
Tuning Hyperparameters of Classification Based on Associations (CBA)

Tomáš Kliegr1 and Jaroslav Kuchař2

1 Department of Information and Knowledge Engineering, Faculty of Informatics and Statistics
University of Economics, W. Churchill Sq. 1938/4, Prague 3, Czech Republic

tomas.kliegr@vse.cz
2 Web Intelligence Research Group, Faculty of Information Technology

Czech Technical University in Prague, Thákurova 9, 160 00, Prague 6, Czech Republic
jaroslav.kuchar@fit.cvut.cz

Abstract: Classification models composed of crisp rules
provide excellent explainability. The limitation of many
conventional rule learning algorithms is the separate-and-
conquer strategy, which may be slow on large data. Asso-
ciation Rule Classifiers (ARC) is an alternative approach
that can be very fast on massive datasets but is highly sus-
ceptible to the correct choice of metaparameters. Most
existing ARC algorithms use default thresholds of 50%
for minimum confidence and 1% minimum support, which
can result in excessively long rule generation or underper-
forming models. Due to the high-costs that can be as-
sociated with evaluation of single combination, it is im-
practical to use standard metaparameter optimization ap-
proaches. In this paper, we introduce two variant threshold
tuning algorithms specifically designed for ARC. Evalua-
tion on 22 standard UCI datasets shows promising results
in terms of model size and accuracy in comparison with
the default thresholds. The implementation of the pro-
posed algorithms is made available in R packages rCBA
and arc, which are available in the CRAN repository.

1 Introduction

Association rule classifiers (ARC) are formed by select-
ing a subset of rules from a high number of candidates,
which are generated by association rule learning algo-
rithms known for their excellent performance on big and
sparse datasets. The large base of candidate rules or fre-
quent itemsets provides opportunities for achieving a good
balance between predictive performance and interpretabil-
ity of the produced models.

An ARC algorithm has two fundamental steps: candi-
date generation, and building of a classifier by selecting a
subset of the generated candidates. While most research
has focused on the classifier building phase, the candidate
generation phase has not received much attention. Most
ARC algorithms including state-of-the-art approaches like
Interpretable Decision Sets (IDS) [1], Scalable Bayesian
Rule Lists (SBRL) [2], or Bayesian Rule Sets (BRS) [3]
rely on simple heuristics for generating the candidates,
such as step-wise increases in support threshold by 5% un-

Copyright c©2019 for this paper by its authors. Use permitted un-
der Creative Commons License Attribution 4.0 International (CC BY
4.0).

til a fixed desired number of candidate frequent itemsets is
reached.

Candidate generation can fundamentally affect all facets
of ARC models, including speed of model building, size
of the generated models, and particularly the predictive
performance. In this paper, we provide two alternative
approaches to rule generation. We focus on approaches
applicable to the rule generation step of the Classification-
based on Associations (CBA) algorithm [4]. While there
are newer approaches, CBA is still one of the best rule-
based classification algorithms that concerns balance be-
tween comprehensibility of the model, predictive power
and scalability [5].

The two tuning algorithms that we describe are based
on different principles. The first approach is a heuristic,
which aims to produce a user-set number of rules by vary-
ing minimum support, minimum confidence, and maxi-
mum antecedent length thresholds. The second approach
is a supervised algorithm, in which each metaparameter
setting is used to create a classifier. Next, it is evaluated
through internal validation. As optimization algorithm we
adopt simulated annealing.

This paper is organized as follows. Section 2 briefly
introduces the CBA algorithm. Section 3 covers the two
proposed threshold tuning algorithms. Section 4 presents
evaluation and Section 5 summarizes limitations of the
presented work and provides outlook for future extensions.
The conclusions summarize the contributions of our pro-
posal, briefly discussing possible applications.

2 Association Rule Classifiers

The first association rule classification algorithm was
Classification based on Associations (CBA) [4]. While
there were multiple follow-up algorithms providing
marginal improvements in classification performance (e.g.
CPAR [6], CMAR [7]), the structure of most ARC algo-
rithms follows, with some deviations, that of CBA [8]:

1. learn classification association rules,

2. prune the set of rules,

3. classify new objects.



Rule learning In this phase, some algorithms such as CBA
learn complete association rules of the form antecedent→
consequent. The learning step returns all rules matching
the minimum confidence and minimum support thresh-
olds. The confidence of a rule is defined as con f (r) =
a/(a+ b), where a is the number of correctly classified
objects, i.e. those matching rule antecedent as well rule
consequent, and b is the number of misclassified objects,
i.e. those matching the antecedent, but not the consequent.
The support of a rule is defined as supp(r) = a/n, where n
is the number of all objects (relative support), or simply as
a (absolute support). Additionally, the rule mining setup
is constrained so that only the target class values can occur
in the consequent of the rules.

In some newer methods, the first step involves gener-
ating frequent itemsets, rather than complete rules. An
example of such method is IDS, which does not impose
the minimum confidence threshold. It takes on the input
already the result of frequent itemset mining (i.e. conjunc-
tions of conditions). Rules are then formed within IDS by
splitting the frequent itemset into an antecedent and con-
sequent parts.

In both approaches, adaptations of standard frequent
itemset generation association rule learning algorithms
such as apriori [9] or FP-growth [10] are used.

Rule pruning What is performed during the pruning phase
varies strongly from algorithm to algorithm. CBA uses a
simple and fast heuristic, which first sorts the rules and
then removes redundant rules. Rule is considered as re-
dundant if it does not correctly classify any instances after
instances covered by rules with higher priority. In contrast,
the IDS algorithm uses computationally intensive submod-
ular optimization, which provides guarantees in terms of
the optimality of the selected subset of rules with respect
to a chosen balance between predictive performance and
interpretability.

Classification phase The way classification is performed
depends primarily on whether the ARC algorithm pro-
duces rule lists or rule sets. Rule lists are ordered, and
typically only the first matching rule in the rule list is used
to classify an instance. CBA produces rule lists. In con-
trast, rule sets are unordered and typically all rules with
matching antecedents contribute to classifying an instance.
CPAR is an example of an algorithm that produces a rule
set.

3 Automatic Tuning of Mining Parameters

The minimum support threshold is a mandatory hyper-
parameter of most, if not all, association rule learning ap-
proaches, yet even the latest algorithms do little to tune
it algorithmically. Minimum confidence threshold is used
in smaller number of algorithms, but when it is used, it
is also not tuned. We suspect that the reason is that these

thresholds are notoriously difficult to optimize due to ex-
ponential complexity of the search space [11]. Addition-
ally, the classification performance is typically very sensi-
tive to parameter setting. While generally lower values of
confidence and support and higher values of rule length
produce the best results, the side effect of such setting
can be a disproportionally long time needed to build the
classifier caused by a combinatorial explosion, and conse-
quently extreme memory requirements.

We considered standard approaches such as pure ran-
dom or grid search. Since they do not use any back-
ground knowledge of the algorithm, we found them to be
unsuitable for optimizing the hyperparameters of associa-
tion rule learning, because of the sudden steep increases
in space state complexity that can be triggered by small
changes in the value of the hyperparameter.

In the following, we introduce our two proposals for hy-
perparameter tuning for association rule classification.

3.1 Simulated Annealing Optimization

Algorithm 1: Automatic Parameter Tuning with Sim-
ulated Annealing.

input : Input dataset in a tabular form: X
output: CBA Classifier (a set of ordered rules): C

1 begin
2 repeat
3 bestSetting = currentSetting = randomSetting()
4 ruleSet = learnRuleset(X, currentSetting, TIME_LIMIT)
5 until ruleSet is not EMPTY
6 temp = INIT_TEMP // initialize with temperature >1
7 accBest = -1
8 while temp > 1 do
9 // compute accuracies using stratified split, status can

either be timeout, success or empty rule set
10 (accCurrent, statusCurrent)=

crossEvalAcc(currentSetting, X, TIME_LIMIT)
11 newSetting = perturbate(currentSetting, statusCurrent) //

see Algorithm 2
12 (accNew, statusNew)= crossEvalAcc(newSetting, X,

TIME_LIMIT)
13 // probability of acceptance for worse solution
14 Pr = min(1, exp(-(accNew - accCurrent))/temp)
15 if statusNew is success AND (accNew > accCurent OR

Pr > rand(0, 1)) then
16 currentSetting = newSetting

17 if statusNew is success AND accNew > accBest then
18 (bestSetting, accBest) = (newSetting, accNew)
19 // remember best

20 temp = temp * (1-ALPHA) // cooling

21 C = learnRuleset(X, bestSetting)
22 return C

Algorithms 1 and 2 present our implementation for the
hyperparameter optimization based on simulated anneal-
ing [12, 13, 14]. The objective criterion which is optimized
against is the accuracy of the model.



The algorithm starts as a random search for one valid
initial solution providing non-empty classifier. Each
subsequent classifier is evaluated using nested cross-
validation. Input data are internally divided into a train
and a validation subset with a stratified split. The classi-
fier is built with a setting generated on the train set. The
accuracy is computed using the created classifier on the
validation set. If the execution time of the evaluation is
over a predefined threshold we stop the computation and
mark the setting as invalid and set the computed accuracy
to null.

Algorithm 2: Perturbate - Generating new setting for
SA.

input : Current setting: currentSetting
Current setting status: resultStatus (timeout, success or

empty rule set)
output: New setting: newSetting

1 begin
2 newSetting = currentSetting
3 // with uniform probability select one parameter
4 p = random("support", "confidence", "ruleLength")
5 switch p do
6 case "support" or "confidence" do
7 if resultStatus is timeout then
8 // increasing threshold can fasten execution
9 newSetting[p] = newSetting[p] + rand(0, 1 -

newSetting[p])
10 else
11 if resultStatus is empty then
12 // threshold may have been too high
13 newSetting[p] = newSetting[p] - rand(0,

newSetting[p])
14 else
15 newSetting[p] = random(0,1)

16 case "ruleLength" do
17 if resultStatus is timeout then
18 // shorter rule length can fasten execution
19 newSetting[p] = newSetting[p] - 1
20 else
21 newSetting[p] = rand(1, MAX_LENGTH)

22 return newSetting

The evaluated new setting is accepted as a candidate for
next iteration if: 1) it is a valid setting not leading to a time-
out, 2) the accuracy is better than the current setting, or the
computed probability of acceptance exceeds the random
value. As an optimization we always remember the best
solution found so far so that it can be used if the algorithm
terminates at a sub-optimal place.

An important part of the algorithm is a generation of a
new setting based on the previous one. Only one parameter
is changed during generation of a new setting, which com-
poses of support, confidence or rule length. If the current
setting was labeled as invalid, the support or confidence
are increased or rule length decreased to overcome long
computation time and perform more restricted rule min-
ing. If the setting does not generate any rule or no rule is

applicable, the support or confidence are decreased. For
remaining situations, a random value is generated.

3.2 Heuristic algorithm

As an alternative to the supervised evolutionary approach,
we also introduce an unsupervised heuristic algorithm.
While the search in the simulated annealing approach uses
accuracy as objective function, the heuristic algorithm
only aims to return a user-set number of rules. This ap-
proach is conceptually faster, since repeated evaluations
of the classification model are not performed.

According to the recommendation in [4], CBA gen-
erates best results when the rule generation step returns
at least 60.000 of rules. The experiments performed by
[4] also provide recommended values for minimum confi-
dence (50%) and support (1%) thresholds.

The problem that our CBA-RG-auto algorithm ad-
dresses is that on some datasets the combination of the
values suggested in [4] fails. The principal reasons are
either not enough rules generated or a combinatorial ex-
plosion generating high number of overly short (and thus
general) rules.

The CBA-RG-auto algorithm (Alg. 3) takes on the in-
put two principal parameters: the number of desired rules
(targetRuleCount) and preferred time that can be spent
with tuning (totalTimeout). The algorithm then iteratively
refines the minimum support (support) and confidence
(conf ) thresholds. The mining time and risk of combinato-
rial explosion is controlled by adjusting the constraint on
the minimum and maximum number of conditions that can
appear in the antecedent of the rules (minLen and maxLen).
To guide the search process, the algorithm takes on input
several additional parameters. According to our experi-
ments, their values can be typically left at their default val-
ues (we used the same defaults in all experiments reported
in our evaluation).

4 Evaluation

In our benchmark, we aim to evaluate the performance of
the two proposed tuning steps against CBA with default
parameters as a baseline.

For simulated annealing, we report on two setups, one
using default values of metaparameters of simulated an-
nealing (denoted as sa). To investigate the effect of meta-
parameters introduced in the simulated annealing algo-
rithm, we also involve approach denoted as saopt, which
corresponds to the simulated annealing tuning algorithm
with metaparameter values optimized with random search.
For saopt the configurations were evaluated against test
data to determine the upper bound of attainable accuracy.
As a result, saopt cannot be directly compared with the re-
maining evaluated algorithms, which did not have access
to test data during training.



Algorithm 3: Automatic parameter tuning with
heuristic algorithm (CBA-RG-auto)

input : train training data
parameters: main: targetRuleCount, totalTimeout,

supplementary: initSupport = 0.01, initCon f = 0.5,
con f Step = 0.05, suppStep = 0.05, minLen = 2, initMaxlen = 3,
iterTimeout = 2, maxIterations = 40
output : rules - list of rules to be used as input for CBA-CB

1 begin
2 startTime← currentTime(), supp← initSupport, con f ←

initCon f , maxLen← initMaxlen, iterations← 0,
maxLenDecreasedDueToT IMEOUT ← false,
lastRuleCount ← -1

3 MAXRULELEN ← number of explanatory attributes
4 while true do
5 iterations← iterations + 1
6 if iterations = maxIterations then
7 break

8 rulesCur←
apriori(minLen,maxLen,supp,con f ,iterTimeout)

9 if apriori not finished within iterTimeout then
10 if currentTime()-startTime > totalTimeout then
11 break

12 else if maxLen > minLen then
13 maxLen← maxLen - 1
14 maxLenDecreasedDueToT IMEOUT ← true

15 else
16 break // All options exhausted

17 else
18 rules← rulesCur
19 if rulecount ≥ targetRuleCount then
20 break // Target rule count satisfied

21 else if currentTime() - startTime > totalTimeout
then

22 break // Max execution time exceeded

23 else if maxLen < MAXRULELEN and
lastRuleCount != count(rules) and
(maxLenDecreasedDueToT IMEOUT = false)
then

24 maxLen← maxLen + 1
25 lastRuleCount ← count(rules)

26 else if maxLen < MAXRULELEN and
maxLenDecreasedDueToT IMEOUT = true and
supp ≤ (1-suppStep) then

27 supp← supp + suppStep
28 maxLen← maxLen + 1
29 lastRuleCount ← rulecount
30 maxLenDecreasedDueToT IMEOUT ← false

31 else if con f > con f Step then
32 con f ← con f - con f Step

33 else
34 break // All options exhausted

35 return first targetRuleCount rules from rules

4.1 Setup

Datasets The evaluation was performed on 22 datasets se-
lected from the UCI repository [15]. All selected datasets
were previously used in evaluation of rule learning or de-

cision tree algorithms in one of the following seminal pa-
pers: [5, 16, 4, 17]. Numerical attributes with more than 3
values were binned with entropy-based discretization [18].
Ten-fold crossvalidation was used to generate train-test
splits. The same splits were used for all evaluated con-
figurations.

Implementation We made available under an open source
licence implementations of all evaluated algorithms. We
used R package rCBA1 (available via CRAN) to obtain re-
sults for the baseline CBA run and for simulated anneal-
ing. R package arc2 (also available via CRAN) was used
to obtain results for the heuristic algorithm. Both imple-
mentations use the apriori algorithm for the rule learning
phase.

Settings The classifier building phase of CBA does not
have any metaparameters. The rule learning phase requires
setting of rule mining parameters – minimum support,
minimum confidence and maximum rule length. The start-
ing parameters for the proposed threshold tuning methods
(Algorithms 1 – 3) are also listed below.

• Baseline CBA (base): 50% minimum confidence, 1%
minimum support, maximal rule length 3.

• Heuristic algorithm (heuristic): Default setting
is targetRuleCount=60000, initSupport = 0.01,
initCon f = 0.5, con f Step = 0.05, suppStep = 0.05,
minLen = 2, initMaxlen = 3, iterTimeout = 2,
maxIterations = 40

• Simulated Annealing (sa): Default setting for the SA
algorithm is INIT _T EMP = 100.0, ALPHA = 0.05,
MAX_LENGT H = 5, T IME_LIMIT = 10

• Optimized Simulated Annealing (saopt): Ran-
dom search from the following intervals
INIT _T EMP = 10.0−100.0, ALPHA = 0.01−0.5,
MAX_LENGT H = 3−10, T IME_LIMIT = 1−10

4.2 Results

Results are reported in terms of accuracy (Table 1), rule
count (Table 2), average number of conditions in rules in
the model (Table 3), average model size computed as aver-
age number of conditions × average rule count (Table 4),
and classifier build time (Table 5). Finally, Table 6 pro-
vides for each of the evaluated approaches an aggregate
number of wins in each of the five criteria above.

Baseline CBA The results show that CBA with default pa-
rameter values performs surprisingly well, achieving best
results in terms of overall size of the classifier on most
datasets (14 out of 22), while obtaining the best results on

1Version 0.4.3
2Version 1.2



5 datasets in terms of predictive performance. Remark-
ably, there are three datasets (breast-w, credit-g, sonar) for
which the default parameter values generate models that
have best accuracy and at the same time are smallest in
terms of combined rule count and rule length.

Despite the five wins, base CBA had the worst aver-
age and median accuracy. Detailed examination of Table 1
shows that the default thresholds result in either very low
accuracy or excessive size on several datasets, the drop in
accuracy is particularly strong on glass and letter datasets.
The instability of results is reflected by high standard de-
viation for accuracy.

Heuristic The optimization heuristic provides best out-
come in terms of predictive performance, both in terms
of accuracy and the number of wins against other datasets.
This comes at a cost of creating larger models than gener-
ated by other methods, also the build time is the highest.
One dataset (letter) was not even processed. For accuracy,
the heuristic approach provides the most stable results with
lowest standard deviation.

Simulated annealing When it comes to compact mod-
els, very promising results were obtained by simulated an-
nealing with default parameters (sa), which produced the
smallest models in terms of rule count on 12 datasets. In
two cases (australian, hepatitis), this algorithm produced
much smaller models than the other methods with a small
gap in terms of accuracy. On the ionosphere dataset, sa
even generated a model which was most accurate and at
the same time smallest.

The saopt algorithm generated almost consistently bet-
ter results than sa. However, this approach is not fully
comparable with the remaining two, because it used the
test set to select the best combination of hyperparameters.
It is included to show a possible effect of tuning hyperpa-
rameters of simulated annealing as opposed to only using
the default values.

5 Limitations and Future Work

We acknowledge several limitations affecting our prelimi-
nary study:

• Our benchmark did not account for the tradeoff be-
tween rule count and accuracy. For example, 1%
improvement in accuracy may need to be offset by
much higher increase in number of rules, which are
required to cover various specialized cases.

• We have not performed statistical testing on signifi-
cance in differences between the algorithms.

• The baseline approaches could include some previ-
ously proposed approaches for metaparameter opti-
mization, such as [11].

Table 1: Accuracy

base heuristic sa saopt
anneal 0.953 0.991 0.874 0.874
australian 0.862 0.841 0.854 0.856
autos 0.410 0.716 0.574 0.601
breast-w 0.960 0.948 0.956 0.957
colic 0.739 0.792 0.831 0.843
credit-a 0.753 0.861 0.854 0.867
credit-g 0.743 0.727 0.737 0.740
diabetes 0.750 0.753 0.760 0.757
glass 0.429 0.718 0.658 0.672
heart-statlog 0.804 0.807 0.804 0.826
hepatitis 0.786 0.793 0.774 0.807
hypothyroid 0.972 0.990 0.933 0.951
ionosphere 0.886 0.917 0.929 0.931
iris 0.933 0.933 0.927 0.933
labor 0.773 0.840 0.743 0.790
letter 0.241 NaN 0.533 0.610
lymph 0.757 0.781 0.707 0.759
segment 0.932 0.820 0.942 0.942
sonar 0.746 0.740 0.707 0.741
spambase 0.929 0.851 0.932 0.932
vehicle 0.663 0.682 0.678 0.701
vowel 0.414 0.628 0.434 0.588
mean 0.747 0.816 0.779 0.803
sd 0.203 0.100 0.144 0.118
median 0.765 0.807 0.789 0.816

Table 2: Average rule count

base heuristic sa saopt
anneal 22.7 36.7 16.3 16.3
australian 21.9 89.3 8.0 16.2
autos 51.7 41.2 32.2 33.8
breast-w 30.2 56.6 24.4 32.6
colic 77.8 106.8 20.3 10.6
credit-a 42.1 119.2 22.9 23.8
credit-g 62.2 135.1 62.0 75.1
diabetes 21.8 63.9 24.6 26.4
glass 24.3 31.5 15.5 18.1
heart-statlog 12.9 54.8 16.1 22.7
hepatitis 22.1 32.0 9.7 13.0
hypothyroid 20.9 45.8 11.5 13.4
ionosphere 46.4 46.0 18.5 20.8
iris 7.1 5.9 4.6 3.9
labor 11.7 11.3 6.5 7.8
letter 41.3 NaN 1005.4 1347.4
lymph 26.8 37.1 18.7 14.3
segment 116.9 62.4 148.1 148.1
sonar 29.2 42.8 17.5 23.3
spambase 284.8 7.5 293.3 301.3
vehicle 70.0 86.3 88.7 105.8
vowel 50.2 144.4 58.4 122.0
mean 49.8 59.8 87.4 108.9
sd 58.4 39.9 215.0 285.0
median 29.7 46.0 19.5 23.0

• Since some datasets are imbalanced, the evaluation
metrics should be complemented by appropriate mea-
sure, such as Cohen’s Kappa. This measure could
also be supported as fitness measure in the sa algo-
rithm.



Table 3: Average antecedent length

base heuristic sa saopt
anneal 1.737 1.749 2.051 2.051
australian 1.899 3.759 1.532 2.146
autos 1.847 3.409 2.739 2.514
breast-w 1.893 2.857 2.100 2.613
colic 1.973 2.240 2.134 2.102
credit-a 1.952 4.653 2.293 1.973
credit-g 1.967 4.272 2.029 2.236
diabetes 1.823 3.120 1.987 2.040
glass 1.876 2.763 1.620 2.045
heart-statlog 1.841 4.054 2.518 3.018
hepatitis 1.836 2.646 1.501 1.975
hypothyroid 1.811 2.126 1.726 1.632
ionosphere 1.726 2.231 1.272 1.298
iris 1.326 1.290 1.008 0.730
labor 1.478 1.559 1.035 1.379
letter 1.901 NaN 2.158 2.711
lymph 1.854 3.181 1.669 1.770
segment 1.938 2.529 2.213 2.213
sonar 1.922 2.786 1.936 2.059
spambase 1.984 2.234 2.451 2.635
vehicle 1.970 1.988 2.754 3.269
vowel 1.931 2.031 2.080 3.702
mean 1.840 2.737 1.946 2.187
sd 0.160 0.903 0.486 0.660
median 1.885 2.646 2.040 2.080

Table 4: Model size

base heuristic sa saopt
anneal 3.017 3.059 4.206 4.206
australian 3.604 14.133 2.346 4.607
autos 3.411 11.619 7.500 6.319
breast-w 3.583 8.162 4.411 6.826
colic 3.892 5.016 4.555 4.417
credit-a 3.812 21.652 5.257 3.891
credit-g 3.871 18.252 4.119 4.999
diabetes 3.323 9.731 3.947 4.164
glass 3.520 7.632 2.623 4.183
heart-statlog 3.391 16.436 6.341 9.106
hepatitis 3.370 7.000 2.254 3.901
hypothyroid 3.279 4.520 2.979 2.664
ionosphere 2.980 4.976 1.617 1.686
iris 1.759 1.665 1.017 0.533
labor 2.185 2.431 1.072 1.901
letter 3.613 NaN 4.658 7.351
lymph 3.436 10.116 2.786 3.133
segment 3.757 6.395 4.896 4.896
sonar 3.693 7.761 3.749 4.239
spambase 3.937 4.991 6.008 6.945
vehicle 3.880 3.951 7.585 10.686
vowel 3.730 4.125 4.326 13.706
mean 3.411 8.268 4.012 5.198
sd 0.540 5.428 1.845 3.036
median 3.552 7.000 4.162 4.328

• For the baseline CBA algorithm, we evaluated only
setting with maximum length of antecedent set to 3,
as higher thresholds sometimes led to combinatorial
explosion.

• The included datasets are of small or moderate size,

Table 5: Build time in seconds

base heuristic sa saopt
anneal 0.73 24.56 29.08 29.02
australian 0.48 101.88 10.76 34.08
autos 0.61 94.44 21.03 77.25
breast-w 0.48 21.11 13.01 19.97
colic 0.63 15.40 16.18 20.00
credit-a 0.52 120.01 15.60 47.33
credit-g 0.68 443.78 20.95 61.15
diabetes 0.53 44.58 13.35 32.56
glass 0.51 16.91 11.40 14.35
heart-statlog 0.46 60.58 13.74 14.29
hepatitis 0.53 14.12 11.27 5.67
hypothyroid 1.25 61.49 48.24 152.60
ionosphere 0.99 36.91 16.09 49.77
iris 0.44 0.52 7.76 1.69
labor 0.48 2.06 9.12 6.10
letter 0.82 NaN 291.99 229.86
lymph 0.19 27.39 14.81 5.22
segment 0.62 172.69 44.28 40.58
sonar 0.67 36.73 32.41 34.96
spambase 3.47 475.76 160.90 228.13
vehicle 0.26 25.52 24.38 57.17
vowel 0.14 22.22 16.22 7.07
mean 0.704 86.603 38.299 53.128
sd 0.664 131.364 65.041 65.847
median 0.530 36.730 16.135 33.320

Table 6: Number of wins for individual evaluation criteria
across the 22 evaluation datasets: acc denotes accuracy,
#rules average number of rules, length denotes average an-
tecedent length, time average build time, size is computed
as rules × length

acc #rules length time size
base 5 5 14 22 14
heuristic 7 2 0 0 0
sa 3 12 6 0 6
saopt 7 3 2 0 2

evaluation on large datasets was not performed.

We plan to address some of the limitations noted above
in a larger follow-up study. In future work, it would also
be interesting to adapt the proposed rule tuning heuristics
to the recent generation of association rule classification
algorithms. Unlike CBA, which uses a computationally
lightweight approach to selecting rules for the final classi-
fier, these algorithms typically subject the input rule set to
much more sophisticated selection process, involving op-
timization techniques such as Markov Chain Monte Carlo
(in SBRL), submodular optimization (in IDS) or simulated
annealing (in BRS).

This adaptation may require experimentation with other
metaparameter optimization algorithms, such as sequen-
tial model based optimization approaches (SMBO) [19]
or other types of nature-inspired algorithms, e.g. F-race
(Irace) [20], which were experimentally showed to outper-
form SMBO on tasks with mixed types of parameters [21].



6 Conclusions

In this paper, we have shown how thresholds used in rule
generation can be tuned in both unsupervised and super-
vised way to improve results of association rule classifi-
cation algorithms in terms of predictive performance and
size of the resulting model. Our results showed, somewhat
surprisingly, that the default thresholds recommended for
the CBA algorithm (1% minimum support and 50% mini-
mum confidence thresholds) provide on many datasets re-
sults highly competitive to the best configuration found
with any of the proposed tuning algorithms. Despite this,
using these defaults cannot be unanimously recommended
as the default settings works well on some datasets, but
has abysmal results on others. The proposed unsuper-
vised heuristic tuning algorithm provides best predictive
accuracy and relatively stable results. The supervised ap-
proach based on simulated annealing has promising results
in terms of generating compact models.

Possible applications include not only general classi-
fication problems, but particularly the use of associative
classification for anomaly detection, where the results are
known to be very sensitive to the choice of the support
threshold [22].

The implementation of the proposed algorithms is made
available in R packages rCBA and arc, which are available
in the CRAN repository.

Acknowledgments

The authors would like to thank the three anonymous re-
viewers for insightful comments that helped to improve
the final version of the paper. This research was supported
by Faculty of Informatics, Czech Technical University in
Prague and by the Faculty of Informatics and Statistics,
University of Economics, Prague by institutional support
for research and grant IGA 12/2019.

References

[1] Lakkaraju, H.; Bach, S. H.; Leskovec, J.: Interpretable De-
cision Sets: A Joint Framework for Description and Pre-
diction. In Proceedings of KDD ’16, New York, NY, USA:
ACM, 2016, ISBN 978-1-4503-4232-2, s. 1675–1684.

[2] Yang, H.; Rudin, C.; Seltzer, M.: Scalable Bayesian rule
lists. In Proceedings of the 34th International Conference
on Machine Learning-Volume 70, JMLR. org, 2017, s.
3921–3930.

[3] Wang, T.; Rudin, C.; Doshi-Velez, F.; aj.: A bayesian
framework for learning rule sets for interpretable clas-
sification. The Journal of Machine Learning Research,
ročník 18, č. 1, 2017: s. 2357–2393.

[4] Liu, B.; Hsu, W.; Ma, Y.: Integrating classification and as-
sociation rule mining. In Proceedings of KDD’98, 1998, s.
80–86.

[5] Alcala-Fdez, J.; Alcala, R.; Herrera, F.: A fuzzy association
rule-based classification model for high-dimensional prob-
lems with genetic rule selection and lateral tuning. IEEE

Transactions on Fuzzy Systems, ročník 19, č. 5, 2011: s.
857–872.

[6] Yin, X.; Han, J.: CPAR: Classification based on Predic-
tive Association Rules. In Proceedings of the SIAM Inter-
national Conference on Data Mining, San Franciso: SIAM
Press, 2003, s. 369–376.

[7] Li, W.; Han, J.; Pei, J.: CMAR: Accurate and Efficient
Classification Based on Multiple Class-Association Rules.
In Proceedings of the 2001 IEEE International Conference
on Data Mining, ICDM ’01, Washington, DC, USA: IEEE,
2001, ISBN 0-7695-1119-8, s. 369–376.

[8] Vanhoof, K.; Depaire, B.: Structure of association rule
classifiers: a review. In 2010 International Conference on
Intelligent Systems and Knowledge Engineering (ISKE),
November 2010, s. 9–12.

[9] Agrawal, R.; Imielinski, T.; Swami, A. N.: Mining Asso-
ciation Rules between Sets of Items in Large Databases. In
SIGMOD, 1993, s. 207–216.

[10] Han, J.; Pei, J.; Yin, Y.; aj.: Mining Frequent Patterns With-
out Candidate Generation: A Frequent-Pattern Tree Ap-
proach. Data Mining and Knowledge Discovery, ročník 8,
č. 1, Leden 2004: s. 53–87, ISSN 1384-5810.

[11] Coenen, F.; Leng, P.; Zhang, L.: Threshold tuning for im-
proved classification association rule mining. In Pacific-
Asia Conference on Knowledge Discovery and Data Min-
ing, Springer, 2005, s. 216–225.

[12] Černý, V.: Thermodynamical approach to the traveling
salesman problem: An efficient simulation algorithm. Jour-
nal of Optimization Theory and Applications, ročník 45,
č. 1, 1984: s. 41–51, ISSN 1573-2878.

[13] Kirkpatrick, S.; Gelatt, C. D.; Vecchi, M. P.: Optimiza-
tion by Simulated Annealing. Science, ročník 220, č. 4598,
1983: s. 671–680, ISSN 00368075, doi:10.1126/science.
220.4598.671.

[14] Johnson, D. S.; Aragon, C. R.; McGeoch, L. A.; aj.: Opti-
mization by Simulated Annealing: An Experimental Eval-
uation. Part I, Graph Partitioning. Oper. Res., ročník 37,
č. 6, Říjen 1989: s. 865–892, ISSN 0030-364X, doi:
10.1287/opre.37.6.865.

[15] Dua, D.; Graff, C.: UCI Machine Learning Repository.
2017. Available on: http://archive.ics.uci.edu/ml

[16] Hühn, J.; Hüllermeier, E.: FURIA: an algorithm for un-
ordered fuzzy rule induction. Data Mining and Knowledge
Discovery, ročník 19, č. 3, 2009: s. 293–319.

[17] Quinlan, J. R.: Improved use of continuous attributes in
C4. 5. Journal of artificial intelligence research, ročník 4,
1996: s. 77–90.

[18] Fayyad, U. M.; Irani, K. B.: Multi-Interval Discretization
of Continuous-Valued Attributes for Classification Learn-
ing. In 13th International Joint Conference on Uncertainly
in Artificial Intelligence (IJCAI93), 1993, s. 1022–1029.

[19] Bergstra, J. S.; Bardenet, R.; Bengio, Y.; aj.: Algorithms for
hyper-parameter optimization. In Advances in neural infor-
mation processing systems, 2011, s. 2546–2554.

[20] Birattari, M.; Yuan, Z.; Balaprakash, P.; aj.: F-Race and
iterated F-Race: An overview. In Experimental methods for
the analysis of optimization algorithms, Springer, 2010, s.
311–336.

[21] Mantovani, R. G.; Horváth, T.; Cerri, R.; aj.: An empiri-

http://archive.ics.uci.edu/ml


cal study on hyperparameter tuning of decision trees. arXiv
preprint arXiv:1812.02207, 2018.

[22] Brauckhoff, D.; Dimitropoulos, X.; Wagner, A.; aj.:
Anomaly extraction in backbone networks using associa-
tion rules. In Proceedings of the 9th ACM SIGCOMM con-
ference on Internet measurement, ACM, 2009, s. 28–34.


	Introduction
	Association Rule Classifiers
	Automatic Tuning of Mining Parameters
	Simulated Annealing Optimization
	Heuristic algorithm

	Evaluation
	Setup
	Results

	Limitations and Future Work
	Conclusions

