
Copyright © 2019 for this paper by its authors. Use permitted under Creative Commons License Attribu-

tion 4.0 International (CC BY 4.0).

In: P. Sosnin, V. Maklaev, E. Sosnina (eds.): Proceedings of the IS-2019 Conference, Ulyanovsk, Russia,

24-27 September 2019, published at http://ceur-ws.org

System of Architectural Views on Ontological
Maintenance

A. Kulikova, P. Sosnin

Ulyanovsk state technical university, Ulyanovsk, Russia
e-mail: a.push1206@gmail.com, sosnin@ulstu.ru

Abstract. The paper deals with the use of the design thinking approach when
creating architectural views which consider motivation and the main goals set
for the design phase of the software intensive system (SIS) development. In this
case, any architectural view is formed with the help of the system of conceptual
equations, which can be solved via the abductive reasoning carried out by a de-
signer. In terms of automated design thinking, such reasoning helps to define
constructive relations among motives, goals, and requirements integrated into
the corresponding view. For all the views included in an architectural descrip-
tion, such relations are useful to combine, visualize and interpret as motivation-
ally targeted views demonstrating which architectural decisions match the
intended goals.

Keywords: Architectural Modeling, Design Thinking, Software Intensive Sys-
tem, Viewpoint.

1 Introduction

Professionally mature development of a modern SIS is unthinkable without the man-
datory construction and the operational use of an architecture description (AD). This
artifact is a conceptual version of a SIS reflecting its understanding as integrity, which
is demanded by stakeholders at all the stages of the SIS lifecycle. Being a sample of
verified structures and embedded understanding, the AD plays an executive role
providing correspondence between this sample and the current state of the SIS in the
design process. It should also be highlighted that this version is the first (the earliest)
representation of a SIS as integrity and can be tested to detect dangerous semantic
errors.

The abovementioned advantages of using ADs were the reasons for accumulating
the experience of architectural modeling intensively that was generalized in several
standards; ISO/IEC/IEEE 42010: 2011 is among them. This standard assumes that an
AD is the system S({Vj}) of “architectural views” {Vj} which are built based on cor-
responding “viewpoints” {VPk}. Each viewpoint specifies “the conventions (such as

33

notations, languages, and types of models) for constructing a certain kind of view.
That viewpoint can be applied to many systems. Each view is one such application”
[1].

Thus, any viewpoint can be interpreted as a certain guide with necessary means
that help to build the corresponding view or a set of views, any of which expresses a
certain interest (concern Ci) in a visualized form that is understandable for a certain
stakeholder involved in the corresponding project. Therefore, any new viewpoint is an
artifact that should be developed, starting with the decision to take into account some
important concern (or a set of concerns), the viewpoint for which is absent or must be
modified.

In this paper, we offer an architectural approach applied in the ontological mainte-
nance toolkit. The toolkit can be used when developing a certain SIS which’s lifecy-
cle begins with vague intentions. In this case, firstly, the developers must understand
the work beforehand, presenting it as integrity, i.e. as a task that needs to be solved.

The remainder of the paper is structured as follows. The features of design thinking
in the considered version of architectural modeling are presented in Section 2. Section
3 points out related works. The approach in the offered viewpoint is described in Sec-
tion 4. In Section 5, we present the example of a motivationally targeted view, and the
paper is concluded in Section 6.

2 Related works

The standard ISO/IEC/IEEE 42010: 2011 envisages that any “concern” may be
architecturally described with a coordinated group of useful “points of view” and
corresponding “views”. For example, the authors of [2] recommend considering such
a construct as “architectural decision” by using the Decision Detail viewpoint, Deci-
sion Relationship viewpoint, Decision Chronology viewpoint, and Decision Stake-
holder Involvement. Moreover, the same authors in the following publication [3] pro-
posed to expand the given set including the Decision Forces Viewpoint in it as well.

Another trick is given in the publication [4], where its authors suggest associating
the following concerns with the “Context Description Viewpoint” of the developed
SIS:

1. “System Scope: Where is the boundary between the system and its context, and
what interactions between the system and its context cross this boundary?

2. System Users: Who are the users of the system; what are their types, roles, and
characteristics; and how and where do they access and use the system?

3. External Dependencies: Which external services and/or applications are relevant
for the system, including their properties and providers?

4. Execution Environment: What is the expected or desired technical execution envi-
ronment that the system will be running on?

5. Stakeholder Impact: Which stakeholders, including organizations and their re-
sources, influence the system, and in what way? What influence does the system
have on organizations and stakeholders?”

34

Another means of accounting and materializing “concerns” is their specifications,
i.e. the distribution of a set of types and the integration of a set of (distributed) con-
stituent concerns within the framework of “architectural types”. Thus, they associate
an “aspect-oriented” representation and the materialization of concerns [5].

The real practice of architectural decisions is discussed in the industrial case study
published in [6]. The current retrospection view on the theory and practice of archi-
tectural descriptions is presented in the paper [7]

As far as our version of the architectural approach to the ontological maintenance
of solving project tasks is concerned, one more group of related works should be con-
sidered. These works include papers on the subject area of ontologies. In this group,
we highlight the paper [8] which focuses on developing software systems in the con-
text of ontological problems. The paper [9], where a project ontology is applied for
the architectural recommendations support, the paper [10] investigating the use of
fuzzy measures in selecting architecture tactics and the paper [11] describing maturity
modeling in specifications of the architecture maintainability should also be consid-
ered.

3 Ontological support application

The application allows processing short text units (i.e. discourses) related to a certain
software project with the help of a project ontology.

Processing a discourse is a unit of ontological support for the project. We consider
a discourse to be a short text consisting of 2-3 sentences which is a reasoning unit
concerning the project. The text may include the requirements to the system or its
specifications; in a particular case, it may also be the project general task statement.

The application is integrated into the instrumental environment OwnWIQA with
the help of pseudo coding tools.

3.1 Application structure

At the moment, the application has the following structure (see Figure 1). Various
interface forms are marked with blue circles; functional and auxiliary modules (files,
external applications, etc. used by our application) are marked with yellow circles.

Each interface form is designed with the help of the prototyping tools of the
OwnWIQA instrumental environment which allow adding some simple, functional
units to the form, such as:

 buttons (with the ability to link it to a pseudocode procedure);
 text fields (the text can be written to the variable and used by a pseudocode proce-

dure);
 other graphic elements.

Moving from one interface form to another is implemented with the help of buttons
which call the following pseudocode procedure:

35

DD_Load(“diagram_file_path”) // open the interface form from a file
DD_LoadEvents(“events_file_path”) // load events linked to the units of the form
FINISH

Figure 1. Ontological Support Tool Structure

Let us know describe the functionality of the interface forms and modules one by one.

3.2 Architectural views

The Architectural Views interface form (see Figure 2) shows all the possible views on
a discourse being processed. It can be a text saved in a file or the question-and-answer
memory of the WIQA environment. It can be a list of ontological concepts found in

36

the discourse. It can be a semantic scheme built in the graphic editor of the WIQA
environment and so on.

Figure 2. Architectural views

Table 1 shows the actions performed by a double click on each icon (we will use such
a table structure for all the interface forms described further).

Table 1. Architectural views

Interface element (icon) Action on element

Base view Move to the “Base view” interface form.

QA-view

Open the project linked to the current discourse. If the project has
not yet been linked to the current discourse, show a window with
the message “Please, link the discourse to a project first” and two
buttons (“Link to Project” and “Cancel”).

File view Open a text file containing changelog of the current discourse.

Lists Move to the “Lists” interface form.

Ontology entries Open project ontology.

The changelog file mentioned in the “File view” element has the following meaning:
each time the text of a discourse changes, one should add the changes to the
changelog file; if there are any changes in the text of discourse, one should add the
following record at the end of the file: “[HH:MM DD.MM.YYYY] [Text of dis-
course]”.

3.3 Base view

The Base View form can be considered to be the main form which a designer deals
with. It shows the current version of the discourse as well as all the important concep-
tual items related to it. At the bottom of the form, one can see all the instruments and
additional modules used during the ontological support activity.

37

Figure 3. Base view

Table 2. Base view

Interface element (icon) Action on element

Save Save the text of the current discourse to the changelog file.

Back Move to the “Architectural views” interface form.

Designer Show the description of the required designer skills.

Activity
Move to one of the Activity interface forms according to the
workflow.

Artifact Open a text file containing changelog of the current discourse.

Task statement Move to the “Task statement” interface form.

Techniques
Open a text file describing possible techniques to process a dis-
course.

Checkpoints Move to the “Checkpoints” interface form.

Project ontology Open the Ontology module in the OwnWIQA environment.

Program agents Move to the “Program agents” interface form.

Language processing
tools

Move to the “Language processing tools” interface form.

Dictionaries Move to the “Dictionaries” interface form.

Pseudocode programs Move to the “Pseudocode programs” interface form.

38

3.4 Task statement

The next interface form plays a substantiating and theoretical role. It describes the
task statement, which was used to develop the ontological support toolset (see Figure
4).

Figure 4. Task statement

Table 3. Task statement

Interface element (icon) Action on element

Back Move to the “Base view” interface form.

3.5 Software agents

Our toolkit includes some activities which can be fully automated. So, we decided to
use software agents for that purpose. The agents perform such activities as splitting a
text into wordforms, normalizing them, retrieving collocations, filtering out stop-
words, discovering pairs of semantically related text fragments and others. When
clicking on each icon, a designer can launch the corresponding agent which will im-
mediately start processing the current discourse and print the result.

Agents are also used during the main workflow and, in that case, are launched au-
tomatically as soon as there are data to process. The interface form in Figure 5 allows
launching each software agent manually for demonstration purposes.

39

Figure 5. Program agents

Table 4. Program agents

Interface element (icon) Action on element

Back Move to the “Base view” interface form.

Split into wordforms
Launch the agent which processes a text and splits it into word-
forms. The agent is implemented in C#.

Normalize
Launch the agent which processes wordforms and normalizes
them (brings them to their original form). The agent is
implemented in C#.

Reveal collocations
Launch the agent which processes a text and reveals collocations
in it. The agent is implemented in C#.

Filter
Launch the agent which processes normalized wordforms and
filters them out with the help of a stop-word list. The agent is
implemented in C#.

Reveal part-whole
relations

Launch the agent which processes a text and reveals phrase pairs
in it linked by a part-whole relation. The agent is implemented in
C#.

Reveal casual relations
Launch the agent which processes a text and reveals phrase pairs
in it linked by a causal relation. The agent is implemented in C#.

3.6 Language processing tools

Language processing tools are external auxiliary programs integrated into the onto-
logical support toolset to raise the efficiency of text processing.

We use part-of-speech taggers and parsers for the Russian and the English lan-
guages to extract linguistic information from a text and use it for our purposes.

40

The corresponding interface form is available in Figure 6.

Figure 6. Language processing tools

Table 5. Language processing tools

Interface element (icon) Action on element

Back Move to the “Base view” interface form.

POS-tagger for the Rus-
sian language Yandex
Mystem

The tool splits the text in Russian into wordforms and normalizes
them. It also has the functionality to reveal the part of speech of
each wordform if needed and print the result in various formats
(for details see [12]).

Stanford POS Tagger for
the English language

The tool splits the text in English into wordforms and normalizes
them. It also has the functionality to reveal the part of speech for
each wordform if needed and print the result in various formats
(for details see [13]).

Stanford Parser for the
English language

The tool reveals syntactical relations from a text (for details see
[14]).

3.7 Dictionaries

The next interface forms were designed to demonstrate all the auxiliary dictionaries
that the ontological support tool uses. Since our application allows processing texts
both in English and in Russian, first of all, a user has to choose the language (see
Figure 7).

41

Figure 7. Dictionaries

Table 6. Dictionaries

Interface element (icon) Action on element

Back Move to the “Base view” interface form.

Russian Move to the “Russian Dictionaries” interface form.

English Move to the “English Dictionaries” interface form.

For each language, we have three types of dictionaries: stop-word dictionaries, term
dictionaries (can be optionally added by a user if he/she is working with some specific
domain) and tag dictionaries (used for retrieving semantic relations). The interface
form showing dictionary types for the English language is presented in Figure 8.

Figure 8. English dictionaries

Table 7. Dictionaries

Interface element (icon) Action on element

Back Move to the “Dictionaries” interface form.

Stop-word dictionary Open the file with English stop-words.

42

Tag dictionaries Move to the “Tags dictionaries” interface form.

Term dictionaries Open the window to connect term dictionaries if needed.

We designed a separate interface form for tag dictionaries so that a user could check
which tags the tool uses to retrieve semantic relations from a text and add or remove
some of them if needed. Tags are such words or collocations that signalize and high-
light if there are relations of a certain type in the current phrase.

At the moment, the tool can retrieve two types of semantic relations: part-whole
and casual ones because they are most useful for building prototypes. Corresponding-
ly, four types of tags are available in the form (see Figure 9).

Figure 9. Tags dictionaries

Table 8. Tags dictionaries

Interface element (icon) Action on element

Back
Move to the “English dictionaries” or “Russian dictionaries”
interface form depending on the logic.

Cause tags Open a text file containing the cause tag list.

Effect tags Open a text file containing the effect tag list.

Part tags Open a text file containing the part tag list.

Whole tags Open a text file containing the whole tag list.

3.8 Pseudocode programs

Along with the modules in C#, we use separate procedures and functions developed
with the help of the pseudocode programming module of the OwnWIQA instrumental

43

environment. This helps to make our toolset more flexible since any pseudocode pro-
cedure can be integrated into the tool without changing its architecture.

Furthermore, pseudocode programs have simple syntax and can easily be under-
stood by any person, which also makes the work of the toolset more transparent.

Figure 10. Pseudocode programs

Table 9. Pseudocode programs

Interface element (icon) Action on element

Back Move to the “Base view” interface form.

Create a dictionary
Execute the pseudocode procedure which creates a new diction-
ary in the ontology module with a name provided by the user.

Create a group
Execute the pseudocode procedure, which creates a new group in
the project dictionary with a name provided by the user.

Add concept
Execute the pseudocode procedure, which adds a new concept to
the group selected by the user.

Add relation
Execute the pseudocode procedure which adds a new relation
between 2 concepts selected by the user. The type of the relation
is also specified by the user.

Find concept in the ontol-
ogy

Execute the pseudocode procedure, which checks if the current
concept has already been added to the project ontology.

Reveal related concepts
Execute the pseudocode procedure, which checks if two selected
concepts have a semantic relation between them added to the
project ontology.

Transfer to Prolog-like
form

Execute the pseudocode procedure, which transfers the desired
set of related concept pairs to the Prolog-like form which can be

44

used for automated building semantic schemes [15].

3.9 Lists

At various stages of processing a discourse, different lists are created. Lists are usual-
ly the results of the software agents’ work, i.e. they can be used both as the input and
the output data of these agents. Figure 11 shows all the possible lists a user can deal
with.

Figure 11. Lists

Table 10. Lists

Interface element (icon) Action on element

Back Move to the “Architectural view” interface form.

Wordform list
Open a list in a text file. The list contains all the wordforms of
the current discourse.

Normalized wordform list
Open a list in a text file. The list contains all the wordforms of
the current discourse in their initial form.

Collocation list
Open a list in a text file. The list contains all the collocations of
the current discourse (retrieved with the help of a set of rules).

Potential concept list
Open a list in a text file. The list contains all the word and collo-
cations of the current discourse, which can be considered to be
concepts and can be potentially added to the project ontology.

Part-whole relation list
Open a list in a text file. The list contains pairs of phrases of the
current discourse linked by a part-whole relation.

Casual relation list Open a list in a text file. The list contains pairs of phrases of the

45

current discourse linked by a causal relation.

3.10 Activity

This subsection describes the workflow that a user of the ontological support tool has
to undergo to process one discourse.

Checkpoints. While being processed, a discourse can often be edited and corrected
(if any errors are revealed). Thus, it is important for a user to have an opportunity to
track all the changes in the discourse and revert to one of its previous versions if
needed.

Figure 12. Checkpoints

The interface form in Figure 12 shows all the eight steps a user has to undergo one
by one when working with a discourse. Apart from that, at any phase he/she can easi-
ly go back to the previous one.

The form also shows the status of each phase which can have three states:
 to do (if a user has not started working on it yet);
 in progress;
 done.

Double click on each phase icon starts a corresponding activity. Each activity will
be described further.

Establish a link to the project. While a project is being designed, its language is
being constructed. This language is unique for each project. Moreover, the project
language is changing from phase to phase and requires to be registered. To register
the project language, we use a separate dictionary in the ontology module of the
OwnWIQA environment. The dictionary is constructed in the form of ontology and

46

allows storing concepts related to the current project, their definitions as well as dif-
ferent types of semantic relations between them.

So, the first step of processing a discourse is to establish a link between the dis-
course and the project it relates to, i.e., choose the corresponding dictionary in the
ontology module (Figure 13 shows the interface form designed for that purpose). If it
is the first discourse a user deals with within the current project, a new dictionary has
to be created. From this point on, all the changes made in the discourse will be stored
in this dictionary. Otherwise, a corresponding dictionary has to be selected

At this phase (as well as at all the further ones) a user can make any changes in the
text of discourse and see the changelog if needed.

After establishing a link to a project, one can click “Next” and move to the next
phase or click “Back” and move back to the checkpoints.

Figure 13. Establish a link to the project

Specify and track concerns. When working on a project a designer may need to
track some quality indicators (for example, understandability, testability, flexibility,
and others), i.e. concerns or requirements of the main project stakeholders. Each con-
cern can have its membership function which shows how its quality lever changes at
different project design phases.

Our tool allows tracking these concerns and saving them in a separate group of the
project ontology. The principles of this activity, as well as some examples, are given
in paper [16].

47

Figure 14. Specify and track concerns

Create group. When we start working with a new discourse, we need to create a
separate group in the project ontology where all the concepts related to this discourse
will be stored. Figure 15 shows the interface form, which allows creating a new group
in the ontology or make some changes in the text of discourse if needed.

Figure 15. Create a group

Reveal potential concepts. This phase is one of the most important activities in the
ontological support process. Let us consider what has to be done at each subphase:

48

1) Split the text into wordforms. Double-click on this icon launches the soft-
ware agent which splits the text into wordforms by spaces and punctuation
marks.

2) Normalize wordforms. Double-click on this icon launches the software agent
which gets the initial form of each word (for example, “projects” become
“project,” “had” becomes “have,” etc.).

3) Filter out stopwords. Double-click on this icon launches the software agent
which removes stopwords (i.e., words that do not have any significant se-
mantic meaning) from the list of normalized wordforms.

4) Reveal collocations. Double-click on this icon launches the software agent
which uses a rule-based approach and syntactic models to get all the possible
collocations from the text. This subphase was added to the tool because a po-
tential concept can be not only a word but also a collocation.

5) Get a list of potential concepts. Uses the result of the subphases 3.3 and 3.4
as well as additional term dictionaries (if any are linked to the project) to
form a list of words and collocations that could be included in the project on-
tology.

Figure 16. Reveal potential concepts

Reveal potential relations. The next phase is to reveal possible relations between the
concepts presented in the text. In the current toolkit version, we reveal part-whole
relations and casual relations since they are most useful to build semantic prototypes.

The algorithm of revealing semantic relations is based on tags which “highlight”
relations of a certain type in the text.

After the relations are revealed, lists of related phrases are matched with the list of
potential concepts got at the previous phase – as a result, we get a list of related con-
cepts.

49

Figure 17. Reveal potential relations

Match discourse with ontology. At this phase, all the concepts revealed form the text
of discourse are matched with the project ontology. If the project ontology already
contains any of them, all the information related to these concepts (definitions, related
concepts, etc.) is retrieved from the ontology and shown to the user, so that he/she
could correct possible mistakes and inaccuracies.

Figure 18. Match discourse with ontology

Refill project ontology. Finally, new information should be added to the project on-
tology. This can be done either manually or with the help of the lists of potential con-
cepts and relations created at previous phases.

50

Figure 19. Refill project ontology

4 Conclusion

Creating and using architectural models is the key factor in the successful develop-
ment of modern SISs. Such models register the necessary understanding, reflecting
corresponding essences as integrity, which is especially important for architectural
views combining semantized graphics with necessary symbolic descriptions written in
the project language.

In the offered approach, a designer can develop any view in the process of solving
an architectural task with the use of automated design thinking, means of which are
embedded into the WIQA toolkit. Among these means, the specialized graphical edi-
tor plays a very important role. This editor helps to detailed visualized structures that
express not only separate views but also their programmed compositions.

We apply this approach to improve the existed version of the ontological mainte-
nance (OM) embedded into the WIQA toolkit. The current version of the OM is im-
plemented in the prototype form, graphical elements of which are created by means of
the graphic editor with indexed references when it is necessary. In other words, func-
tions of the OM are accessible to a designer via interfaces any of which is the proto-
type version of the corresponding architectural view on the OM.

References

1. Standard ISO / IEC / IEEE 42010: 2011, Available at
https://www.iso.org/standard/50508.html

2. Sosnin, P.: Experience-Based Human-Computer Interactions: Emerging Research and
Opportunities, IGI-Global, (2017).

51

3. Sosnin, P.: Substantially Evolutionary Theorizing in Designing Software-Intensive Sys-
tems, Information Vol. 9(4), 1-29 (2018).

4. Dorst, K.: The Nature of Design Thinking, in DTRS8 Interpreting Design Thinking, In
Proceeding of Design Thinking Research Symposium, pp. 131–139, (2010).

5. Bedjeti, A.; Lago, P.; Lewis, G. A.; Boer, R. D. D.; Hilliard, R.2017. Modeling Context
with an Architecture Viewpoint, In Proceeding of IEEE International Conference on Soft-
ware Architecture (ICSA), pp. 117-120, 2017.

6. Van Heesch, U.; Avgeriou, P.; Hilliard, R.: 2012. Forces on Architecture Decisions - A
Viewpoint. In Proceedings of the 2012 Joint Working IEEE/IFIP Conference on Software
Architecture and European Conference on Software Architecture, IEEE Computer Society,
Washington, DC, USA, pp. 101-110, 2012

7. Van Heesch, U.; Avgeriou, P.; Hilliard, R.: 2012. A documentation framework for archi-
tecture decisions. J. Syst. Softw. Vol. 85(4), pp. 795-820, 2012.

8. Hilliard, R.: 2007. Using Aspects in Architectural Description, Lecture Notes in Computer
Science, Vol. 4765, pp. 65-68, 2007.

9. Dasanayake, S.; Markkula, J.; Aaramaa, S.; Oivo, M.: 2015. Software Architecture Deci-
sion-Making Practices and Challenges: An Industrial Case Study, In Proc. of 24th Aus-
tralasian Software Engineering Conference, 2015, pp. 88-97.

10. Hasselbring, W.: 2018. Software Architecture: Past, Present, Future, The Essence of Soft-
ware Engineering, Springer, pp. 168-184

11. Eden, A. H., Turner, R.P: Problems in the Ontology of Computer Programs (Applied On-
tology, vol 2 1, Amsterdam, IOS Press), pp. 13–36, (2007).

12. Ilya Segalovich. A fast morphological algorithm with unknown word guessing induced by
a dictionary for a web search engine. URL: https://cache-
nnov05.cdn.yandex.net/download.yandex.ru/company/iseg-las-vegas.pdf.

13. Kristina Toutanova, Dan Klein, Christopher Manning, and Yoram Singer. 2003. Feature-
Rich Part-of-Speech Tagging with a Cyclic Dependency Network. In Proceedings of HLT-
NAACL 2003, pp. 252-259.

14. Marie-Catherine de Marneffe, Bill MacCartney and Christopher D. Manning. 2006. Gen-
erating Typed Dependency Parses from Phrase Structure Parses. In LREC 2006.

15. Sosnin, P.; Galochkin, M. Way of Coordination of Visual Modeling and Mental Imagery
in Conceptual Solution of Project Task. In Advances in Artificial Intelligence: From Theo-
ry to Practice; Lecture Notes in Computer Science; Springer: Cham, Switzerland,, 2017;
Volume 10350, pp. 635–638.

16. Ontology-Based Specifications of Concerns in Architectural Modeling of a Software In-
tensive System. 2018 26th Telecommunications Forum (TELFOR). Proceedings of Papers.
Belgrade, Serbia, November, 20-21, 2018. – p. 843-845.

 This work was supported by the Russian Fund for Basic Research (RFBR), Grant #18-
07-00989а, Grant # 18-47-73001r-a, and the State Contract №2.1534.2017/4.6

