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Abstract—  In this work, we introduce a methodology for 

the recognition of crowd emotions from crowd speech and sound 
in mass events. Different emotional categories can be encoded 
via frequency-amplitude features of emotional crowd speech. 
The proposed technique uses visual transfer learning applied to 
the input sound spectrograms. Spectrogram images are 
generated starting from snippets of fixed length taken from the 
original sound clip. The plots are then filtered and normalized 
concerning frequency and magnitude and then fed to a pre-
trained Convolutional Neural Network (CNN) for images 
(AlexNet) integrated with domain-specific categorical layers. 
The integrated CNN is re-trained with the labeled spectrograms 
of crowd emotion sounds in order to adapt and fine-tune the 
recognition of the crowd emotional categories. Preliminary 
experiments have been held on a dataset collecting publicly-
available sound clips of different mass events for each class, 
including Joy, Anger and Neutral. While transfer learning has 
been applied in existing literature to music and speech 
processing, to the best of our knowledge, this is the first 
application to crowd-sound emotion recognition. 
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I. INTRODUCTION AND RELATED WORK 

Research on sound emotion recognition has mostly 

focused on emotions elicited by music, [1] or emotions of 

individual speakers, [2], [3],[4] expressed by fine-tuning of 

different shades of vocal features.[5], [6] Recognizing sound 

emotions from the crowd is of great interest for applications 

which focus on detecting emotional content of mass events, 

e.g., alerting in emergencies, mass panic, riots, or automated 

video annotation for sports, concerts, political meetings. 

Crowd emotion recognition is also useful for providing 

applications with contextual information from the sound 

background and the environment in which the user activity is 

taking place. A challenging issue of sound-based analysis of 

the emotions embedded in the screaming of the crowd, is that 

they are not simply the summation of the individual 

emotional sounds, as they would be expressed in a single-

person conversation. When people scream in the crowd, they 
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mostly use short words or single modulated utterances, 

together with the other people, and they also use special 

sounds, e.g., booing, or whistling in approval, or they produce 

clatter sounds by clapping, hitting tables or shaking objects. 

In other words, they behave and emit sounds as a crowd 

collective subject, e.g., a chorus although without centralized 

control. Moreover, in real situations, such as a sports match, 

emotions of different crowds can mix up, e.g., scoring team 

and losing team supporters shouting and clattering together. 

We, therefore, define crowd speech the whole set of 

simultaneous sounds, both voice-based and clatter-based. 

Emotional crowd speech recognition has, therefore, specific 

characteristics and thus demands a special treatment. [2] 

In this work, we hypothesize that emotions in crowd 

sounds are characterized by frequency-amplitude features 

which are less dependent from individuals; in other words, all 

the crowds are similar, and are, in some sense, the same 

crowd. The method we propose here is to exploit the sound 

analysis and evaluation through a visual transfer learning 

technique based on Convolutional Neural Networks (CNNs). 

Starting from a labeled data set of crowd speech sounds 

from real events obtained from YouTube videos, the visual 

plots, representing frequency/magnitude spectrograms over 

time, are generated from snippets sampled with sliding 

windows over the whole original clips [7] of the crowd sound. 

The visual plots are then filtered and standardized, as detailed 

in the next paragraphs, in order to make them homogeneous 

in scaling and encoding. 
Since the low-level visual analysis needs high 

computational capabilities in terms of time, memory, and 
training data, while the specific features of the data set are 
related to high-level details of the sound, we chose a transfer 
learning approach. Transfer learning allows to leverage a pre-
trained network for the analysis of the low-level features and 
fine-tune the network on a limited amount of specific clips. 
The spectrogram images are therefore fed to a pre-trained 
Convolutional Neural Network (CNN) for images [8]–[11] 
based on AlexNet, [12] which has been integrated with 
additional classification layers for crowd emotion categories. 
This supervised domain-specific training phase [13] has the 
purpose of fine-tuning, adapting, and enabling the additional 



CNN layers to crowd emotion recognition. Finally, the 
completely trained CNN is used to recognize emotions from a 
test set of spectrograms (see architecture flow in Fig.1). 

In order to build a crowd speech data set, we chose to 
select sound clips from real events taken from the internet 
(e.g., ambiance sound from football stadium during goal or 
no-goal attacking phases, cheering or booing audience in large 
events, and crowd sounds from relevant riots in big cities). We 
excluded any sound generated on purpose, e.g., actors’ 
performances (e.g., movies, sound effects for video editing) 
because they are not representative of real emotions, but of 
simulated emotions. Our data set includes a total of 678 
snippets, divided into three emotional categories, i.e., joy, 
anger, and neutral, [14] respectively corresponding to the 
three crowd emotions obtained by cheering, rioting, and 
neutral background noise in mass events. 

A further step of transfer learning is done when applied to 
objects which are not images, i.e., Heterogeneous Transfer 
Learning (HTL). The key point is that sound can be 
transformed in an image encoding all the relevant original 
sound features, i.e., a spectrogram in the domain of frequency-
amplitude plots of our crowd emotional sounds data set. The 
HTL methodology is not new to sound recognition, [5], [15] 
but to the best of our knowledge, this is the first application to 
crowd emotion recognition. 

The substantial differences between the large set of natural 
images included in the network pre-training and our sound-
plot images may advise against visual transfer learning 
because data are in the same feature space, but with different 
distributions. Moreover, concerning other sounds input, e.g., 
individual speech, crowd emotional sounds often present 
small differences between a category and the other, and they 
are strongly affected by environmental noise. However, the 
promising results of previous research on transfer learning 
applied to emotional speech [4], [16] encourage to use transfer 
learning for crowd sounds provided a sufficient amount of 
training images for the fine-tuning phase. On the other hand, 
using CNNs with a consistent pre-training, e.g., GoogleNet, 
AlexNet, [17] should provide the advantage of a performant 
recognition of the image low-level features, e.g., shapes, 
edges, color distribution, without the computational cost of 
training from scratch. 

This work aims to investigate whether such an approach 
characterized by heterogeneous visual transfer learning can 
be adequately applied to CNNs operating on sound 
spectrograms in order to realize crowd sounds emotion 
recognition, which seems positively supported by our 
preliminary experimental results. As a further result, we hope 
to stimulate the discussion on the problem of crowd emotion 
recognition, related models, and applications. In the following 
paragraphs, the characteristics and architectural workflow of 
the heterogeneous transfer learning systems applied to the 
Alex-Net CNN for crowd sound emotional recognition, the 
data set, the experimental settings, and the obtained results are 
described and discussed. 

 
 

II. THE SYSTEM ARCHITECTURE WORKFLOW 

The organization of information flow of the 

Heterogeneous Transfer Learning (HTL) in the proposed 

system includes two main phases (depicted in the 

architectural scheme in Figure 1): sound to spectrograms 

transformation, and knowledge transfer training. 

The sound to spectrograms transformation consists in 

starting with a labeled sound clip of varying duration, then 

sampling it by blocks of 2 seconds, normalizing the sound 

parameters, and finally generating a standardized 

spectrogram from each block, labeled with the emotion of the 

original clip. 

The knowledge transfer training is a quite standardized 

process. [18] the original CNN is modified in the last levels 

and then retrained by the spectrograms images to recognize 

the emotional crowd labels. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

A. Sound Normalization 

In order to prepare images of uniform size, each original 
sound clip has been sliced in sound blocks of tb=2 seconds 
using a time sliding window with ts=1 second slide and tb–ts=1 
second overlap. A smaller overlap has been tested with scarce 
results concerning accuracy. The 1-second overlap allows a 
faster training computation. 

The audio frequency has been cut to the human hearing 
range, i.e., from 20 to 20000 Hz. The range has been kept wide 
in order to include all the clatter sounds composing the crowd 
speech sound.  

The loudness of the whole sound blocks data set is then 
normalized on -23 LU, using the EBU R128 standard [19], 
which measures audio in Loudness Units, LU or LUFS 
(Loudness Units, referenced to Full Scale). 

The range of spectral magnitude of our dataset results in a 
[minimum, maximum] range of [-130,-22] dB, expressed as 
power/Hz. 

 

 

B. Generation of crowd-speech frequency/amplitude 

spectrograms  

Each sound block has been finally used to generate a 
spectrogram in the melodic (mel) perceptual scale of pitches 
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Figure 1: Heterogeneous Transfer Learning architecture flow. 
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[20] (see examples in Figure 2). The mel scale represents the 
sound pitch based on listener perception. A perceptual pitch 
of 1000 mel is assigned to a tone of 1000 Hz, 40 dB above the 
listener’s threshold.  

The mel spectrogram represents the short-term power 
spectrum of a sound, and transforms the input raw sound 
sequence into a bidimensional feature map where the x-axis 
represents time, the y-axis represents the frequency (log10 
scale), and the values represent amplitude. 

We generated magnitude spectrograms of size 257x259 for 
frequency and time, using the jet colormap of 64 colors, 
particularly suitable for our recognition goal, for the 
luminance of colors, which is not easily garbled. Then the 
spectrogram images have been downsized to 227x227 pixels, 
which are the input dimensions for the AlexNet CNN. 

During the spectrogram generation, a Hamming window 
has been applied, to smooth the discontinuities in the original, 
non-integer number of periods in the signal. With this 
technique, we hopefully avoid the recognition of non-existing 
elements due to ripples with strong luminance values in the 
mel spectrogram. [21] The Hamming window size is 400 
samples, with a frame increment of 4.5 milliseconds. 

As a final step, we balanced the classes, reducing the data 
set to have about the same number of images for each class, 
for a total of 678 spectrograms. Such reduction has been done 
deleting random blocks. 

Future directions will include experiments on unbalanced 
classes. 

 

 

C. Domain-specific training of the AlexNet CNN 

The featured crowd emotions analyzed in our experiments 
are joy, anger, and neutral, respectively corresponding to the 
three crowd emotions obtained by cheering, rioting, and 
neutral background noise in crowd events. The classes have 
been balanced in the amount of blocks. 

The visual transfer learning technique exploits the 

tremendous recognition capabilities of CNNs trained with 

huge data sets of images, i.e., in our case, the ImageNet 

database [22] using the AlexNet CNN, pre-trained on 

ImageNet. AlexNet has been chosen because particularly 

efficient in image recognition, but also because already used 

in speech emotion recognition, for comparison purposes. The 

basic idea is that the early layers of well-trained image 

recognition CNNs are somewhat all similar. [5] Early layers 

are specialized in recognizing image features of increasing 

complexity from pixels with high contrasting neighbors to 

edges, corners, to larger areas with color distributions and 

more complex shapes. According to this interpretation, only 

the final layers are operating some composition of the 

previous features, thus implementing the final categorization. 

The actual knowledge transfer is realized by starting with a 

CNN pre-trained by supervision on over a million of general 

images and a thousand categories, and by replacing the last 

layers with one or more new layers and focusing them 

towards the recognition of few different categories. The 

advantages are related to the speed of this process, faster than 

entirely training the CNN from scratch, and to the possibility 

to re-train the new categories with fewer image samples than 

the huge number of samples needed by the original network, 

or a new one. 

 

D. Crowd sound data set 

For the two preliminary experiments presented in this 

paper, we collected a data set of cheering, rioting, and neutral 

crowd sounds extracted from YouTube videos of different 

events and duration. The visual part of the video helped us to 

label the extracted sound clips correctly. 

We purposely avoided any clip which includes actors’ 

performances, in order to train the network only with true 

crowd sounds, to be realistic in their complexity. 

The chosen videos include: 

 Cheering (crowd shouting, big crowd clapping) for the 

Joy emotion category; 

 Rioting (crowd shouting, banging, clapping, police 

intervention) for the Anger emotion category; 

 Background noise (people chatting, laughing) in crowded 

events for Neutral emotion category.  

The different clips have been chosen to share several 

similar characteristics (e.g. noise, continuous or rhythmic 

sounds), in order to avoid a bias introduced by considering 

inherently different categories. The crowd sound data set is 

composed of 890 blocks in total from 18 original clips for the 

three categories, for a duration of 1711 seconds (see Table 1). 

 
Table 1: Per-class blocks number and duration, in seconds 

Class Different Clips  Blocks Total Duration (s) 

Joy 9 199 

Neutral 3 84 

Anger 6 1428 

Total 18 1711 

 

 

E. Experimental setup 

The experiments are divided into two approaches, both 

using the 80% of the sound blocks, i.e., spectrograms, for the 

fine-tuning of the CNN, and the remaining 20% for 

test/validation, in order also to prevent and detect overfitting. 

The first approach implements the training and test on 

sound blocks randomly extracted from the data set (see 

examples in Figure 2). This is a standard approach on images, 

also used in state-of-the-art works on speech emotion 

recognition. [4] Our consideration on this approach is that the 

accuracy of the results may be influenced by the fact that a 

random split will consider for training and test different blocks 

of the same sound clip, possibly including the same part of the 

clip, if pertaining to blocks generated through the sliding 

window from the same contiguous frames in the 1-second 

windows overlap. This approach is weak for overfitting 

detection, because we cannot prevent the algorithm to 

randomly extract the same overlapping frames shared by two 

different contiguous blocks, potentially used one for training 

and the other for testing. If not contiguous, two blocks from 

the same sound clip may include very similar characteristics 

(noise, rhythmic or continuous sound, e.g., clapping or 

screaming). 

Therefore, we implemented a second experimental 

approach splitting the training and test subsets, choosing 

different original files manually, i.e., selecting blocks from 

different sound clips.  



The network has been trained for six epochs, using a 

minibatch size of 10 images. Both the initial learning rate and 

the L2 regularization factor were set to 1*10-4. The model was 

tested on the validation data every three iterations; training 

images were shuffled at the beginning of each epoch, and 

validation images before each validation step. 

In both the experiments, results are evaluated using 

validation accuracy. [23] 

 

 

III. EXPERIMENTAL RESULTS 

Experiments using random train/test splitting show that 

the task can be handled effectively by the network; three 

training epochs are sufficient to achieve perfect accuracy, i.e., 

1, on the data set. No substantial improvement is obtained 

with more epochs, concerning to both training and validation 

error. On the other hand, after manually splitting the data set 

as described in section II.E, performances are only slightly 

lower, although more consistent, and free from overfitting. 

 

 

 

Figure 2: Randomly chosen examples of CNN classification. 

 

The final accuracy score, in this case, is 98.54%, and the 

training process reaches the optimum faster than the previous, 

i.e., at the beginning of the second epoch instead of the third. 

Premising that our experiment is not directly comparable 

to speech emotion recognition in [4], which analyzes a very 

different emotional sound domain, and uses different settings 

for the sound blocks generation, we can say that our 

experiments show a significant performance with respect to 

their 80% accuracy, even in the second experiment where we 

lower the performance gaining a better consistency. This 

result fosters to conclude that the transfer learning AlexNet-

CNN-based approach is suitable for the crowd emotional 

sounds domain. 

Future directions hint to compare the experiments using 

different spectrogram perceptual scales of pitches than the 

mel scale, e.g., log, bark, erb. Experiments can also be 

extended to other data sets, e.g., goal/no goal soccer matches 

cheering, more complex by itself, because the different 

crowds can mix up, e.g., the scoring team and the losing team 

supporters shouting and clattering together at the same time. 

In order to recognize goal/no goal actions, we should consider 

not only that supporters and opponents for the attacking team 

will indeed shout together at the same time, but also that both 

actions concluded with a goal and others leading to a fail 

share the same initial phase of cheering. Therefore, the 

relevant elements will be the final phase with the goal or fail, 

and the pattern of growing excitement, useful to identify such 

last phase. Therefore, the evolution of the action should be 

considered, instead of simply focusing on the separate sound 

blocks. Applying instead the actual algorithm to such a data 

set, collecting all the goal actions and some of the no goal 

actions of the final match Brazil-Germany of the World Cup 

2014 (finished with the result of 1-7), we obtain only around 

0.72 accuracy for the random approach and 0.53 accuracy for 

the manual approach. 

A final direction is to implement the approach on 

imbalanced classes, naturally inherent real-world 

applications, with the aim of developing a real-time 

emotional crowd sound recognizer. 
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