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Abstract. DNA secondary structures are important functional elements that 
may influence cellular processes. One of their possible functions is regulation 
of nucleosome positioning. Here MNAse-seq and ssDNA-seq data were used to 
define patterns of positional relationship of DNA structures such as Z-DNA, H-
DNA and G-quadruplexes with nucleosomes. Three types of patterns were 
found: a structure is surrounded by nucleosomes from both sides, from one side, 
or nucleosome free region. Machine-learning models based on Random forest 
algorithm and XGBoost were trained to recognize DNA region of 500 bp length 
containing a pattern of nucleosome positioning for three types of DNA struc-
tures (Z-DNA, H-DNA and G-quadruplexes) based on DNA sequence composi-
tional properties. The best performance (more than 86% for ROC-AUC, accu-
racy, recall and presicion scores) was reached for G-quadruplexes. 500 bp re-
gions containing G-quadruplexes have distinct compositional properties and 
point to the preferential locations of the defined patterns,  which regulatory 
functions require further investigation. For other DNA structures a region com-
position is less powerful predictive factor and one should take into account oth-
er physical and structural DNA properties to improve nucleosome-DNA-
structure pattern recognition. 

Keywords: DNA structures, nucleosome positioning, machine-learning meth-
ods, random forest, xgboost 

1 Introduction 

Machine learning is widely applied to problems in genomic research1. Computational 
methods successfully annotate genomes with functional elements, such as transcrip-
tion start sites [1], splice-sites [2], alternative splicing [3], promoters, enhancers [4]. 
Recent advancements in computational performance enable to predict nucleosome 
positioning using models based on neural networks [5]. However, it remains a chal-
lenging task to detect non-B-DNA structures and determine their function with ma-
chine learning algorithms due to the absence of experimentally confirmed genome-
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wide data on many types of structures. As a result, patterns of DNA structures and 
their positioning with respect to other elements are hard to detect as well.  Despite the 
limitation,  non-B-DNA structures might influence chromatin reorganization by gov-
erning nucleosome positioning, thus, regulating transcription that makes pattern 
recognition of DNA structures and nucleosomes positioning an important task. 

A model of right-handed double helix DNA molecule known as B-DNA was first 
proposed in [6]. Although B-DNA conformation is widely spread and is considered as 
canonical, more than ten types of DNA secondary structures are discovered: A-DNA, 
Z-DNA, H-DHA, V-DNA, stem-loops, G-quadruplexes, i-motif, buldge-DNA, etc 
[7]. Due to the scarcity of experimental data, the research is focused on three types of 
DNA structures: Z-DNA, H-DNA, and G-quadruplexes. 

To begin with, left-handed double helix called Z-DNA is among the most studied 
DNA conformation and found both in vitro [8] and in vivo [9]. Z-DNA has the poten-
tial to be involved in transcription. It was shown [9] that three regions near the pro-
moter of gene C-MYC have adopted Z-DNA conformation while the gene was active-
ly transcribed. As for the in silico detecton, Z-Hunt algorithm is mainly used to de-
scribe genomic region’s potential to form a left-handed helix. 

The next structure of interest is H-DNA. Triple helix consists of a usual double he-
lix, which is connected to separate single DNA strand either from its part or from 
another molecule [10]. The existence in vitro [11] was confirmed a short while after 
Watson and Crick discovery while in vivo proofs were found later [12]. Researches 
point out H-DNA involvement in replication, transcription reparation and homolo-
gous recombination [13]. For example, the study implies H-DNA acts as a barrier for 
replication [14]. The detection of H-DNA motives is based on the primary sequence 
content: algorithms search for inverted repeats. 

As for G-quadruplexes, they also exist both in vitro [15] and in vivo [16]. In silico 
detection uses particular motif composition to classify a region as G-quadruplex 
adopting [17]. The biological function of G-quadruplexes is actively investigated. 
Recent studies highlight G-quadruplexes regulate transcription and replication [18]. In 
contrast to the absence of genome-wide data on other secondary structures, a tech-
nique called G4-seq is developed which maps genomic regions in G-quadruplex con-
formation. 

DNA molecules are compactly packed in the cells and are organized into chroma-
tin. Double-stranded DNA wraps around histone proteins forming nucleosomes [19]. 
When a nucleosome is formed,  the underlying DNA region is inactive, it cannot be 
transcribed as transcription factors cannot bind DNA. Nucleosomes positioning is 
influenced by many factors: DNA sequence itself, histone modifications, remodeling 
complexes, transcription, replication. 

As stated above, secondary DNA structures may influence transcription in cells by 
regulating nucleosome positioning. It was experimentally confirmed the only B-DNA 
can wrap around nucleosome which makes impossible for non-B-DNAs to bind his-
tones [20]. There is an evidence that Z-DNA and H-DNA govern nucleosome posi-
tioning acting as a barrier [21] while G-quadruplexes are formed in nucleosome-free 
regions [22]. 
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Machine learning methods are applied to determine nucleosomal profiles. The 
availability of genome-wide data on nucleosome positioning has led to the develop-
ment of different models. The first papers in this field use simple techniques of statis-
tical analysis to calculate the probability of nucleosome formation [23] with perfor-
mance quality of 50%. Later studies describe nucleosome positioning as machine 
learning classification task and apply SVM and Random Forest algorithms, achieving 
the prediction power more than 80%. Recent studies focus on convolutional neural 
networks [5], which achieve accuracy, precision, and recall of more than 90%. 

Classical machine learning approach supposes the sample to be described with fea-
tures. The DNA sequence consists of only 4  units known as bases: A, C, G, T. Due to 
the specific nature of a sample in genomic studies, a region of  DNA sequence is con-
sidered as a string and methods of feature extraction similar to a text analysis are ap-
plied. One of the simplest and effective strategies is to examine k-tuple nucleotide 
composition where k usually varies from 1 to 6. Another powerful approach is to 
describe DNA sequence with physical and chemical properties of base pairs which are 
presented in the publicly available databases. K-neighbors characteristics are used as 
features as well. 

The literature analysis reveals several facts which are important for this paper. 
First, high-throughput techniques are developed only for G-quadruplexes, so data is 
available only for this type of structure, for other types of DNA structures computa-
tional methods are needed. Second, non-B-DNA structures are involved in the main 
cell processes like transcription and replication. What is more important, they prevent 
forming nucleosomes. Third, machine learning methods are used to define nucleoso-
mal profiles. 

To our knowledge, machine learning algorithms are trained to detect either nucleo-
somes or secondary DNA structures. This paper aims to recognize patterns of DNA 
structures and nucleosomes positioning. The results may lead to better understanding 
of chromatin remodeling mechanisms and how transcription is regulated by non-B-
DNA.  
 

2 Methods 

2.1 Genome Computational Annotation 

To analyze patterns of DNA secondary structures and nucleosome positioning the 
data on mouse genome is used. The mm9 version of genome is available at UCSC 
Genome Browser [24].The genome is annotated with three types of structures: Z-
DNA, H-DNA and Q-quadruplexes. The table below represents the software used for 
each type of structures. 

Table 1.  

Structure Software 
Z-DNA Z-Hunt [25] 
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H-DNA Inverted Repeats Finder [26] 
Q-quadruplexes QuadParser [17] 

 

2.2 Genome In Vivo Annotation 

In vivo detection of secondary structures is a challenging task. However, the study 
presents [27] the design of ss-DNA-seq experiment on mouse B-cells to obtain ge-
nome-wide locations of DNA secondary structures. The data is available at Laborato-
ry’s Research Page [28]. The reads are aligned to mouse genome with Bowtie soft-
ware, version 0.12.7 [29]. 

Then both computational annotations and in vivo detected structures are intersected 
to define non-putative motives of DNA secondary structures. The intersection is done 
with Bedtools [30] software of version 2.27.1. 

2.3 Nucleosome Data 

The nucleosome positioning profile is the result of MNAse-seq on mouse B-cells data 
analysis provided by the study [27]. All the details are described in the paper’s meth-
ods while the data is available at NCBI under the SRA identifier SRA072844. The 
data is preprocessed according to Illumina Analysis pipeline. The reads are aligned to 
the mouse genome with Bowtie software, version 0.12.7. 

After the alignment each read is lengthened up to 146 base pairs in 3’ direction and 
is considered as a nucleosome forming region in the particular cell line. 

2.4 Patterns of DNA structures and nucleosomes 

The region of interest is a sequence of 500 bp length centered on the secondary struc-
ture. For that region the coverage with MNAse preprocessed data is calculated to 
discover the coverage density. The average coverage of the genome is computed 
based on randomly selected 200 000 regions. Any region of interest, which is covered 
by more than the average coverage, is further inspected for the type of pattern. The 
average coverage is compared with t-test. Regions, which fail the test, are considered 
as nucleosome-free (pattern 0). 

The region of interest is split into three parts: the center (DNA secondary struc-
ture), the right side (250 bp), the left side (250 pb). The maximum coverages within 
each part are compared with each other. If all of them have close values, then the 
region is classified as nucleosome-free (pattern 0). If the peaks on both right and left 
sides are higher than that in the center, then the structure is surrounded by two nucle-
osomes (pattern 1). Following the same procedure, the pattern with a nucleosome on 
one side is defined (pattern 2). For the simplicity reason pattern 1 and pattern 2 are 
merged into one category. 
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2.5 Machine Learning Task 

Let x be the sample representing a region of interest – a sequence of 500 bp length 
centered on a secondary structure. Let y be the pattern which the region is associated 
with and let y be considered as the class of the sample. The aim is to train a classifier 
which can predict the pattern of any particular region. In other words, the model de-
fines the type of pattern of the region.  

2.6 Feature extraction 

It is a common problem to express a genomic region via feature vectors which can be 
handled by classical machine learning algorithms. As for the task in this paper, the 
sample represents a string of length of around 530 letters as the genome sequence 
consists of 4 elements: A, C, G, T.  K-tuple nucleotide composition with k equal to 2 
and 3 is used as the feature extraction strategy. In other words, each sequence is de-
scribed with 80 features:  16 for the quantity of a particular dinucleotide and 64 for 
the triplets. One feature as GC-content is added to the dataset.   
 

2.7 Machine Learning Algorithms 

Two algorithms are used for the classification task: Random Forest [31] and XGBoost 
[32]. For both algorithms the following is true: the dataset is split into the training set 
and the test set in the proportion of 70-30% . The training set is used to validate algo-
rithms with the 5-fold cross validation strategy. Different parameters are tested with 
randomized search strategy.  

Random Forest Classifier 
Algorithm available in the scikit-learn library [33] of version 0.20.01 was used in 

this study for the classification task. To find the best model, the number of trees is 
varied from 10 to 100. 

XGBoost 
Open-source library [32] for Python is used with parameters varied: 

• 𝜆 from 0 to 1 with the step 0.1 
• 𝜃 from 0 to 1 with the step 0.1 
• 𝜂 from 0 to 0.5 with the step 0.25 

2.8 Model evaluation 

A set of quality measures are used to evaluate models: 

• Accuracy 
• Recall 
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• Precision 
• ROC-AUC 

During the algorithms’ optimization ROC-AUC score was used as the scoring 
function. 

3 Results and Discussion 

The investigation of the role of DNA secondary structures  on nucleosome positioning  
and pattern search requires data on structures and nucleosome maps. The computa-
tional annotations of the mouse genome with DNA secondary structures were com-
bined with ssDNA-seq data on B-cells. As it can be seen from table, it results in many 
putative motives of non-B-DNA (Table 2). The results are not surprising because the 
formation of alternative structure requires a set of conditions, wereas some genomic 
regions can be tightly packed.  

Table 2. Results of computer annotations of the mouse genome with DNA secondary structures 
and enrichment with ssDNA-seq data. 

Heading level Z-DNA H-DNA G-quadruplexes 
Nu of computer 
predicted structures 

249 752 320 585 263 167 

Nu of predicted 
structures enriched  
in ssDNA 

25 062 (10%) 17 109 (5.3%) 20 259 (7.7%) 

 
Then the motives enriched with ssDNA-seq data are determined that are used to find 
patterns of association with nucleosomes. The analysis of 500 bp regions centered on 
a DNA secondary structure determined based on MNAse-seq data together with ssD-
NA-seq reveals three types of patterns: 

1) The region is nucleosome free (pattern 0) 
2) The structure is surrounded by one side with nucleosome (pattern 1) 
3) The structure is surrounded by both sides (pattern 2)  

The patterns are illustrated on fig.1. 
 

   
      A        B        C 
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Fig. 1. Three types of patterns: A) nucleosome-free B) structure surrounded with one nucleo-
some C) structure surrounded by two nucleosomes  

The most important observation is that nucleosome is never located on a structure 
in actively transcribed cells. The biological hypothesis is that the pattern 1 and the 
pattern 2 are involved in regulation processes. Secondary structures may act as barri-
ers preventing nucleosome formation or blocking nucleosome movement. Evidences 
of that kind of behavior are reported in the literature. For example, the chromatin 
remodeling complex freed DNA from histone proteins and left the DNA in the condi-
tion which favor Z-DNA structure [9]. 

For the reason of simplicity, the pattern 1 and the pattern 2 are united into one 
which is further designated as the class 1, while nucleosome free regions are denoted 
as class 0. 

The distribution of classes among different types of structures is shown in table 3. 
 

Table 3. Distribution of Classes 

Heading level Z-DNA H-DNA G-quadruplexes 
Nucleosome Free 
Region (Class 0) 

12 889 (51%) 9 816 (57%) 13 173(65%) 

Nucleosome From 
One Side or From 
Two Sides (Class 1) 

12 173 (49%) 7 293 (43%)  7 086(35%) 

 
The aim of a machine learning application for this task is to distinguish  genomic 

regions with DNA secondary structures with regulation pattern from non-regulative 
structures. For this purpose classifiers are trained for each type of structures. The 
results are presented in table 4. 

Table 4. Results of Machine Learning Models Training 

Algorithm Measure Z-DNA H-DNA G-quadruplex 

Random Forest 
 

ROC-AUC 0.67 0.81 0.87 
Accuracy 0.67 0.82 0.88 
Recall 0.76 0.9 0.93 
Precision 0.64 0.81 0.89 

XGBoost 

ROC-AUC 0.67 0.81 0.86 
Accuracy 0.66 0.82 0.88 
Recall 0.79 0.88 0.93 
Precision 0.62 0.81 0.89 

To begin with, both algorithms show almost the same results. Moreover, models 
for G-quaruplexes and H-DNA show good performance with prediction quality higher 
than 80%. This corresponds to the results of researches which aim to predict nucleo-
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some positions., and the best results are demonstrated by the models based on neural 
network models. In addition, the poorest quality are demonstrated by the classifier 
which distinguishes Z-DNA regulatory pattern. The possible reason is the feature set 
used for these models. It consists of 2-tuple and 3-tuple nucleotide compositions. G-
quadruplexes and H-DNA are formed in specific sequences, so it is natural to expect 
they are well predicted based on sequence content, while Z-DNA has more complex 
formation preferences.  

Nevertheless, all the constructed models are significantly better than a random 
guessing leading to the idea that more complicated models may result in a better clas-
sification. 

4 Conclusion 

DNA exists in many forms. Non-B-DNA conformations may be involved in main 
molecular processes such as transcription and replication. One of the mechanisms is 
the governance of nucleosome positioning. To evaluate the existence of positional 
relationship between DNA structures and nucleosomes the data on nucleosome and 
DNA structure maps were combined and then machine learning models were trained 
to predict the patterns for a genomic region. Both Random Forest classifier and 
XGBoost classifier showed good performance on G-quaruplexes and H-DNA while 
the quality of the model for Z-DNA is not high. 

The practical applications of the obtained results could arise from the abilities of 
non-B DNA structures serve as targets for drugs, and in this respect it is important to 
understand the extent of the distribution of patterns involving DNA secondary struc-
tures across the entire genome. Thus, controlling the formation of non-B DNA struc-
tures may promote or inhibit production of harmful proteins including oncoproteins.  

Using G-quadruplexes as targets for drugs is widely discussed in literature [34-36]. 
Specifically, many quadruplexes are found in promoters of oncogenes, and targeting 
quadruplexes by small ligands is considered as potential anticancer therapy [34]. Al-
so, G-quadruplexes are found in regulatory regions of viral genomes, and it opens a 
possibility to use them as targets in antiviral therapy. Z-DNA is also found in genomic 
regulatory regions and there are proteins that bind specifically Z-DNA [37]. Increased 
transcription of some oncogenes was associated with Z-DNA formation. H-DNA, or 
triplex DNA, is a form where RNA binds directly to double-stranded DNA. The regu-
latory potential of RNA is huge, and therapeutic potential is also high including anti-
cancer therapy [38]. Overall, all the classes of non-B DNA structures can potentially 
be used in biomedical applications, and developing computational approaches could 
help in the design of experiments.   
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