
 

 

Development of a baseline system for phonemes recognition task 
 

Maros Jakubec, Eva Lieskovska, Roman Jarina, Michal Chmulik, Michal Kuba 

Department of Multimedia and Information-Communication Technologies, University of Zilina 

Univerzitna 8215/1, 010 26 Zilina, Slovak Republic  

 
Abstract. The phonemes recognition is one of the fundamental 
problems in automatic speech recognition. Despite the great 
progress in speech recognition, discrimination of isolated 
phonemes is still challenging task due to coarticulation, and 
great variability in speaking style. The aim of this work is to 
develop a system for classification of isolated English vowels 
from the TIMIT dataset. In the paper, the following 
conventional methods are compared: a) k-Nearest Neighbours 
approach as a simple nonlinear instance-based classifier b) 
Gaussian Mixture Model, which belongs to the class of 
probabilistic acoustical modelling techniques. As a front-end, 
we applied standard mel-frequency cepstral coefficients with 
their time derivates. Various experimental methods such as 
trimming of audio data and cross-validation were used to 
increase recognition precision and reliability of system 
evaluation. The developed system will be used as a baseline for 
comparison with other newer state-of-the-art approaches. 

1 Introduction 

Despite the significant progress in automatic speech 

recognition (ASR) in recent decades, the role of phonemes 

recognition is still a challenging task. Many experiments 

have been made to improve the performance of phoneme 

recognition, including the use of better features or multiple 

features combinations, improved statistical models, é criteria 

or modelling of pronunciation, noise, language and more [1].  

In the paper, we present an ongoing work on development 

of the system for classification of isolated English vowels 

from the TIMIT dataset. The developed system will be used 

as a baseline for comparison with more advanced state-of-

the-art approaches. In the paper we discuss system 

performance using a) k-nearest neighbours (k-NN) as a 

simple nonlinear instance-based classifier, and b) 

probabilistic approach based on Gaussian Mixture Model 

(GMM). Speech spectrum is represented by conventional 

mel-frequency cepstral coefficients (MFCC). 

1.1 Related works1 

Sha and Saul [2] introduced a system for phonemes 

recognition. They trained GMM for multiway classification, 

using the basic principle of SVM. With MFCCs including 

their deltas (time derivates) and 16 Gaussian mixtures they 

achieved 69.9% accuracy. Deng and Yu [3] used the Hidden 

Trajectory Model on a phone recognition task. Similarly, 

feature vectors consist of joint static cepstra and their deltas. 

The resulting accuracy was 75.17%. Hifny and Renals [4] 

introduced a phonetic recognition system based on TIMIT 

database where an acoustic modulation is achieved through 

augmented conditional random fields. They achieved 73.4% 

accuracy using the core test set and 77% in test which 

includes the complete test set. A publication from Mohamed 

et al. [5] reports the use of neural networks for acoustic 

modelling. The outcome is 79.3% accuracy in the core test. 
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The above-mentioned works are focused on different type 

of phone set from the TIMIT database. Several studies 

regarding the vowels classification have also been made. 

Weenink [6] proposed vowel classification improvement by 

including information about the known speaker into the 

process. The goal was to reduce the variance in vowel space. 

The 13 monophthong vowels were selected similarly as in 

[7]. Linear discriminant analysis on bark-scale filter bank 

energies was used as a classification method. They reported 

that information about spectral dynamics improved the 

classification process. Reduction of the between-speaker 

variance and the within-speaker variance resulted in higher 

classification accuracy.  

An empirical comparison of five classifiers was presented 

in [8]. SVM, k-NN, Naive Bayes, Quadratic Bayes Normal 

(QDC) and Nearest Mean algorithms were tested for vowel 

recognition using the TIMIT Corpus. MFCCs were used for 

signal parameterization. The results of this experiment show 

that SVM classifier achieved the best performance. The 

QDC classifier had the lowest accuracy. The error rate of 

QDC method has decreased about 10% by using the 

combination of k-NN-QDC-NB. Such combination of 

classifiers can be efficient way to boost the performance of 

machine learning method. 

Amami et al. [9] conducted a study on different SVM 

kernels for a multi-class vowel recognition from the TIMIT 

corpus. Investigation of the optimal parameters of the kernel 

tricks and the regularization parameter was done. Two 

different features such as MFCC and PLP were also applied. 

Middle frames of the vowels and Fuzzy c-means clustering 

(FCM) were evaluated to determine the appropriate front-

end analysis. The method based on middle frames 

outperforms FCM method. Three middle frames turned out 

to have the best recognition accuracy. Interestingly, the 

results showed that the recognition accuracy decreased as the 

number of frames increased Regarding SVM classification, 

the accuracy of the vowel system and the runtime improves 

with smaller value of the kernel width and the regularization 

parameter.  

Palaz et al. [10] claim that the ASR system based on a 

neural network can be modelled by end-to-end training 

procedure, without the need of separation into feature 

extraction and classifier parts. In the proposed method, raw 

speech waveform was used as an input to the CNN-based 

speech recognition system. According to the results on the 

TIMIT phonemes and the Aurora2 connected words 

recognition tasks, the CNN-based end-to-end system yields 

better performance than a standard spectral feature 

extraction-based system. 

Although it is not always possible to achieve exactly the 

same comparison of existing systems, Table 1 summarizes 



 

 

some of the most important systems in the field of TIMIT 

phonemes recognition over the last twenty years. 

Subsequently, the presented survey is ranked according to 

the system accuracy, including the used methods and the sets 

of features.

Table 1. Comparison of existing works related to phoneme classification 

Authors Proposed Methods Descriptors Classes Accuracy 

Biswas, A. et al. [24] Hidden Markov Model (HMM) wavelet based features (84 - PCA) 21 phonemes 88.90 % 

Karsmakers P. et al. [13] SVM- RBF Kernel 181 dimensional  39 phonemes 82.90 % 

Mohamed et al. [5]  Monophone Deep Belief Networks MFCC, Δ, ΔΔ, energy (39) 39 phonemes 79.30 % 

Siniscalchi et al. [14]  
TRAPs, temporal context division + 
lattice rescoring 

MFCC, Δ, ΔΔ, energy (39) 39 phonemes 79.04 % 

Hifny & Renals [4] HMM 13 MFCC, Δ, ΔΔ, (39) 39 phonemes 77.00 % 

Deng & Yu [3]  Hidden Trajectory Models static / delta cepstra   39 phonemes 75.17 % 

Sha & Saul [2] GMMs trained as SVMs 13 MFCC, Δ, ΔΔ, (39) 39 phonemes 69.90 % 

Frejd & Ouni [26] HMM 13 MFCC, Δ, ΔΔ,  - PLP (39)  39 phonemes 67.60 % 

Dimitri Palaz et al. [12] 
- two-layer MLP 
- HMM decoder 

MFCC, Δ, ΔΔ, energy (39) 39 phonemes 66.65 % 

Palaz et al. [10]  
-Convolutional neural network 

- HMM decoder 
Raw speech 39 phonemes 65.50 % 

Weenink [6]  Linear discriminant analysis  54 dimensional 13 vowels 60.30 % 

Amami et al. [8]  
SVM- RBF Kernel 

- middle frames selection 
MFCC, Δ, ΔΔ, (36) 20 vowels 51.60 % 

 

2 Proposed methods 

2.1 Dataset 

The TIMIT Acoustic-Phonetic Continuous Speech 

Corpus (LDC) database [1, 15] was used for classification. 

The TIMIT speech corpora contains read speech and is 

primarily designed for studying acoustic-phonetic 

phenomena and for testing automatic speech recognition 

systems. 630 people participated in creating of this database, 

each contributing by reading 10 phonetically rich sentences. 

The recordings are in the eight main dialects of American 

English.  

Audio files are recorded at 16 000 Hz, 16 bit. Each audio 

file is accompanied by metadata files containing phonetic 

and lexical transcriptions.  

2.2 Features extraction methods 

The extraction of appropriate features is one of the basic 

task of objects recognition. In the conventional ASR front-

end, speech is represented by a sequence of feature vectors 

retaining particularly useful information from the signal.  

There are a large number of approaches and features 

extraction methods in ASR techniques. The features that 

have been used in our algorithm will be described in the 

following section. 

 

Mel Frequency Cepstral Coefficients - are the most 

commonly used acoustic features in ASR. MFCCs are 

designed to respect non-linear sound perception by human 

ear [16].  

In our system, the MFCCs are computed as follows (Fig. 

1):  The pre-emphasis is applied to the speech signal in order 

to emphasize its high-frequency components. The next step 

is to divide the signal into 16 ms long frames with an overlap 

of 1/2 of the frame length. The given frame length was 

selected based on previous studies on isolated phonemes 

recognition [8, 11, 24]. The number of signal samples (256) 

is chosen as power 2 due to the use of FFT. A Hamming 

window is applied to frames to maintain the continuity of the 

first and last points in the frames. The signal is converted to 

the frequency domain by using the FFT algorithm. The 

magnitude frequency response is then calculated. The 

spectrum values are multiplied by a series of 20 triangular 

bandpass filters, summed for individual filters and then 

logarithmized.   

 

The triangular filter bank has a linear frequency 

distribution in the Mel frequency range: 

 

𝑚𝑒𝑙(𝑓) = 1125 ∗ ln⁡(1 +
𝑓

700
) (1)  

where f [Hz] is the frequency in the linear scale and mel (f) 

[mel] corresponds to the frequency in the mel scale.  

The last step is to calculate the coefficients using the 

discrete cosine transformation DCT. 

 

 

Fig. 1. Block diagram of the MFCC computation 

  

An important parameter is also the energy of the frame. 

Log energy is usually added as the 13th feature to MFCC. 

The short-term energy function is defined by: 



 

 

 

𝐸 = ∑ [⁡𝑠(𝑘)

∞

𝑘=−∞

𝑤(𝑛 − 𝑘)]2 (2)  

where s(k) is signal sample in time k and w(n) is the 

corresponding window type. It is then possible to obtain an 

average energy value for each frame. The disadvantage of 

this characteristic is the high sensitivity to rapid changes in 

the signal level. Values of this characteristic can be also used 

to separate silence segments from speech segments. 

Static features, which are obtained using the procedure 

above, do not capture inter-frame changes along time index. 

Therefore, dynamic (or delta) features are commonly 

appended to the feature vectors. Usually delta features are 

the estimates of the time derivatives of static features and are 

a computed as follows [17]: 

Δ𝑘[𝑖] =
∑ 𝑚(𝑐𝑘[𝑖 + 𝑚] − 𝑐𝑘[𝑖 − 𝑚])𝑀
𝑚=1

∑ 𝑚2𝑀
𝑚=1

 (3) 

where Δ𝑘[𝑖] is the delta coefficient, from frame i, 𝑐𝑘 is the 

static coefficient and a typical value for M is 1. 

In the developed system, total features consist of 39 

elements per frame: 

- 12 MFCC, 

- 12 delta (ΔMFCC), 

- 12 delta-delta (ΔΔMFCC), 

- 3 log energy. 

 

2.3 Classification 

The classification process can be divided into a learning 

and testing phase. Thus, data set needs to be divided into two 

subsets. Because of 10-fold cross-validation evaluation 

process (2.4), we selected the same number of vowels from 

each class.  

Once the data were split, models of selected vowels were 

trained and tested according to the chosen method. The 

general classification scheme can be seen in Fig. 2. 

 
Fig. 2.  Block diagram for classification scheme 

 

There are several methods suitable for phoneme 

classification task addressed in this work. The following 

well-established classifiers, namely Gaussian mixture model 

(GMM), Gaussian mixture model-Universal background 

model (GMM-UBM) and a k-nearest neighbours (k-NN), 

were chosen for the baseline system development due to 

their easy implementation and good classification properties. 

We recall a description of these methods in the following 

section. 

 

The Gaussian Mixture Model works on the principle of 

probabilistic modelling of audio features in the feature 

space. GMM is defined as the probability density function 

formed by a linear superposition of K Gaussian components 

[18][19] as follows: 

 𝑝(𝑥) =∑𝜋𝑘𝑁

𝐾

𝑘=1

(𝒙|𝝁𝑘, ∑𝑘) (4) 

where, the probability density function of the multivariate 

Gaussian distribution for n-dimensional vector x is given by: 

𝑁(𝒙|µ, ∑) =
1

(2𝜋)
𝑛

2⁡|∑|1/2
exp⁡(−

1

2
(𝒙 − µ)𝑇∑−1(𝒙 − µ)) (5) 

with mean vector µ ∈ Rn and covariance matrix ∑ ∈ Rn x n. 

πk are mixing coefficients, which must satisfy the following 

conditions 

0⁡ ≤ ⁡𝜋𝑘⁡ ≤ 1⁡⁡⁡and  ∑ 𝜋𝑘
𝐾
𝑘=1 = 1  (6) 

The classification function for the proposed GMM classifier 

has the following form: 

𝑓(𝑥) = 𝑎𝑟𝑔⁡max⁡⁡
𝐶

( 𝑝(𝒙)𝐶 )    (7) 

where Cp(x) is GMM of the class C.  

Thus, we are looking for the maximal probability over all C 

classes. 

 

The training algorithm, which returns a set of parameters 

Θ  = {µ,  and π} for each class, is based on the Maximum 

Likelihood (ML) criterion. Given the model p (x, Θ) with the 

unknow parameters, the aim is to derive its parameters based 

the training data – set of the feature vectors {x1, x2, …, xm}. 

The ML method uses Fisher likelihood function, which is 

defined as: 

𝐹(𝒙1, 𝒙2, . . . . , 𝒙𝑁|⁡𝜽) =∏𝑝(𝒙𝑛|⁡𝜽)

𝑁

𝑛=1

 (8) 

The maximum of this function with respect to unknown 

parameters Θ can be formalized as follows: 

�̂� = argmax⁡⁡
𝜃

∑ log 𝑝

𝑁

𝑛=1

(𝒙𝑛|⁡𝜽) (9) 

The maximization defined by (9) is a complicated task 

that does not have an explicit solution. The expectation-

maximization (EM) algorithm [18] is used for finding 

maximum likelihood solutions.  

 

Training the GMM statistical model for each single vowel 

is challenging for both computing power and memory. 

Fitting the model also suffers from lack of a sufficient 

amount of training data. It is therefore advisable to train a 

universal generic model (so called Universal Background 

Model UBM), which represents the possible distribution of 

the features for a wide group of sounds, and then derive from 



 

 

it the class-specific model for an individual vowel. The 

Maximum likelihood estimation (ML) of the model 

parameters is used for UBM training [20].  

The Maximum a posteriori probability (MAP) estimate is 

used for UBM adaptation to the vowel model (i.e. class-

specific GMM). In the presented experiments, only vectors 

of mean values of UBM were adjusted to obtain individual 

models. 

Given a sequence of features vectors 𝑂 = {𝑜1, 𝑜2 ,. . . , 𝑜𝑁} 

from one class of vowels, the score is expressed by (10), 

where θv and θ𝑈𝐵𝑀 denote the actual vowel model and 

universal model respectively. According to (10), the greater 

the probability p(𝑜𝑛|θv) against background model for as 

many feature vectors as possible, the more will be supported 

the hypothesis that the recognized audio sample belongs to 

the given vowel class. 

 

 𝑠𝑐𝑜𝑟𝑒 =
1

𝑁
⁡∑ log

𝑝(𝒐𝑛⁡|⁡𝛉𝑠)⁡

𝑝(𝒐𝑛⁡|⁡𝛉𝑈𝐵𝑀)

𝑁

𝑛=1

 (10) 

 

 

The k-Nearest Neighbours (k-NN) is a simple nonlinear 

instance-based classification method and is one of the most 

popular classical approaches of cluster analysis. It classifies 

an unknown sample based on the known classification of its 

neighbours [21][22].  

The model itself is essentially made up of a training set, 

and the learning process consists in storing of patterns from 

all training samples in one model. Given an unknown 

sample, the distances between the unknown sample and all 

the samples in the training set can be computed. Input 

attributes must be numeric so that their distance can be 

calculated for each of the two patterns. Samples from the 

training set have 𝑛 number attributes, and each one sample 

represents a point in the 𝑁-dimensional space. If a classifier 

wants to determine the target attribute of an unknown 

sample, it searches in the 𝑘 sample space of the training set 

for those that are closest to that unknown sample. Training 

set can be defined as: 

 

 {𝒙𝑖 , 𝐶𝑖}𝑖=1,…,𝐾 , ⁡𝐶𝑖 ∈ {1,2, … , 𝐿} (11) 

 

 where xi is a sample with its corresponding label C and K is 
the size of the whole training set, L is a number of classes 

(i.e. number of vowels). Given unknow sample x, we are 

looking for sample 𝑥k according to following formula: 

 

 ‖𝒙𝑘 − 𝒙‖ = 𝑚𝑖𝑛‖𝒙𝑖 − 𝒙‖𝑖=1,….,𝐾 (12) 

 

Subsequently, the sample x is placed to the same class that 

𝑥𝑘 belongs to. 

In the proposed system we used the Euclidean distance, 

which is the most commonly used metric for distance 

determination, as well as the city-block, Chebyshev and 

cosine distance metrics. They are defined as follows: 

 𝑑𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛(𝒙, 𝒚) = √∑(𝑥𝑖 − 𝑦𝑖)
2

𝑛

𝑖=1

 (13) 

 
𝑑𝑐𝑖𝑡𝑦−𝑏𝑙𝑜𝑐𝑘(𝒙, 𝒚) = ⁡∑|𝑥𝑖 − 𝑦𝑖|

𝑛

𝑖=1

 
 

(14) 

 

 𝑑𝐶ℎ𝑒𝑏𝑦𝑠ℎ𝑒𝑣(𝒙, 𝒚) = ⁡max⁡(
𝑖

|𝑥𝑖 − 𝑦𝑖|) (15) 

 

 𝑑𝑐𝑜𝑠𝑖𝑛𝑒(𝒙, 𝒚) =
∑ 𝑥𝑖𝑦𝑖
𝑛
𝑖=1

√∑𝑥𝑖
2√∑𝑦𝑖

2
 (16) 

From the above-mentioned facts it’s obvious that two 

important factors play a role in the successful classification: 

• the choice of distance function  

• the choice of the value for the parameter k (i.e. 

number of neighbours) 

It is advised to choose an odd number for k to avoid the 

scenario when two classes labels achieve the same score. 

Some issues need to be considered during the selection of k 

value. Classes with a great number of samples can 

overwhelm small ones and the results will be biased, so it is 

not recommended to set large k value. The advantage of 

using many samples in the training set is not exploited if k is 

too small [21].  

The disadvantage of this classifier is the calculation of all 

distances for each classification, which can considerably 

slow down the process and it can be computationally 

expensive if the training set or the number of unknown 

samples is large. 

 

2.4 k-fold cross-validation 

If there is not a sufficient number of observations, an 

appropriate approach to determine the optimal solution for 

training/testing is the so-called cross-validation technique. 

[23]. 

The data set is divided into k parts, with one part always 

being used for testing, and the remaining k-1 parts being 

used for training. The process is repeated so that each part is 

used for testing just once (Fig. 3). The advantage of 

validation is a relatively accurate estimate of the 

classification success. The disadvantage of validation is that 

it requires more computer memory and consumes more time 

because a lot of calculations are needed at every step. 

 
Fig. 3. k-fold cross-validation 

 

3 Experimental setup and results 

The evaluation of the proposed GMM, GMM-UBM and 

k-NN methods was performed. All the tests were evaluated 

on isolated vowels extracted from the TIMIT data set. Two 



 

 

sets of vowels were created. The first set consists of the 5 

classes aa, eh, iy, ow, uh. This subset correlates with the 

common vowels of the most European languages (e.g. 

‘a’,’e’,’i’,’o’,’u’ in Slovak) [25]. The second set consists of 

18 American English vowels (see Table 4 for a list). The set 

of the 5 classes was used in the first and second experiments. 

Finally, performance of developed system was evaluated on 

the second set of the 18 classes. 

 

Proposed algorithms were implemented in MATLAB 

2018b with support of the Voicebox [27] and Netlab [28] 

toolboxes.  

Classifier training and testing was performed by 10-fold 

cross-validation. Data was initially randomly divided into 10 

equally large subsets. Each of them contained approximately 

the same number of vowels represented by the feature 

vectors. Nine of them were used to train the model and the 

rest one to test it. This was repeated 10 times, so that all 10 

subsets were tested. All data were parameterized by 39 

MFCCs (incl. deltas and delta-deltas) per 16 ms frame with  

8 ms overlap. The features matrix dimension for each vowel 

was 10800x39 (frames x features). 

The results of the experiments with 5 vowels classification 

using k-NN and simple trained GMM are shown in Tables 2 

and 3 respectively. There are shown the results achieved for 

various k-NN setup (type of metric and number of 

neighbours) and GMMs (number of gaussians and 

covariance matrix types) settings. An effort has been made 

to achieve a better classification accuracy by editing the data. 

Therefore, the entire database was mixed so that the speech 

dialects are evenly distributed between the training and the 

test part. Another data modification was vowel trimming by 

omitting the first and last frames for each vowel recording. 

So that silent parts as well as parts affected by coarticulation 

or unprecise vowel border detection were not taken into 

account. In addition, the middle frames are known to contain 

the most important information about the vowel. Such 

modified data are referred as D2, D1 indicates original data.  

Table 2. The overall system accuracy for 5 vowels recognition, 

using k-NN classifier, and 2 data manipulation techniques:  whole 

vowels (D1), trimmed vowels (D2) 

Metric 
k=3 k=5 k=7 

D1 D2 D1 D2 D1 D2 

Chebyshev 73.54 89.48 74.53 86.61 74.81 84.37 

Cosine 74.56 91.24 75.62 88.57 75.94 86.23 

Euclidean 75.83 92.13 77.33 90.25 77.87 88.67 

Cityblock 75.64 95.08 79.47 92.96 79.80 91.19 

 

Table 3. The overall system accuracy for 5 vowels recognition, 

using GMM classifier, and 2 data manipulation techniques:  whole 

vowels (D1), trimmed vowels (D2) 

Covartype 
n=16 n=32 n=64 

D1 D2 D1 D2 D1 D2 

ppca 80.42 81.64 79.28 80.37 78.21 80.86 

diag 82.53 84.73 83.47 85.93 84.85 85.84 

full 86.53 87.45 83.80 91.10 82.33 86.25 

 

Significant improvement can be seen for both methods of 

classification if only stationary middle part of the vowels is 

analysed (D2). At k-NN method, a success rate of 95.08% 

with k = 3 neighbours and cityblock metric, was achieved. 

GMM achieved the best success rate of 91.1% at n = 32 

gaussians and full covariance matrix. The comparison of the 

best results for 5 vowels achieved by the above-mentioned 

methods is shown in Fig. 4. 

 
Fig. 4. The comparison of classification of 5 selected 

vowels 

In the last experiment, testing was performed on a larger 

set of classes - 18 vowels of American English were 

selected. Data needed for UBM training were selected from 

other recordings available in the database. A total of 4600 

recordings from 510 speakers in a total length of 

approximately 3 hours and 54 minutes were used to train the 

UBM model. The front-end with data manipulation is the 

same as in experiments with the recognition of 5 vowels 

(referred as D2 in the text above). The experiments with 

GMM-UBM training/classification approach is also added. 

Fig. 5 shows the best results achieved Interestingly, the                    

k-NN algorithm outperformed both GMM and GMM-UBM 

approaches. It achieved 84.2% vowel recognition accuracy, 

at setting k = 5 neighbours and cityblock metric. The second 

most successful system was GMM-UBM, which achieved 

success rate of 78.1% at n = 256 gaussians and full 

covariance matrix. The worst performance had the GMM 

classifier, probably due to insufficient amount of training 

data It achieved a system success rate of 75.5% at n = 16 

gaussians and full covariance matrix. 

Fig. 5. The comparison of classification of 18 vowels 

 

Table 4 shows the classification of the individual vowels 

for the best k-NN model settings in form of confusion 

matrix. The data in table indicates the performance of the 

algorithm as well as the false recognized vowels. This is the 

best way to see how the system works when recognizing 

individual vowels. The diagonal shows the correctly 

classified vowels. The lines specify incorrectly identified 

vowels. The final success rate in percentage is also stated.  



 

 

 

 

Table 4. Confusion matrix of phoneme recognition for the best k-NN model 

 

 

The total number of correctly classified vowels was 4548 

out of 5400 and the success rate of 84.2% was achieved. As 

seen from Fig. 5 and Table 4, in the case of k-NN, the 

vowels: aa, ae, ao, aw, and ux were recognized best, while 

for the vowels ax, eh, and ix, a considerable number of 

samples were misclassified. Note that using GMM-UBM 

classifier, largest recognition errors occurred in other group 

of vowels (see Fig. 5). The largest difference in recognition 

rate between k-NN and GMM-UBM is in the case of the 

vowels aa, ux, ix. From Fig 5, also disbalance between 

simple GMM and GMM-UBM can be seen (theoretically, 

GMM-UBM should outperform GMM in all cases). 

Probably, further optimization of GMM-UBM is required. 

Phoneme recognition task on the TIMIT database consists 

of several years of intensive research. There exists a number 

of systems and their classification success has naturally 

improved over time. Results presented in this paper are 

comparable to the existing research reported in the literature 

(see section 1.1). However, it is not possible to compare 

these works directly with our system because of different 

parameters and experimental settings that have been used. 

 

4 Conclusion  

This work deals with the design of a system for 

recognition of isolated vowels extracted from the TIMIT 

dataset and subsequent optimization of the training 

algorithm. Three different approaches for phoneme 

classification were k-NN, GMM, and GMM-UBM. The k-

NN method achieved the best results with overall accuracy 

of 95.08% for 5 vowels and 84.2% for 18 vowels 

recognition. GMM-UBM gave comparable results for 18 

vowels recognition but classification error was distributed 

differently among vowel classes than in the case of k-NN. 

This recognition disbalance issue between k-NN and GMM 

approaches needs further investigation.  
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