are two models available.
USE_T3 is a transformer-network [23] designed for higher
accuracy at the cost of larger memory use and computa-
tional time. USE_D4 is a deep averaging network [12],
where words and bi-grams embeddings are averaged and
used as input to a deep neural network that computes the
final sentence embeddings. This second model is faster
and more efficient but its accuracy is lower. Both models
output representation with 512 dimensions.

Unlike the previous models, BERT5 (Bidirectional En-
coder Representations from Transformers) [10] is a deep
unsupervised language representation, pre-trained using
only unlabeled text. It has two self-supervised training
objectives - masked language modelling and next sen-
tence classification. It is considered bidirectional as the
Transformer encoder reads the entire sequence of words
at once. We use a pre-trained BERT-Large model with

2https://github.com/facebookresearch/InferSent
3https://tfhub.dev/google/universal-sentence-

encoder-large/3
4https://tfhub.dev/google/universal-sentence-

encoder/2
5https://github.com/google-research/bert

Whole Word Masking. BERT gives embeddings for every
(sub)word unit, we take as a sentence embedding a [CLS]
token, which is inserted at the beginning of every sentence.
BERT embeddings have 1,024-dimensions.

ELMo6 (Embedding from Language Models) [5] uses
representations from a biLSTM that is trained with the
language model objective on a large text dataset. Its em-
beddings are a function of the internal layers of the bi-
directional Language Model (biLM), which should cap-
ture not only semantics and syntax, but also different
meanings a word can represent in different contexts (pol-
ysemy). Similarly to BERT, each token representation of
ELMo is a function of the entire input sentence - one word
gets different embeddings in different contexts. ELMo
computes an embedding for every token and we compute
the final sentence embedding as the average over all to-
kens. It has dimensionality 1024.

LASER7 (Language-Agnostic SEntence Representa-
tions) [1] is a five-layer bi-directional LSTM (BiLSTM)
network. The 1,024-dimension vectors are obtained by
max-pooling over its last states. It was trained to trans-
late from more than 90 languages to English or Spanish at
the same time, the source language was selected randomly
in each batch.

5 Choosing Vector Operations

Mikolov, Chen, Corrado and Dean [15] used a simple vec-
tor difference as the operation that relates two word em-
beddings. For sentences embeddings, we experiment a lit-
tle and consider four simple operations: addition, subtrac-
tion, multiplication and division, all applied elementwise.
More operations could be also considered as long as they
are reversible, so that we can isolate the vector change for
a particular sentence alternation and apply it to the embed-
ding of any other sentence. Hopefully, we would then land
in the area where the correspondingly altered sentence is
embedded.

The underlying idea of our analysis was already
sketched in Figure 1. From every sentence pair in our
dataset, we extract the pattern, i.e. the string edit of the
sentences. The arithmetic operation needed to move from
the embedding of the first sentence to the embedding of
the second sentence (in the continuous space of sentences)
can be represented as a point in what we call the space of
operations. Considering all sentence pairs that share the
same edit pattern, we obtain many points in the space of
operations. If the space of sentences reflects the particu-
lar edit pattern in an accessible way, all the corresponding
points in the space of operations will be close together,
forming a cluster.

To select which of the arithmetic operations best suits
the data, we test pattern clustering with three common
clustering performance evaluation methods:

6https://github.com/HIT-SCIR/ELMoForManyLangs
7https://github.com/facebookresearch/LASER
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Table 1: This table presents the quality of pattern clustering in terms of the three cluster evaluation measures in the
space of operations. For all the scores, the value of 1 represents a perfect assignment and 0 corresponds to random label
assignment. All the numbers were computed using the Scikit-learn library [16]. Best operation according to each cluster
score across the various embeddings in bold.

Adjusted Rank Index V-measure Adjusted Mutual Information
embedding dim. - + * / - + * / - + * /
InferSent_1 4096 0.58 0.03 0.03 0.00 0.91 0.28 0.24 0.03 0.87 0.18 0.14 0.00
ELMo 1024 0.55 0.03 0.02 0.00 0.85 0.28 0.23 0.03 0.82 0.18 0.13 0.00
LASER 1024 0.48 0.02 0.01 0.00 0.79 0.19 0.15 0.03 0.76 0.09 0.04 0.00
USE_T 512 0.25 0.04 0.08 0.00 0.73 0.25 0.30 0.03 0.69 0.14 0.20 0.00
InferSent_2 4096 0.31 0.04 0.04 0.01 0.69 0.28 0.28 0.10 0.65 0.19 0.19 0.03
BERT 1024 0.33 0.02 0.01 0.00 0.66 0.22 0.16 0.03 0.62 0.12 0.06 0.00
USE_D 512 0.21 0.05 0.08 0.00 0.65 0.27 0.33 0.03 0.58 0.17 0.23 0.00
average 1775 0.39 0.03 0.04 0.00 0.75 0.25 0.24 0.04 0.71 0.15 0.14 0.00

• Adjusted Rand index [11] is measure of the simi-
larity between two cluster assignments adjusted with
chance normalization. The score ranges from −1 to
+1 with 1 being the perfect match score and values
around 0 meaning random label assignment. Nega-
tive numbers show worse agreement than what is ex-
pected from a random result.

• V-measure [19] is harmonic mean of homogeneity
(each cluster should contain only members of one
class) and completeness (all members of one class
should be assigned to the same cluster). The score
ranges from 0 (the worst situation) to 1 (perfect
score).

• Adjusted Mutual Information [21] measures the
agreement of the two clusterings with the correction
of agreement by chance. The random label assign-
ment gets a score close to 0, while two identical clus-
terings get the score of 1.

As the detailed description of these measures is out of
scope of this article, we refer readers to related literature
(e.g. [24]). We use these scores to compare patterns with
labels predicted by k-Means (best result of 100 random
initialisations). The results are presented in Table 1. It is
apparent that the best distribution by far is achieved using
the most intuitive operation, vector subtraction.

There seems to be a weak correlation between the size
of embeddings and the scores. The smallest embeddings
USE_D and USE_T are getting the worst scores, while the
largest embeddings InferSent_1 are the best scoring em-
beddings. However, InferSent_2 with dimensionality 4096
is performing poorly. The fact that several of the embed-
dings were trained on SNLI does not to seem benefit those
embeddings. Between the three top scored embeddings,
only InferSent_1 was trained on the data that we use for
evaluation of embeddings.

6 Experiments

For the following exploration of the continuous space of
operations, we focus only on the ELMo embeddings. They
scored second best in all scores but unlike the best scoring
Infersent_1, ELMo was not trained on SNLI, which is the
major source of our sentence pairs.

The t-SNE [22] visualisation of subtractions of ELMo
vectors is presented in Figure 4. The visualisation is con-
structed automatically and, of course, without the knowl-
edge of the pattern label. It shows that the patterns are
generally grouped together into compact clusters with the
exception of a ‘chaos cloud’ in the middle and several out-
liers. Also there are several patterns that seem inseparable,
e.g. “two X→ X" and “three X→ X", or “X white Y ->
X Y" and “X black Y -> X Y".

We identified the patterns responsible for the noisy cen-
ter and outliers by computing weighted inertia for each
pattern (the sum of squared distances of samples to their
cluster center divided by the size of sample). The clus-
ters with highest inertia consists of patterns representing a
change of word order and/or adding or removing punctua-
tion. These patterns are:

X is Y .→ Y is X X Y .→ Y X . X→ X .
X , Y .→ Y X . X , Y .→ Y , X .
X Y .→ Y , X . X .→ X

To see if the space of operations can be interpreted also
automatically, i.e. if the sentence relations are general-
izable, we remove the noisy patterns as above and apply
fully unsupervised clustering: we do not even disclose the
expected number of patterns, i.e. clusters. We try two
metrics for finding the optimal number of clusters: Davies-
Bouldin’s index [9] and Silhouette Coefficient [20]. They
are both designed to measure compactness and separation
of the clusters, i.e. they award dense clusters that are far
from each other. Both Davies-Bouldin index and Silhou-
ette Coefficient agree that the best separation is achieved



Figure 4: t-SNE representation of patterns. The points in the operation space are obtained by subtracting the ELMo
embedding of the hypothesis from the ELMo embedding of the premise. Best viewed in color. Colors correspond to the
sentence patterns.

X Y -> X sad Y

X young Y -> X sad YX woman Y -> X person Y

 X girl Y -> X person Y

X children Y -> X men Y

 X child Y -> X man Y

X child Y -> X person Y

X boy Y -> X person Y

X red Y -> X Y
X blue Y -> X Y

  X boy Y -> X girl Y

 X boys Y -> X girls Y

X people Y -> X men Y

X person Y -> X man 

 X lady Y -> X man Y

X woman Y -> X man Y

X women Y -> X men Y

X girl Y -> X boy Y

X man Y -> X woman Y

X man Y -> X person Y

X -> X .  X . -> X

 X -> there is X

X Y -> X is Y
a group of X -> X

two X -> X

three X -> X

X men Y -> X people Y

X men Y -> X women Y

man X -> woman X
X white Y -> X Y

X black Y -> X Y

 X Y -> X fat Y

X Y -> X busy Y

X people Y -> X dogs Y

X little Y -> X sad Y



Figure 5: t-SNE representation of patterns as in Figure 4 with colors coding now fully automatic clusters. Each cluster is
labelled with the set of patterns extracted from sentence pairs assigned to the cluster. The numbers in parentheses indicate
how many sentence pairs belong to the given pattern within this cluster and overall, resp. For instance the line “two X→
X (52/56)” says that of the 56 sentence pairs differing in the prefix “two”, 52 were automatically clustered together based
on the subtraction of their ELMo embeddings.

2: [ X people Y -> X dogs Y (36/36), 
     X person Y -> X dog Y (20/20)]

4: [two X -> X (52/56), 
    a group of X -> X (36/38), 
    three X -> X (24/24)]

6: [X man Y -> X woman Y (414/414), 
    X men Y -> X women Y (109/111),
    X boy Y -> X girl Y (107/109), 
    man X -> woman X (31/31), 
    X boys Y -> X girls Y (21/27), 
    X boy Y -> X person Y (1/65), 
    X man Y -> X person Y (1/227)]

5: [X man Y -> X person Y (218/227), 
     X Y -> X not Y (1/56)]

3:[X Y -> X sad Y (680/703), 
    X young Y -> X sad Y (68/68), 
    X -> sad X (50/51), 
    X little Y -> X sad Y (19/21), 
    X -> there is X (9/25), 
    X Y -> X big Y (1/122)]

1: [X woman Y -> X person Y (115/119), 
    X boy Y -> X person Y (64/65), 
    X girl Y -> X person Y (54/55), 
    X child Y -> X person Y (30/30), 
    X women Y -> X people Y (1/23)]

7: [X men Y -> X people Y (57/57), 
    X young Y -> X Y (55/55), 
    X black Y -> X Y (41/41), 
    X red Y -> X Y (36/36), 
    X white Y -> X Y (34/34), 
    X little Y -> X Y (31/31), 
    X not Y -> X Y (28/29), 
    X blue Y -> X Y (27/27), 
    X Y -> X is Y (22/24), ...]

9: [X woman Y -> X man Y (196/196), 
    X girl Y -> X boy Y (96/97), 
    X women Y -> X men Y (64/64), 
    X child Y -> X man Y (45/45), 
    X person Y -> X man Y (35/37),
    X girls Y -> X boys Y (29/29), 
    X lady Y -> X man Y (27/27), 
    X women Y -> X people Y (17/23), 
    X children Y -> X men Y (14/23)]

8: [X Y -> X big Y (121/122), 
     X dog Y -> X cat Y (98/98), 
     X Y -> X fat Y (69/69), 
     X people Y -> X men Y (59/60), 
     X Y -> X not Y (55/56), 
     two X -> three X (45/46),
     but X -> X (32/32), 
     X Y -> X busy Y (30/30), 
     X Y -> X red Y (30/30), 
     X Y -> X n't Y (28/28), 
     X blue Y -> X red Y (27/27), 
     X red Y -> X blue Y (27/27), 
     X dogs Y -> X cats Y (26/26), 
     X Y -> X sad Y (23/703), 
     X . -> X outside . (20/21), 
     X -> there is X (13/25), 
     X children Y -> X men Y (9/23),
     X boys Y -> X girls Y (6/27), 
     two X -> X (4/56), ...]



at 9 clusters. Running k-Means with 9 clusters, we get the
result as plotted in Figure 5.

Manually inspecting the contents of the automatically
identified clusters, we see that many clusters are meaning-
ful in some way. For instance, Cluster 1 captures 90% (al-
together 264 out of 292) sentence pairs exerting the pattern
of generalizing women, boys or girls to people. The coun-
terpart for men belonging to people is spread into Cluster 5
(218 out of 227 pairs) for the singular case and not so clean
Cluster 7 containing 57/57 of the plural pairs “X men Y→
X people Y” together with various oppositions. Cluster 2
covers all sentence pairs where a person is replaced with a
dog. Cluster 3 is primarily connected with sentence pairs
introducing bad mood. Cluster 4 unites patterns that rep-
resent omitting a numeral/group. Cluster 6 covers gender
oppositions in one direction and Cluster 9 adds the other
direction (with some noise for child/man and person/man
and similar), etc.

7 Conclusion and Future Work

We examined vector spaces of sentence representations
as inferred automatically by sentence embedding meth-
ods such as InferSent or ELMo. Our goal was to find out
if some simple arithmetic operations in the vector space
correspond to meaningful edit operations on the sentence
strings.

Our first explorations of 60 sentence edit patterns docu-
ment that this is indeed the case. Automatically identified
frequent patterns with 20 or more occurrences in the SNLI
and MultiNLI datasets correspond to simple vector differ-
ences. The ELMo space (and others such as Infersent_1,
LASER and USE-T, which are omitted due to paper length
requirements) exerts this property very well.

Unfortunately, choosing ELMo as example might not
have been the best option – we compute ELMo embed-
dings by averaging contextualized word embeddings and
majority of the patterns are just removing/adding/chang-
ing a single word. Difference between two such sentence
embeddings may be a simple difference between the em-
beddings of the words substituted, depending on the effect
of the contextualization. Thus, the differences in vector
space would show rather the word embeddings than the
sentence embeddings.

It should be noted that our search made use of only
about 0.5% of the sentence pairs available in SNLI and
MultiNLI. The remaining sentence pairs differ beyond
what was extractable automatically using our simple pat-
tern method. A different approach for a fine-grained de-
scription of the semantic relation between two sentences
would have to be taken for a better exploitation of the
available data.

Our plans for the long term are to further verify these
observations using a more diverse set of vector operations
and a larger set of sentence alternations, primarily by ex-
tending the set of alternation types. We also plan to exam-

ine the possibilities of generating sentence strings back
from the sentence embedding space. If successful, our
method could lead to controlled paraphrasing via the con-
tinuous space: take an input sentence, embed it, modify
the embedding using a vector operation and generate the
target sentence in the standard textual from.
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