
Towards a Formal Modelling of Order-driven
Trading Systems using Petri Nets:

A Multi-Agent Approach?

Julio C. Carrasquel1, Irina A. Lomazova1, and Iosif L. Itkin2

1 National Research University Higher School of Economics,
Myasnitskaya ul. 20, 101000 Moscow, Russia
jcarrasquel@hse.ru, ilomazova@hse.ru

2 Exactpro Systems
iosif.itkin@exactprosystems.com

Abstract. Electronic trading systems provide the computational sup-
port for stock exchanges. Liquid markets use order-driven systems, i.e.,
where client requests, for trading financial instruments, are served through
individual orders. This paper presents Petri net models assembling some
crucial processes executed within order-driven systems such as orders
submission, application of precedence rules, and the order matching
mechanism. Such processes were modelled as types of agents running
in a multi-agent system (MAS) using nested Petri nets (NP-nets) - a
convenient formalism for modelling MAS. With NP-nets, we focus on
the control-flow perspective (causal dependence between activities exe-
cuted by agents) and in the synchronization between agents. Conversely,
we have used coloured Petri nets to extend the model including orders
as objects with attributes. Thus, this work with Petri nets represents an
experimental & initial research phase to validate trading systems using
related methods such as process mining, simulations and model checking.

Keywords: Stock trading systems, order-driven systems, Petri nets,
multi-agent systems, nested Petri nets, coloured Petri nets.

1 Introduction

Stock exchanges have been historically the forum where market participants
trade financial instruments, i.e., shares of a company. Brokers, with access to
the stock exchanges, provide the intermediary services to clients for trading.
The core of stock exchanges lies in stock trading systems - software solutions
supporting all the processes executed to perform trades. In this research, we
focus on order-driven systems [4], used by most of the liquid markets, where
client’s requests for trading are managed as orders; order-driven systems receive

?

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.
Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

1

2 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

orders from participants, rank/place orders in order books, and perform trades,
among other operations.

Nowadays an important part of the trading volume of stock exchanges have
been shifted to order-driven electronic systems. As their trading volume growths,
with many participants and processes involved, it is a task of utmost importance
the validation of the trading system’s correctness. i.e. auditing of the system’s
processes, performance analysis, verification of its properties, among other tasks.
For such tasks, we consider Petri nets [7] [8] - a consolidated formalism for
modelling and validating distributed and concurrent systems. With Petri nets,
we are able to formally describe the concurrent processes which are executed
within order-driven trading systems. Petri net models are an input for validating
the system using process mining [9], simulations, and model checking verification
[3], among other methods.

This paper presents an exploratory research work where we assemble as Petri
nets some important processes executed within order-driven systems. We focus
on the modelling of the processes of orders submission, execution of order prece-
dence rules, and the matching mechanism. We model the order-driven system as
a multi-agent system (MAS), where agents are conceived as running instances of
the mentioned processes, and these execute specific tasks within the processing
of orders. This approach represents a theoretical model and do not necessarily
reflects real life technical implementations of electronic stock trading systems.
The main difference is the sequencing of events into a single thread in the latter.
In this work, we use two classes of Petri nets. We present a first model based on
nested Petri nets (NP-nets) [6] - an extension of Petri nets where tokens can be
Petri nets themselves, thereby making them suitable for modelling MAS. With
NP-nets, we focus on the control-flow perspective (causal dependence between
activities executed by the system and agents) and in the synchronization be-
tween agents. As a second exercise, we provide a model based on coloured Petri
nets (CPN) [5] - an extension of Petri nets where tokens have data types (col-
ors) associated. Tokens with colors assigned allow to model orders as objects
with data attributes; the latter allows to impose additional restrictions on the
execution of the system’s activities according to the order attributes.

The rest of this paper is organized as follows. Section 2 introduces some
basic concepts of order-driven trading systems. Section 3 describes the NP-net
and CPN models developed. Section 4 presents some conclusions and introduces
future research work.

2 Order-driven Trading Systems

Order-driven systems handle requests from clients for trading financial instru-
ments as orders. At the core they contain rule-based processing that stores orders
into the order books, applies precedence rules to prioritize orders, and matching
mechanisms to perform automated trades between orders. The core is surrounded
by order-routing systems, which deliver the orders from the clients and order pre-
sentation systems and market data systems send reports to clients about orders
and trades. In this paper, we focus on the processes of submitting orders into

Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach 3

an order book, and the activities of rule-based matching systems including the
order precedence rules and the matching procedure.

2.1 Orders

An order, which we denoted as o, is a client instruction to trade a instrument,
i.e., shares of a specific company. Among its attributes, an order o has a side
s ∈ {buy, sell} indicating whether the client wants to buy or sell, a price per
stock p; and a quantity of stocks q to trade. Orders also include other constraints
regarding in which terms the client wants to trade.

Order states. An order may have the following states. An order is submitted
when it has been received by the system. The system verifies if the order is valid;
if so, the order eventually changes its state to placed in an order book; otherwise,
it is rejected. If an order o1 is traded with another order o2, then o1 is filled
if q1 ≤ q2 where q1 and q2 are the stocks quantities of o1 and o2 to be traded;
otherwise, o1 is partially filled waiting to trade its remainder q1

′ = q1 − q2 with
other orders. An order also may be replaced, canceled or expired.

Types of orders. In this paper, we focus on two kind of orders whose use is
very common, market orders and limit orders. Market orders aim to trade at the
best price available, i.e, a client placing a buy market order does not specify a
price, so he is willing to buy at the best price available that sellers ask. Instead,
limit orders trade at a final price ptr not worse than a (limit) price p, i.e., buy
limit orders trade iff ptr ≤ p, whereas sell limit orders trade iff ptr ≥ p. We refer
to [4] for other types of orders.

2.2 Precedence rules

Order-driven systems use order precedence rules to separately rank buy and sell
orders. Orders with highest precedence are served first. The system ranks orders
using a primary rule which usually is the price. Buy orders with higher prices,
and sell orders with lower prices are ranked first in their sides. Market orders
always rank highest (their prices are not limited). If two or more orders have the
same price, then it is applied a secondary rule; in this work, we consider time as
the secondary rule - if two orders have the same price, it will be served the first
one submitted in the system. With price and time as our precedence rules, we
considered a price-time policy for serving orders.

As an example, tables 1(a) and 1(c) show buy and sell orders received by the
system. Each row in tables 1(a) and 1(c) represents an order o with a submitted
time, its trader, size (quantity of stocks) and price per stock. As each order
arrives, these are placed and ranked in the order book based on the price-time
policy. Table 1(b) shows the order book state after all listed buy and sell orders
have been ranked and inserted.

In Table 1(b), buy orders are served from the top to the bottom. Bif’s order
ranks highest (highest buy price), while Bud’s order is ranked last (lowest buy
price). Orders of Bea and Ben have the same price, but Bea’s order is ranked
first since her order arrived before. Sell orders are served from the bottom to the

4 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

top. Sol’s order ranks first (lowest sell price), while Stu is ranked last (highest
sell price). Notice that the order book presented in Table 1(b) is a simplified and
abstracted version w.r.t to how order books may be presented in real systems.

Table 1: Submitted buy (a) and sell (b) orders, ranked in the order book.

(a) received buy orders

time trader size price

10:01 Bea 3 20

10:08 Ben 2 20

10:15 Bif 4 market

10:18 Bob 2 20.1

10:29 Bud 7 19.8

(b) order book

buyer size price size seller

Bif 4 market

20.1 5 Stu

Bob 2 20.1 2 Sam

Bea 3 20.0

Ben 2 20.0

20.0 6 Sue

Bud 7 19.8 1 Sol

(c) received sell orders

time trader size price

10:05 Sam 2 20.1

10:08 Sol 1 19.8

10:10 Stu 5 20.2

10:20 Sue 6 20.0

2.3 Order matching procedure

The matching mechanism matches highest-ranked buy and sell orders. If the buy
order price is greater or equal than the sell order price (the buyer is willing to
pay at least what the seller demands) then a match is executed between the
two orders. If one order is smaller than the other, the smaller order is filled, and
discarded from the order book. The remainder of the largest order is placed in the
order book. Such order still ranks highest in its side, so the system will attempt
to match it against the next highest-ranking order on the other side of the order
book. If two matched orders have the same size, both are filled completely. This
process continues as long as the next highest-ranked buy order’s price is greater
or equal than the next highest-ranked sell order’s price. From the example of
table 1(b), matchings are executed as follows:

1. Sol’s order to sell 1 at 19.8 with Bif’s market order to buy 4. Sol’s order is
filled, and Bifs order is partially filled with a remainder of 3.

2. Bif’s remainder order to buy 3 with Sue’s order to sell 6 at 20.0. Bifs order
is filled, and Sues order is partially filled with a remainder of 3.

3. Sue’s remainder order of 3 with Bob’s order to buy 2 for 20.1. Bob’s order
is filled, and Sue’s order is partially filled with a remainder of 1.

4. Sue’s remainder order of 1 with Bea’s order to buy 3 for 20.0. Sue’s order
is filled, and Bea’s order is partially filled with a remainder of 2. Table 2
shows the order book after execution of all possible matchings. Then, the
process cannot execute matchings since now the highest-ranked buy order is
less than the highest-ranked sell order.

3 Modelling Order-driven trading systems

Distinct sub-processes with a predefined set of tasks may operate concurrently in
an order-driven system. Each sub-process may be seen as a kind of agent, which

Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach 5

Table 2: Order book last state (a) and trades (b) after executing matchings.

(a) order book last state

buyer size price size seller

20.1 5 Stu

20.1 2 Sam

Bea 2 20.0

Ben 2 20.0

Bud 7 19.8

(b) trade summary

match seller buyer quantity

1 Sol Bif 1

2 Sue Bif 3

3 Sue Bob 2

4 Sue Bea 1

is instantiated upon request, it executes its tasks independently, it sends/receives
messages from other agents, and eventually it is terminated upon completion of
its tasks. Thus, we model using Petri nets some major components of an order-
driven system under a multi-agent system (MAS) approach.

The notion of agents has become an important concept in the software engi-
neering and artificial intelligence (AI) domains, i.e., a MAS approach provides
a convenient degree of modularity, and it allows to understand the communica-
tion points between sub-processes, which now we treat as agents. This section
describes the kind of agents we devised, and the MAS-based nested Petri net
(NP-nets) and coloured Petri net (CPN) models. In the following, it is assumed
that the reader has a basic understanding of NP-nets and CPNs; we refer to [6]
[5] for basic concepts on NP-nets and CPNs.

3.1 Agents

We have focused in the orders submission into the system, insertion and ranking
on the order book, and the matching mechanism. Thus, we conceive a MAS
model with the following kind of agents:

– (x) Request handler agent. It handles an order submission into the system. It
verifies whether or not the order is valid. If is valid, such order is forwarded
to what we denote as an order book handler agent. Otherwise, the order is
rejected and discarded.

– (y) Order book handler agent. It is initiated upon a call from a request handler
agent. It places and rank the received order in the proper order book side.
When a matching is executed, against other order handled by other agent, it
takes the order from its respective order book side, and it sends the order to
a trade handler agent. Eventually, this agent receives a response indicating
whether or not its order was filled. If so, the agent terminates. If not, it keeps
handling the partially filled order that keeps stored in the order book. The
agent also handles the replace, cancel or expire events of an order.

– (z) Trade handler agent. It is initiate upon the reception of two orders, a buy
and sell order, that have matched. This agent sends the trade to the clients.
In addition, it checks if the orders are filled. If they have been partially
filled, the agent places their remainders in the order book. Finally, it sends
back to the order book handler agents which handle the buy and sell orders,
informing whether or not the orders they handle are filled or not.

6 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

Invoke
request
handler cancel

reject
order

t2

o

o

request
handlers

(x ,o) (y ,o)

expire

order book
handlers

replace

o

(y ,o)

(y ,o)

(y ,o)

place
in book

(y ,o)

notify
match

(y ,o)

t7

(z,2⋅o)

invoke
matching

handler

trade
handlers

2⋅(y ,o)

c 4

notify
trade

(z,2⋅o)

2⋅osend
trade

to client

2⋅o

terminate
matching
handler

z

c3

c2

both orders filled

order filled
and other one

partially
filled

2⋅oo

o

oo

o

2

2

t1

(y ,o)

notify order filled

notify
order partially

filled

(y ,o) (y ,o)

receive
order

a3

request handlers
serving orders order book handlers

serving orders

next matching
enabled

a4

(x ,o)

b5

b6

b7

b8

b9

b10

c5

t3

t 4

t5

trade
handlers
runningorders

matched
pending

received
orders

(x ,o)

trades

2⋅o

(SN) System net

rank
sell order

receive
buy order

receive
sell order

rank
buy order

notify
match

replace

cancel

expire notify order
filled

notify order
partially
filled

b1 b2

b3 b4

b5

b6

b7

b8

b9

b10

(ENy) Order book handler agent y

c1

both
orders

filled

c2 c3

order
filled
and
other
one
partially
filled

terminate
matching handler

c5

notify
trade

c 4

(ENz) Trade handler agent z

receive
order

reject
order

place in
book

verify
order

a1

a2

a3 a4

(ENx) Request handler
agent x

Fig. 1: NP-net model for the order-driven system with the system net and agents

Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach 7

3.2 Nested Petri Net Model

The NP-net model is depicted in Fig. 1 showing the system net SN , and the
element nets ENx, ENy, and ENz, which describe the activities of agents of
type x, y and z. The places request handlers, order book handlers, and trade
handlers contain black dots indicating respectively the number of agents (system
resources) of type x, y, and z available to be instantiated.

A submitted order o is produced in the place received order when the tran-
sition t1 (receive order) fires. If there is an available resource at the request
handlers place, the transition t2 (invoke request handler) fires: it consumes a
black dot and a variable o, and produces a pair (x, o) at the place request han-
dlers serving orders meaning that an agent x will handle an order o. Agent x
may execute its internal transitions, described in ENx, for verifying the validity
of order o. If the order o is not valid, it is performed a vertical synchronization
step [6] involving the firing of transitions a3 and a3 (reject order). Thus, the
agent x and the current order o disappears, and a black dot is produced at the
request handlers place indicating that an agent resource has been released. If the
order o was valid, and there is an available resource at the order book handlers
place, then it is performed other vertical synchronization step with transitions
a4 and a4 (place in book); thus, agent x disappears, but it is produced a pair
(y, o) in the place order book handlers serving orders - it indicates that agent y
(order book handler) will handle now the order o.

As depicted by the net ENy, an agent y may fire transitions b1 (receive sell
order) and b3 (rank sell order) if o is a sell order; otherwise, if fires b1 (receive
buy order) and b4 (rank buy order). Transitions b3 and b4 represent the activites
of placing and ranking o in its corresponding order book side. Later, either one
among of the activities b5 (replace order), b6 (expire order), b7 (cancel order) may
be executed (thus, terminating agent y) or transition b8 (notify match) is fired;
if so, in the system net SN , the current agent y and the order o, represented as
(y, o) will be transferred to the orders matched pending place.

Two tokens of type (y, o) at the place orders matched pending represent two
orders (a buy and a sell order) that are matched. When transition t4 (invoke
matching handler) fires, it consumes such couple of pairs (y, o), and a black dot
from the trade handlers place; then, t4 produces a new pair (z, 2 · o) in the place
trade handlers running - it means that an agent z will handle the matching of
the buy and sell order. Notice that t4 also produces back the two tokens of type
(y, o); the latter means that the two agents of type y will wait for a response to
be notified if the orders that they manage are filled.

The behavior of agent z is described by ENz. It executes transition c4 to
send a message to the clients about the trade performed. It also executes c2
if the orders have been filled or c3 if one of the two orders is just partially
filled; the latter is done to inform the previous two agents of type y, that wait
for such response at the orders matching matching place. When receiving such
response, each of the two agents of type y will be able to fire either b9 (notify
order partially filled) or b10 (notify order filled) according to the case. If b9 is
fired, then the pair (y, o) will be transferred from the order matched pending to

8 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

the order book handlers serving orders place, indicating that y will attempt to
eventually match the remainder of order o; otherwise, if b10 is fired, the pair (y, o)
simply disappears indicating the completion of y, and producing a black dot at
the orders book handlers place. Notice that the place next matching enabled
constrains the execution of transition b8 (notify match) to at most two times in
a round (for a buy and a sell order), and no other matching can be executed
until an agent z gives back the previously explained response to the two agents y
handling the buy and sell order. The motivation of this is to give highest priority
to be matched again to the orders processed by agent z (and that rank highest
in their sides of the order book) in case one of them were just partially filled and
transferred back to the order book.

3.3 Coloured Petri Net Model

invoke
request handler

expire

replace

cancel

reject
order

place
in book

received
orders

notify match

trades

send
trade
to client

orders
matched pending

request handlers

order book
handlers

trade handlers

orders filled partially

orders filled

ORDER

1`("Bea",2000,3,buy)++
1`("Ben",2000,2,buy)++
1`("Bif",5000,4,buy)++
1`("Bob",2010,2,buy)++
1`("Bud",1980,7,buy)++
1`("Sam",2010,2,sell)++
1`("Sol",1980,1,sell)++
1`("Stu",2020,5,sell)++
1`("Sue",2000,6,sell)

ORDER

B

ORDER_BOOK

1`[]

S

ORDER_BOOK

1`[]

Y
Y.all()

Y_OX_O

XX.all()

X_O

X_O

Y_O

Y_O

Y_O

ORDER_PAIR Z_O_PAIR

Z
Z.all()

TRADE

TRADE

Z

ch1

ORDER

ch2

ORDERORDER

ORDERORDER

ORDER

t1

tx

AGENTSXAGENTSX

tz

AGENTSZAGENTSZ

ty

AGENTSYAGENTSY

t2

a3

a4

b7

b6

b5

t3

c4_
c5

c2

c3

b10

b9

o_

o_

(y,o_)

list_

list_

list_

list_

o_

x

(x, o_)

(x,o_)

(x,o_)

(x,o_)

(x,o_)

(x,o_)

x

x

y

(y,o_)

(y,o_)

(y,o_)

(y,o_)

y

y

(y,o_)

(y,o_)(y,o_)

list_ list_ list_list_

o_pair o_pair (z, o_pair) (z, o_pair)

z

tr

tr

tr

z

zz

o_

o_

o_

o_

o_

o_

y

o_

o_

o_

o_

o_

o_

y

o_

t5
tr

Fig. 2: The system net or top page of the CPN model for the order-driven system.

As a second exercise, we developed a CPN model, developed with CPN Tools
[1]; it is a hierarchical net organized in a set of pages where the top page models
the system net while sub-pages emulate the behavior of agents x, y and z. Due
to space limitations we just show the system net (Fig. 2) and the net for agent y
(Fig. 3). The complete CPN model is available via [2]. The system net maintains
a similar structure w.r.t the NP-net. CPN extends the model assigning data types
(colors) to tokens; thus, tokens become objects with attributes. In addition,
declarations with CPN ML [5] provide definitions for color sets and variables of
the model, i.e, variables i, p, q, s stand for the name (identifier) i, price p, size
q, and side s ∈ {buy, sell} of an order. An order is token assigned with the color
set ORDER.

Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach 9

colorset SIDE = with buy | sell ;
var i , i2 : STRING ;
var q , q2 : INT ;
var s , s2 : SIDE ;
colset ORDER = product STRING ∗ INT ∗ INT ∗ SIDE ;
var o_ : ORDER ;

Order book. An order book (from the color set ORDER_BOOK) is a sorted list
l = {o1, o2, ..., on} such that the first element o1 of l is the highest ranked order,
and the last element on is the lowest ranked order. Thus, for a specific financial
instrument, we devised to model an order book as two sorted lists lS and lB ,
such that lB stores buy orders, and lS stores sell orders. The system net of the
CPN depicted in Fig. 2 shows places B and S - tokens in B and S are sorted
lists of the color set ORDER_BOOK. The place B stores lists of buy orders, and
S stores lists of sell orders. Since it is assumed to work with a single financial
instrument, the initial marking of S and B are unique empty lists (denoted as
[]). If we were working with m financial instruments, then there would be m
lists in each of these places.

replace

cancel

expire

next matching enabled

order
fulfilled

order
order partially
fulfilled

notify matching

In

Y_O

In

Y_OY_O

B

In/Out
ORDER_BOOK

1`[]In/Out

S
In/Out

ORDER_BOOK
1`[] In/Out

Y_O

Out
ORDER_PAIR

Out

Y_O_NAME

ch2
In
ORDER
In

ch1
In
ORDER
In

Out
Y_O

Out

Out
Y_O

Out

Out
Y_O

Out

2

Out
Y
Out

b2
[s=buy]

b1
[s=sell]

b4

b8_

[p >= p2]

b3

b10_

b9_

b5_

b6_

b7_

(y, (i,p,q,s))

list_

buy_rank
o_ list_

(y,o_)

list_2

(y,(i,p,q,s))

sell_rank
o_ list_2

(y,o_) (y,o_)

1`(y, (i,p,q,s)) ++
1`(y2, (i2,p2,q2,s2))

(i2,p2,q2, s2)
:: list_2

list_2

((i,p,q,s), (i2,p2,q2,s2))

1`(y,i) ++ 1`(y2,i2)

(y,i)

(y,i)

(y, (i,p,q,s)) (y, (i,p,q,s))

(y, o_)

(i,p,q,s) ::
list_

(i,p,q,s)

(y, o_)

(y, o_)

(y, o_)

(y, o_)

(y, (i,p,q,s))
(y, o_)

(y, o_)

list_

2

(i,p,q,s)

y

1 1`(ay(1),("Ben",2000,2,buy))

1 1`(ay(3),("Bif",5000,4,buy))

1 1`[]1

1`[("Sam",2010,2,sell)]

1 1`(ay(4),("Sam",2010,2,sell))

2

2`()

1

Fig. 3: CPN sub-page for execution of agents of type y (order book handlers).

10 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

Agents. CPNs do not follow the nets-within-nets paradigm as NP-nets do,
i.e., tokens cannot be Petri nets themselves in CPN. Hence, CPNs become less
suitable to model multi-agent systems (MAS). As a way to model MAS in CPN,
we have devised the use of a hierarchical CPN model in the following way: the
system net is the top page of the CPN model, whereas the internal net structure
of agents x, y, and z, described in Fig. 1, have been modelled as sub-pages in the
CPN model. The sub-pages with the tasks performed by agents x, y, and z are
linked with the top page by substitution transitions tx, ty, and tz. For instance,
Fig. 3 shows the sub-page for agents of type y where a few agents are handling
orders, i.e, agent ay (1) is about to process Ben’s order; agent ay (3) is waiting to
execute b4 for ranking Bif’s order, and agent ay (4) already placed Sam’s order
in the order book, so its order eventually may be matched, or its order may
be replaced, expired, or canceled. Hence, agents are emulated by object tokens
which navigate through a shared structure which is the model sub-page. Note
also that each sub-page is connected by input and output channels with places
of the system net using the ports-sockets mechanism provided by hierarchical
CPNs. Through these channels, an agent into the sub-page for agents y (Fig. 3)
is able to place an order into a list of the places B and S (an order book side), it
is notified if an order has been filled, among other communication points. This
principle is the same for agents of type x and z.

Order precedence rules. Arc inscriptions of the used CPN model are allowed
to have functions as expressions. Thus, we were able to model order precedence
rules (using a price-time policy) on the lists stored in places S and B, which
represent the buy and sell sides of an order book. As depicted by Fig. 3, when
an agent y fires b4 (rank buy order) it is consumed the order o_ that the agent y
is handling, and the list of sell orders list_; as a result, the transition produces
in place B a reorganized list executing the function buy_rank (o_ , list_)

which has been implemented as follows:

fun buy_rank (i , p , q , s) [] = [(i , p , q , s)] |
buy_rank (i , p , q , s) ((i2 , p2 , q2 , s2) : : list_) =
if p > p2 then

(i , p , q , s) : : (i , 2 , q2 , s2) : : list_
else

(i2 , p2 , q2 , s2) : : (buy_rank (i , p , q , s) list_)

The function first checks the case if list_ is empty; if so, it returns the list
with the single order (i , p , q , s) ; otherwise, it compares the order (i , p , q , s)

with the first element of the list, (i2 , p2 , q2 , s2) (the operator : : stands for
concatenation). If the price p of the new order is strictly greater (>) than the
price p2 of the first order in the list, it is returned a new list where the new
order (i , p , q , s) is placed first since now it is the order which ranks highest;
otherwise, (i2 , p2 , q2 , s2) is maintained as the highest ranked order, and a
recursive call of buy_rank (i , p , q , s) , list_ is done with list_ as the rest
of the list without the first element we already compared. This principle is applied
in the function sell_rank using the operator strictly less than (<) since sell
orders whose price is lowest are ranked first. Note that albeit time semantics

Order-driven Trading Systems using Petri Nets: A Multi-Agent Approach 11

yet are not used in our work, the use of strict operators, < and >, allow to give
precedence to orders who were submitted before.

Guards. Boolean expressions known as guards [5] are used as additional con-
straints for a transition to be enabled, i.e., in Fig. 3, transition b8_ (notify
matching) will be enabled if p ≥ p2 is evaluated to true, i.e., if the price p of
the highest ranked buy order is greater or equal than the price p2 of the high-
est ranked sell order. This shows on how the CPN allows to impose additional
constraints on the execution of an activity based on the data perspective, rather
than just based on the causal dependence between activities.

4 Conclusions and Future Work

In this paper we have developed experimental Petri net models for some compo-
nents of order-driven trading systems: orders submission, ranking of orders in an
order book, and the matching mechanism. We conceived a multi-agent system
(MAS), where each process of the system has been devised as a kind of agent.
We aim to focus on nested Petri nets (NP-nets), where tokens can be Petri net
themselves, so we have shown how its semantics allow to suitably model MAS.
We focused on the control-flow perspective, i.e., causal dependence between ac-
tivities executed by the system net and the agents, and on their synchronization
points, for instance, taking advantage of vertical synchronization steps. Notice
that a MAS model is capable to respect the sequential priority execution of or-
der matchings in an order book, i.e., in Fig. 1, when two agents y1 and y2 with
orders o1 and o2 respectively are matched, then no other orders can match until
the trade (o1, o2) is handled completely by an agent z.

We also designed a CPN model to express attributes of orders; this allowed
to model explicitly the use of precedence rules over orders. Guards, logic expres-
sions, on transitions, are a way to impose additional constraints on the execution
of an activity based on the order attributes. Future research will address the nec-
essary formal definitions for our MAS models. The use of Petri nets describing
these processes of a trading system is a milestone in our research. Based on such
models, Fig. 4 shows some validation tasks which are matter of future research:

Conformance checking [10]. This method, from the process mining field [9],
aims to compare how aligned is a model (describing the system’s expected be-
havior) with respect to real event logs (describing the real behavior). Hence,
for this task we will take real-life event logs from a specific electronic trading
system. Thus, we may find deviations which are either desirable (handling un-
foreseen, but valid circumstances) or undesirable (fraud, inefficiencies). Several
metrics and other methods have been proposed to measure the deviation between
a specification model and the traces seen in the log; however, the use of MAS
on our study case opens an interesting problem on how to apply conformance
checking on MAS-oriented models, i.e. in nets-within-nets.

Simulation and performance analysis. Simulation helps to identify errors on
the system’s execution, and to carry out a performance analysis. For instance,
if we include time semantics on the Petri net models, we are able through sim-
ulations to identify bottlenecks, i.e., waiting time for orders to be served by an

12 Julio C. Carrasquel, Irina A. Lomazova, and Iosif L. Itkin

MODELLING stock
trading

systems

simulation
event
logs

record events. i.e.
messages, orders,
transactions, etc.

CONFORMANCE
CHECKING

verification of
behavioral properties

PERFORMANCE ANALYSIS

a

b

c d

system net (agent society)

stock
exchange

“world”
brokers, orders,

trades ...

supports/controls

a c d

a

b

c da

b

c d

Petri-net-based model
Multi-agent system approach

processes (agents)

Fig. 4: Resarch approach for the overall validation of trading systems.

agent, time needed for an agent to complete its activities, etc.Time semantics
would allow to model other crucial concepts of trading, such as trading sessions
and orders validity and expiration that we did not tackle in this work. We may
use well-known tools for Petri nets, such as CPN Tools, which execute Petri
net models, and allow software extensions; thus, we may develop an order book
interface, whose orders and state is affected by the execution of a Petri net.

Verification of behavioral properties. Exhaustive and automated formal veri-
fication of the functional and non-functional properties of the system by means
of the model checking approach [3]. For instance, we may state properties in
temporal logic, and to check based on state space exploration whether or not the
model (specification of the trading system) satisfies these properties.

References

1. CPN Tools. https://www.cpntools.org.
2. J. C. Carrasquel and I. A. Lomazova - Complete CPN model of the order-driven

trading system. via Google Drive. https://bit.ly/2UEBMws.
3. C. Baier and J. Katoen. Principles of Model Checking. The MIT Press, 2008.
4. L. Harris. Trading and Exchanges: Market Microstructure for Practitioners. Oxford

University Press, 2003.
5. K. Jensen and L. M. Kristensen. Coloured Petri Nets: Modelling and Validation of

Concurrent Systems. Springer, 2009.
6. I. A. Lomazova. Nested Petri Nets - a Formalism for Specification and Verification

of Multi-Agent Distributed Systems. Fundamenta Informaticae, 43:195–214, 2000.
7. T. Murata. Petri nets: Properties, analysis and applications. Proceedings of the

IEEE, 77(4):541–580, 1989.
8. W. Reisig. Understanding Petri Nets: Modeling Techniques, Analysis Methods,

Case Studies. Springer, 2013.
9. W. Van der Aalst. Process Mining: Data Science in Action. Springer, 2nd edition,

2016.
10. W. van der Aalst, A. Adriansyah, and B. van Dongen. Replaying History on

Process Models for Conformance Checking and Performance Analysis. WIREs
Data Mining and Knowledge Discovery, 2:182–192, 2012.

