
Blockchain Cohomology?

Wyatt Meldman-Floch1[0000−0001−6582−5925]

Constellation Labs, San Francisco CA 94108, USA

Abstract. The following explores topological models of distributed com-
puting for scalability focused Blockchain technologies1. Applications of
these models are provided in terms of emerging Blockchain protocols and
scalability approaches as well as programming models allowing type-level
verification.

Keywords: Distributed computing · Homology · Algebraic topology

1 Introduction

Existing models of blockchain technology are being expanded to incorporate
scalability advancements in distributed computing. However, despite their com-
patibility, these new approaches lack verification methods common in large scale
data processing. By connecting topological models of distributed computing to
scalable distributed architectures using Homotopy type theory, we create a hy-
brid topological model applicable to common architectures in Big Data and
emerging scalable blockchain technology. Applications are provided across com-
mon scalable architectures in distributed computing that are being adopted by
new blockchain technology.

1.1 Related Work

The following is a literature overview of references used in formulating this work’s
main results, from a historical perspective.

Topological Models in Distributed Computing Topology is a mathemat-
ical field focused on higher dimensional connective properties of algebraic ob-
jects. In the context of distributed computing, these objects are generalizations
of graphs, and their connectivity properties related to the computability of dis-
tributed algorithms. Exploiting certain topological properties of higher dimen-
sional geometric objects to prove results of distributed algorithms is referred to
as the topological approach to distributed computing. Techniques from combi-
natorial and algebraic topology have advanced characterization of synchronous
and asynchronous distributed algorithms as well as their solvability [1–4].

Supported by Constellation Labs
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

*

1



2 W. Meldman-Floch

The first applications of topology to distributed computing were in deriving
the lower bounds for solving the distributed set agreement [12], which introduced
a new paradigm based on algebraic topology for reasoning about asynchronous
computations, where at-most one process can fail. The framework consisted of
modeling tasks and protocols as simplicial complexes, and applied homology [5,
9] theory to reason about them. A key feature in this framework is that the
exponential number of possible executions can be compactly represented using
a static topological object in a model independent manner. In certain systems,
such as those explored below relating to blockhain technology and scalability, the
simplicial complexes are manifolds [6–8], a special class of simplicial complexes
that are intuitive due to their geometric nature. The application of homology
theory in these models forms a direct connection to Homotopy type theory [9,
10], the basis for modern static analysis in software engineering as well as in pro-
grammatic proof assistants. This connection is realized by a result known as the
Curry-Howard correspondence which is an isomorphism between mathematical
proofs and programs. This correspondence allows us to verify programs at com-
pile time, given a type system and typesafe (type preserving) implementation,
as is enforced by the functional programming paradigm.

Homotopy Type Theory and Verification Homotopy type theory is an
interpretation of constructive type theory that connects logic and topology [15].
Specifically, Homotopy theory is a tool for constructing models of systems of logic
and constructive type theory is a formal calculus for reasoning about homotopy.
Computational implementation of type theory allows computer verified proofs in
homotopy theory and is the formalism from which static analysis and functional
programming emerged from [10].

Proof assistants and type systems are explicit examples of tools for proofs
or programs for which compilation verifies correctness. Their use in mathemat-
ics and computer science is increasingly common for managing complex proofs
and programs. Examples of the success of proof assistants and type systems re-
spectively include the proof of the Four Color Theorem and the Feit-Thompson
Odd-Order Theorem, as well as large pieces of software such as a C compiler
and the Standard ML programming language. Homotopy type theory is used
in strongly typed programming languages like C and functional languages like
Haskell to provide compile time verification. The ability to verify a program,
especially all aspects of a distributed system before deployment, has been a fun-
damental advantage that ushered the emergence of Big Data over the last ten
years.

Functional Programming and Big Data Big Data [11, 16] refers to appli-
cations pertaining to data sets so big that distributing the processing is not an
optimization but a fundamental requirement. Given the exponentially increasing
amount of data generated by human information systems, the field continues to
grow. It is widely held that the advent of Big Data stems from the MapReduce



Blockchain Cohomology 3

white paper [14], which introduced the first programming model strictly designed
for processing and generating large, inherently distributed, datasets.

A programming model is the style and interface used for development and the
leading programming model in Big Data, MapReduce, is fundamentally a func-
tional programming model as it is just the combination of .map() and .reduce()
operators, which are by definition declarative functional operations on collec-
tions. Functional, as opposed to procedural, programming is a paradigm in soft-
ware engineering that simplifies verification and improves visibility in distributed
processes due to statelessness [17]. If something fails during state transforma-
tions developers have to recompile and redeploy their source code, restarting a
workflow from scratch. The reason why functional languages encourage scalable
software architectures is because of the fact that they eliminate as much shared
state as possible from a language. This leads to scalable micro-services or com-
ponents and these micro-services then scale naturally into larger components.

Blockchain Technology and Scalability The first Blockchain was formu-
lated roughly 30 years ago as a way to time-stamp digital documents [13]. At its
core a Blockchain is an application of a distributed consensus algorithm operat-
ing on cryptographically signed data to form a secure append only log; secure
in the sense that forgery is computationally intractable. Lately blockchain tech-
nology has become popular due to its application in creating cryptocurrencies
like Bitcoin, but wider applications in verifiable decentralized code execution
(provided by Smart Contract platforms like the Ethereum protocol) and open
network security (provide by the Constellation protocol) have emerged.

A major limitation in adoption of blockchain applications is an inherent scal-
ability issue due to the fact that traditional Byzantine Fault Tolerant consensus
algorithms require serial execution across a distributed system, making con-
currency difficult or impossible. New parallelizable consensus algorithms and
system architectures have emerged however, based on the design of highly con-
current and distributed data processing tools common in Big Data. These new
approaches [20, 23] lack formal verification methods employed by similar tools
in both blockchain and the Big Data space however, the creation of which is the
focus of the models constructed below.

2 Consensus Protocols

Recent advancements in distributed computing have adopted methods from al-
gebraic topology to formally define consensus protocols [1, 2]. First define an
execution space as a topological space equipped with a discrete product topol-
ogy [3]. Defining a distributed process in terms of topology only requires us to
care about the structure of the set of possible schedules of a distributed system
[4]. By defining an execution space in terms of the homology of Protocol Com-
plexes [2], define a Protocol Complex Sk : Pk∆

q as the q-dimensional standard
simplex

∆q = {x ∈ R|Σxj = 1, xj ≥ ∀j} (1)



4 W. Meldman-Floch

at morphism k described by the following vertex set

Sk = {vi,0 . . . vi,q} (2)

where P ⊂ S is the set of all admissible configurations and S is the set of all
possible configurations.

Define a consensus protocol Pσ∗ (S) : {Sk, ∂k} as the singular homology of a
simplicial chain complex, carried by a group morphism implementing distributed
consensus. Let Sk be a simplex configuration at step k and ∂k be the differential
of a distributed consensus morphism:

Pσ∗ (S) : 0← . . . Pσ(Sk−1)
∂k−1←−−− Pσ(Sk)

∂k←− Pσ(Sk+1) . . . (3)

where Pk = ker∂k/im∂k+1 and is also an abelian group. Thus, P∗ = (Pk) |k ∈ Z
is a graded abelian group which is referred to as the homology of a Protocol
Complex S. We abuse our notation of P but rectify by noting that an admissible
state k is required for anther step k+1, thus we define P as the functor carrying
our consensus operator defined below.

Define a consensus operator σ as the group morphism on the singular q-
simplex σ : ∆q → S

σk : Sk−1 × Pk → Sk (4)

which are continuous on discrete topologies such as ∆q [1]. Define homology
between configurations as a measure of divergence given by the differential

∂(σ) =

q+1∑
i=1

(−1)i−1(σ ◦ δiq) (5)

for continuous functions δiq : ∆q−1 → ∆q|1 ≤ i ≤ q + 1 where

δiq(x1, . . . , xq) = (x1, . . . xi−1, 0, xi, xi+1, . . . , xq−1, . . . , xq) (6)

As the graded abelian group of our Protocol Complex is the simplicial singu-
lar homology group and σ is our homology preserving map, it is trivial to note
that homology holds ∀k ∈ Z, i.e.

∂k ◦ ∂k+1 = 0 (7)

As a corollary of the fact that the geometric realization of a simplicial complex
is dually a topological space, due to the vanishing homology up to k, Pk∆

q is
k-acyclic, or that there is a consistently forward moving ”arrow of time”.

2.1 Protocol Topologies

It’s possible to layer Protocol Complexes defined as above with guarantees about
consistency as long as continuity is preserved. Our definition of homology above
is verification criteria for the ability to exchange configuration states between
Protocol Complexes.



Blockchain Cohomology 5

Specifically, a valid ’layering’ as the existence of a functoral vertex map be-
tween singular homologies (defined equivalently here as the disjoint subset of
Protocol Complexes) l :

⋃
k Pπ →

⋃
k Pπ+1.

Making use of Homotopy type theory allows us to focus on structure by
treating topological characteristics called homotopy groups as primitives. Noting
that simplicial complexes together with simplicial vertex maps form a category,
if we redefine our k-acyclic distributed consensus protocol σ categorically as the
functoral carrier Σ∗ we can form a chain complex that adheres to the homology
theory of homotopy types [5].

Let us define a ’layering’ as a Protocol Topology TΣP : Σ∗Pπ, the singular
homology of a chain complex of Protocol Complexes carried by a homotopy
preserving functor Σ∗. The Protocol Topology is given by the following chain
complex

TΣP : 0← Σ∗Pπ
∂←− ΣP0

∂←− . . . ΣPi |i ≤ π ∈ Z (8)

where Σπ : ker∂πk /im∂
π
k+1 → ∂π+1

k /im∂π+1
k+1

For Protocol Complex morphisms Σπ, Σπ+1 chain homotopy from Σπ to
Σπ+1 is a homotopy preserving graded abelian group morphism l : Pπ → Pπ+1

yielding a vanishing homology, i.e.

Σπ −Σπ+1 = ∂π ◦ l + l ◦ ∂π+1

= ∂π ◦ ∂π+1 = 0
(9)

Noting that these conditions are met by the definitions of an acyclic carrier as
above, it follows that a Protocol Topology as defined above is π-acyclic.

2.2 Applications: Scale out Networking

Traditional Blockchains have come up short in their ability to support real world
use cases, mainly due to scalability issues. In terms of scalability, sharding or
partitioned approaches have taken form in improvements to Bitcoin with Light-
ning [21] as well as base layer protocols like Zilliqa [22]. In these approaches,
relays or subnets are deployed to ferry larger amounts of transactions into a
fixed-size configuration state (block). The key to their success is the application
of Scale Out Networking [11], adding another layer to the network topology to
buffer and compress data which results in faster routing and query times. If we
consider either base layer protocol as a Protocol Complex, then a partitioned
or sharding mechanism is described by our model of Protocol Topology. A type
hierarchy is enough to verify a protocol’s equivalence to a Protocol Topology due
to covariance, which is a valid null differential as detailed by R. Grahm above.
Specifically, given a base layer protocol Σπ with block type π, a type preserving
operation Σπ+1 such as a buffering service in a multi layered (in this case L2)
topology, then if there exists covariance between their data types π, π + 1 then
∂π ◦ ∂π+1 = 0. Specifically, consider a protocol with an L2 topology:

TΣP : 0← Σ∗Pπ
∂←− ΣP0

∂←− ΣP2 (10)



6 W. Meldman-Floch

This Protocol Topology is a corresponding model to an L2 system architecture
(see Fig. 1). A program implementing the above protocol is verifiable by ensuring
functoral covariant state transitions which can be enforced by static analysis [10]
(type checking at compile time).

Fig. 1. System architecture diagram of an L2 system [11]

3 Blockchain Cohomology

Distributed architectures designed topologically can be verified at the type level.
In order to model distributed state, we need to design our topologies such that
data locality, or the logic behind the distribution of data in distributed database
is mathematically tractable. We introduce methods from Abstract Differential
Geometry, namely finitary cech-deRham cohomology in order to define an ori-
entable manifold from our definition of Protocol Topology.

3.1 Block Sheaves

First we need to introduce the dual of homology as described above, namely
cohomology. In describing our Protocol Complex it only makes sense to have an
arrow moving ’forward in time’ as consensus itself is acyclic, with each iteration
pointing ’backwards in time’ to its previous state. In this sense our evolution was
the compounding dimensionality of the space of all configurations, as implied by
the discrete product topology of a Protocol Complex. In defining an orientable
manifold, we need to move ’backwards’ through our space, i.e. from higher to
lower dimension. This is shown as the differential on an arrow going right instead
of left.

In principle, Abstract Differential Geometry (ADT) admits any topological
space as a base space on which to ’solder sheaves’ for carrying out differential ge-
ometry [6]. i.e. constructing a manifold. By constructing the Protocol Topology
within a monoidal category, A. Malios et al. showed that the singular cohomol-
ogy of a Protocol Topology is equivalent to an A-module of Z+-graded discrete
differential forms, otherwise known as discrete differential manifolds. This forms
an execution tree, a sequence of configurations in a poset (directed acyclic graph)



Blockchain Cohomology 7

topology. A decision tree can be assigned to any set of executions that captures
the decision of choosing a successive configuration. A Blockchain can be defined
as an extension of an execution tree, where each block is formulated as a sheaf
with a well defined tensor operation and each successive block verified by a de-
cision tree. We define a sheaf ε as the ’enrichment’ of any cochain A-complex
of positive degree/grade, corresponding to the A-resolution of an abstract A-
module

S∗ : 0→ ε→ S0 d0−→ S1 d1−→ . . . (11)

and homomorphism given by Cartan-Kahler-type of nilpotent differential oper-
ator d. We will make use of the fact that an A-module sheaf ε on any arbitrary
topological space (shown above with an arbitrary simplicial cochain-complex)
admits an injective resolution.

Blockchains are naturally equipped with a sheaf, known as a block hash,
which contains topological state data about the configuration of the system. Ev-
ery abelian unital ring (of which this sheaf theortic construction derives from)
admits a derivation map [7], allowing us to ’unpack’ data within a block re-
cursively under the product operation. By noting the equivalence of Sorkin’s
fintoposets to simplicial complexes, A. Mallios et al. showed that the Gelfand
duality implies that a manifold can be constructed from simplicial complexes [6].
Thus if we reformulate our definition of a consensus protocol above as a sheaf
with semigroup operations carried by right derived functors with monadic bind,
we can form a manifold.

For a fintoposet (the topological equivalent of a directed acyclic graph), it’s
incidence algebra can be broken down into a direct sum of vector subspaces

Ω(P ) =
⊕
i∈Z+

Ωi = Ω0 ⊕Ω1 · · · := A⊕R (12)

where Ω(P )s are Z+ graded linear spaces, A is a commutative sub algebra of Ω
and R :=

⊕
i≥1Ω

i is a linear (ringed) subspace. It is trivial to notice that Ω(P )
is an A-module of a Z+-graded discrete differential form.

A manifold can be constructed by organizing the incidence algebras of our
Protocol Complexes into algebra sheaves. The n-th (singular) cohomolgy group
Hn(X, ε) of an A-module sheaf ε(X) over topological space X, can be described
by global sections ΓX(ε) ≡ Γ (X, ε)

Hn(X, ε) := Rn(Γ (C, ε) := Hn[Γ (C, S∗)] := kerΓX(dn)/imΓX(dn−1) (13)

where RnΓ is the right derived functor of the global section functor Γx(.) ≡
Γ (X, .). Note that Rn is equivalent to the ith linear ringed subspace above.
These dual definitions of gamma correspond to out definitions of σ and Σ∗ with
respect to our functoral vertex map l in our definition of a Protocol Topology.

The sheaf cohomology of a topological space is the cohomology of any ΓX -
acyclic resolution of ε [15]. The corresponding abstract A-complex S∗ can be
directly translated by the functor Γx to the ’global section A-complex’ ΓX(S∗)

ΓX(S∗) : 0 −→ ΓX(ε)
d0−→ ΓX(S0)

d1−→ . . . (14)



8 W. Meldman-Floch

which is the abstract de Rham complex of a discrete manifold X. The action of
d is to effect transitions between the linear subspaces Ωi of Ω(P ), as follows: d:
Ωi → Ωi+1.

The finitary de Rham theorem defines a finitary equivalent of the typical c∞

smooth manifold. Noting ΓPm
m is fine by construction, Mallios et al. show that

finsheaf-cohomology differential tetrads

τ := (Pm, ΩM , d,Ω
M
deR) (15)

is equivalent to the c∞-smooth Cech-de Rham complex. In our definition of τ ,
ΩM is the categorically dual finsheaf (finitary sheaf) of Sorkin’s fintoposets Pm,
d is an exterior product, and ΩMdeR is the abstract de Rahm complex.

3.2 Protocol Manifold

We’ve shown how to create a manifold from the cohomology of a discrete topo-
logical space. We now show how to construct a manifold from of a Protocol
Topology. Define a cochain-complex within the cohomology theory of homotopy
types under the cup product. Making note of the existence of a tensor product in
the cohomology theory of homotopy types by E. Cavallo [9] define the protocol
manifold as the ringed vector space formed by the direct sum over all protocol
sheaves

Γ εΣ =
⊕

0≤i≤π

Σ∗εi (16)

3.3 Applications: Data Locality and Dynamic Partitioning

Data locality refers to the ability to move a query close to node where actual
data resides within a distributed system as opposed to moving data over network
to the process executing the query. This minimizes network overhead, increases
overall throughput and is a best practice in the development of distributed appli-
cations. A Protocol Manifold is a construction that forms the total state space
of data across nodes implicitly respective of the network topology of a state-
ful distributed system such as a Consensus Protocol. For elastic or dynamically
partitioned systems, where data storage needs to be rebalanced across nodes in
the system when nodes join or leave, it provides a convenient consistency check
for the state of the network and an implicit way to organize the rebalancing of
data across nodes. A prime example of a distributed data store that corresponds
to the Protocol Manifold is the Hadoop Distributed File System (HDFS)(see
Fig. 2), which stores data across nodes with an optimal data locality and mini-
mal redundancy to prevent data loss in the case of partial system failure. This
allowed for creation of high level strongly typed APIs managing implicit orches-
tration of distributed data storage in tools such as Apache Spark and is key to
the ability to form MapReduce APIs across stateful systems as demonstrated by
the Poincare Complex below.



Blockchain Cohomology 9

Consider an enrichment of a type hierarchy ε . . . εn, and a state transition

J(t) : Γ εΣ(t) → Γ εΣ(t+1) (17)

where the number of nodes increase or decrease, if all ε commute and⊕
0≤i≤π

Σ(t)∗εi =
⊕

0≤i≤π

Σ(t+ 1)∗εi (18)

then the total configuration space is consistent under the state transition of nodes
joining or leaving. Such an ε implemented as a type with a product operation [19]
would allow us to verify the state transition J by an ’unpacking’ operation across
block sheaves under the product operation, allowing for verification at the type
level both at compile time and run time).

Fig. 2. HDFS replication system architecture [24]. A state transition adding or remov-
ing nodes maintains the total set of data.

4 Typesafe Poincare Duality

Up until now we have not explicitly defined functoral group homomorphisms
that can construct the complexes described above. We show that the dual na-
ture of the hylomorphic and metamorphic recursion schemes maintain vanishing
differentials and thus Poincare duality for all π.

If we define a catamorphism and anamorphism with the same f-algebra and
f-coalgebra, we can show by construction that the resulting co/chain-complexes
are valid definitions of Protocol Topologies/Manifolds and that Poincare duality
of the protocol manifold is maintained up to π isomorphism. We define in terms
of Σ and ε, noting that our functor Σ is a valid f-algebra and sheaf ε a co-algebra.

Let us define a hylomorphism

ε← P ×Σ : ΩT (ε, P ) (19)

and metamorphism

ΩΓ (P, ε) : ΓΣ × ε→ P (20)



10 W. Meldman-Floch

we formally verify by the construction of the following geometric cw-complex

ΩTΓ : 0
∂←→ ΩT

∗

Γ∗ (ε)
∂←→ ΩTΓ (ε(P0)) . . . ΩTΓ (ε(Pπ)) (21)

that T and Γ form a Poincare complex, clearly satisfying the Poincare duality
as ∂ vanishes in our construction of T and Γ εΣ . The fundamental class of our
corresponding space is ΩT

∗

Γ∗ which carries the type signatures of our hylo and
metamorphisms. Formally define ΩTΓ as a Poincare protocol.

4.1 Applications: MapReduce APIs

The design of tools in the data engineering and data science space often employ
principles from functional programming and type theory due to the benefits they
have at verifying code at compile time. Network queries can be implemented with
guarantees around correct access governed at the type level, as functoral oper-
ators such as .map() and .reduce(). This is largely a source of the origins of
scalable data processing tools for analysis and modeling like Hadoop and Spark.
Distributed data stores and microservice architectures employ monadic design
patterns for improvements on concurrency, static type checking, testing, design
patterns, cluster management, training models etc. One benefit is the develop-
ment of convenient API’s with Map/Reduce operations simplifying queries by
abstracting low level data locality management [16], a key example would be
Spark’s RDD [18]. Monadic execution models allow complex data pipelines (see
Fig. 3) to be implemented and governed declaratively, providing distributed data
stores constructed with high level API’s. As such, if we follow their construction
at the type level in architecture and code design we can develop increasingly
complex distributed systems with greater guarantees. A Poincare Protocol is a

Fig. 3. Example of a data pipeline with a micro-service architecture. ε corresponds to
indices within a Poincare Complex for each micro-service.

consensus protocol with a monadic execution model like the Big Data tools dis-
cussed above. It describes a distributed data store of topological data formed of
configuration data across blocks. An example of this is the Constellation pro-
tocol, the design of which is also its origin. Constellation was designed with a
monadic execution model [23] that can be layered like a Protocol Topology and
has the consistency guarantees of a Protocol Manifold. In this model, multiple
independent consensus operations can coexist across heterogeneous data types,
allowing for complex queries to be performed across concurrent or composite ser-
vices, like common data pipelines (see Fig. 3). Each of these consensus operations



Blockchain Cohomology 11

is referred to as a state channel, an operates on its own corresponding data type ε.
By constructing a Poincare Protocol, Constellation defined a high level MapRe-
duce API [20] for constructing new state channels out of API callbacks across
existing state channels (see Fig. 4). Using an algebraic representation of these
APIs in the callback tree, common in functional programming [17], each step in
the call back tree is governed by the respective ε’s f-algebra and f-coalgebra and
we can verify correctness at the type level both at compile time and runtime.
The end result is a consensus protocol with the same model and guarantees of
the functional programming paradigm, allowing for interoperability between the
Blockchain and Big Data ecosystems.

Fig. 4. Callback tree across Constellation state channels (denoted by their ε, indices
within a Poincare Complex. The tree is defined by algebra/coalgebra of a recursion
scheme and is transitively its own state channel.

5 Remarks

We have successfully constructed topological models of scalability focused Blockchain
technologies and Big Data architectures. The protocol models above can be ex-
panded to other distributed systems that undergo finite state transitions. The
key advantage of these models is that they can be designed within functional
languages with strong type systems that allows for verification at compile time.
Future work can apply these models to systems undergoing more complex and
possibly differentiable state transitions.

References

1. Nowak T., Schmid U.: Topology in Distributed Computing, Master’s Thesis, Vienna
University of Technology, (2010)

2. Herlihy M., Rajsbaum S.: Algebraic topology and distributed computing a primer.
In: van Leeuwen J. (eds) Computer Science Today. Lecture Notes in Computer
Science, vol 1000. Springer, Berlin, Heidelberg. (1995)

3. Alpern, B., Schneider F.: Defining liveness. Information Processing Letters 21, 4
(October 1985), 181–185. Cornell University, (1985)

4. Saks, M., Zaharoglou, F.: Wait-free k-set agreement is impossible: the topology of
public knowledge. SIAM J. Comput. 29(5), 1449–1483 (2000)

5. Grahm R.: Synthetic Homology in Homotopy Type Theory Robert Graham.
arXiv:1706.01540 (2017)



12 W. Meldman-Floch

6. Mallios A., Raptis I.: Finitary Cech-de Rham Cohomology: much ado without
smoothness. Int.J.Theor.Phys. 41 1857-1902 (2002)

7. Mallios, A.: Geometry of Vector Sheaves: An Axiomatic Approach to Differential
Geometry, vols. 1-2, Kluwer Academic Publishers, Dordrecht (1998)

8. Mallios, A.: On an Axiomatic Treatment of Differential Geometry via Vector
Sheaves. Applications, Mathematica Japonica(International Plaza), 48, 93. (1988)

9. Cavallo, E.: Synthetic cohomology in Homotopy Type Theory. Master’s thesis,
Carnegie-Mellon University (2015)

10. Nielson F. Nielson H. R.: Type and Effect Systems. In: Olderog ER., Steffen B.
(eds) Correct System Design. Lecture Notes in Computer Science, vol 1710. Springer,
Berlin, Heidelberg 114-136, (1999)

11. A. Vahdat, M. Al-Fares, N. Farrington, R. N. Mysore, G. Porter, and S. Radhakr-
ishnan, Scale-out networking in the data center, IEEE Micro, vol. 30, no. 4, pp.
29–41, https://doi.org/10.1109/MM.2010.72

12. Herlihy M. and Shavit. N.: The asynchronous computability theorem for t-resilient
tasks. In: Proceedings of the twenty-fifth annual ACM symposium on Theory of
computing, STOC, (1993)

13. Haber, S. and Stornetta, W.S. J. Cryptology 3: 99.
https://doi.org/10.1007/BF00196791 (1991)

14. Dean J., Ghemawat, S.: MapReduce: Simplified data processing on large clusters,
In: Proc. 6th USENIX Symposium on Operating Systems Design and Implementa-
tion, OSDI 2004, San Francisco, USA, Dec. (2004)

15. Gallier J., Quaintance J.: A Gentle Introduction to Homology, Cohomology, and
Sheaf Cohomology. Preprint (2016)

16. Wu D., Sakr S., Zhu L.: Big Data Programming Models. In: Zomaya A.Y, Sakr
S. (eds) Handbook of Big Data Technologies, Springer International Publishing,
AG,https://doi.org/10.1007/978-3-319-49340-4 2 (2017)

17. Chuisano P., Bjarnason R.:Functional Programming in Scala, Manning Publica-
tions Co., Greenwich, CT, (2014)

18. Apache Spark RDD documentation, https://spark.apache.org/docs/latest/r
dd-programming-guide.html\#resilient-distributed-datasets-rdds. Last ac-
cessed 15 Oct (2019)

19. Product operator from functional programming library Cats, http://eed3si9n.c
om/herding-cats/Cartesian.html. Last accessed 18 April (2019)

20. Constellation Protocol repository, MapReduce interface via recursion schemes ht

tps://github.com/Constellation-Labs/constellation/blob/7aeaa786d42e019

4e31cd8fd0c6b99462cb63f33/src/main/scala/org/constellation/Cell.scala.
Last accessed 18 April (2019)

21. The Bitcoin Lightning Network: Scalable Off-Chain Instant Payments. Joseph
Poon, Thaddeus Dryja https://lightning.network/lightning-network-paper.

pdf Last accessed 18 April (2019)
22. The ZILLIQA Technical Whitepaper, The Zilliqa Team. https://whitepaper.i

o/document/16/zilliqa-whitepaper Last accessed 18 April (2019)
23. Constellation Protocol repository, Validation Monad https://github.com/Const

ellation-Labs/constellation/blob/dev/src/main/scala/org/constellation/

util/Validation.scala. Last accessed 18 April (2019)
24. Hadoop Distributed File System design documentation https://hadoop.apache.

org/docs/r1.2.1/hdfs\ design.html Last accessed 18 April (2019)


